numerical simulations of shallow clouds by scale les3 ...numerical simulations of shallow clouds by...

12
Numerical simulations of shallow clouds by SCALELES3 Yousuke Sato, Seiya Nishizawa, Hisashi Yashiro, Yoshiaki Miyamoto, Hirofumi Tomita, and TeamSCALE Development of SCALELES3 (SCALELES ver. 3) and benchmark tests

Upload: others

Post on 02-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Numerical simulations of shallow clouds by SCALE‐LES3

    Yousuke Sato, Seiya Nishizawa, Hisashi Yashiro, Yoshiaki Miyamoto, Hirofumi Tomita, and Team‐SCALE

    Development of SCALE‐LES3 (SCALE‐LES ver. 3) and benchmark tests

  • SCALE(Scalable Computing for Advanced Library and Environment)Library for weather/climate research for peta‐scale or post peta‐scale computer

    1:What is SCALE‐LES?

    2

    Co‐design with researchers of computational scicnce

    Develop team in RIKEN AICS

    System Software Research Team

    System Software Research Team

    Programming Environment Research Team

    Programming Environment Research Team

    Computational Climate Science Research Team

    Computational Climate Science Research Team

    HPC Programing Framework Research Team

    HPC Programing Framework Research Team

    HPC Usability Research TeamHPC Usability Research Team

    Performanceabout 10% of peak FLOPS @K computer99.9% of weak scaling

    SCALE memberH. Tomita S. Nishizawa H. Yashiro Y. Miyamoto Y. Sato

    Weather/climate teamComputational science team

  • SCALE‐LES• Fluid system : 3D fully compressible • Numerical solving method

    • Included component– SGS model: Smagorinsky‐Lilly– Cloud physics: 2‐moment bulk, 1‐moment Bin– Radiation: MXTRN‐X– Surface flux : Monin‐Obukhov’s similarity

    2. Model: numerical method

    Grid system Arakawa-C

    Temporal descretization 3rd order Runge-Kutta (HE-VE)

    Advection for momentum 4th order

    Advection for ρ 4th order

    Pressure gradient force 2nd order central

    Numerical diffusion 4th orderSchematic illustration of grid system

    Benchmark tests are mostly finished and first version will published soon

  • 3. Benchmark test

    • Cold bubble (S. Nishizawa)– Test of dynamical frame : only dynamics module

    • Dry turbulence (S. Nishizawa and Y. Miyamoto)– Test of dynamical core and sub‐grid model : dynamics + SGS

    • DYCOMS‐II RF01 (Stratocumulus) (Y.Sato)– Test of SGS and cloud physics without rain

    • RICO (Shallow cumulus) (Y.Sato)– Test of cloud physics with rain

  • Cold‐bubble Experiment(Nishizawa et al. in preparation)

    Experimental setup is based on Strakaet al. (1993)• Dynamical core only• Domain size: 51.2km x 6.4km (2D)• Resolution: 25m• Cold bubble: ‐15 K (max)

    – location : x=25.6km, z=3km– size :4km x 2km

    • No diffusion except for numerical diffusion 10‐3

    Straka et al. (1993)

    (Nishizawa et al. 2013 in preparation) 

    Potential temperature at initial time

    X

    zDeviation of θ from mean value at t =900s 

    SCALE‐LES3

  • Dry  turbulence  (Miyamoto  et  al.  2012)  

    9.6  km  

    2.4  km  5.0  m  s-‐1  

    9.6  km  

    300 304 308 3120

    1

    2

    3

    (a) and qv

    z (k

    m)

    (K)

    −1 0 1 2

    0

    1

    2

    3qv (g kg

    −1)

    qv

    −4 −2 0 2 4 6 8 100

    1

    2

    3 (b) u and v

    velocity (m s−1)

    z (k

    m)

    uv

    Experimental  setup  is  Exactly  same  as  Tanaka  et  al.  (2008)  CalculaDon  Dme  :  6  hour  (dt=0.03s)  

    x (km)

    z (k

    m)

    (AR0001a) t=0021300(s)

    −4−3−2−1 0 1 2 3 40

    0.5

    1

    1.5

    2

    304

    305

    306

    307

    308

    x (km)

    y (k

    m)

    (AR0001a) t=0021300(s)

    −4−3−2−1 0 1 2 3 4−4−3−2−1

    01234

    −1

    −0.5

    0

    0.5

    1

    Horizontally  averaged  iniDal  profile DeviaDon  of  θ  from  horizontal  average  at  t=21300  [s]

    dx=dy=dz=30mFlux  with  diurnal  cycle

    0 0.5 10

    0.5

    1

    1.5 (a) buoyancy flux

    w / Fss

    z/h

    t=4ht=5ht=6h

    0 0.1 0.2 0.3 0.40

    0.5

    1

    1.5 (b) w variance

    z/h

    w w / w*

    −0.5 0 0.5 1 1.5 20

    0.5

    1

    1.5 (c) w skewness

    z/h

    w w w / (w w )3/2298 300 302 304 306 3080

    0.5

    1

    1.5

    2

    2.5 (d)

    z (k

    m)

    < > (K)

    AR0001a [ z=30, U=5.0, Fsm=200]

    0 0.5 10

    0.5

    1

    1.5 (a) buoyancy flux

    w / Fss

    z/h

    t=4ht=5ht=6h

    0 0.1 0.2 0.3 0.40

    0.5

    1

    1.5 (b) w variance

    z/h

    w w / w*

    −0.5 0 0.5 1 1.5 20

    0.5

    1

    1.5 (c) w skewness

    z/h

    w w w / (w w )3/2298 300 302 304 306 3080

    0.5

    1

    1.5

    2

    2.5 (d) z

    (km

    )

    < > (K)

    AR0001a [ z=30, U=5.0, Fsm=200]

    0 0.5 10

    0.5

    1

    1.5 (a) buoyancy flux

    w / Fss

    z/h

    t=4ht=5ht=6h

    0 0.1 0.2 0.3 0.40

    0.5

    1

    1.5 (b) w variance

    z/h

    w w / w*

    −0.5 0 0.5 1 1.5 20

    0.5

    1

    1.5 (c) w skewnessz/

    h

    w w w / (w w )3/2298 300 302 304 306 3080

    0.5

    1

    1.5

    2

    2.5 (d)

    z (k

    m)

    < > (K)

    AR0001a [ z=30, U=5.0, Fsm=200]

    buoyancy  flux

    w’  variance

    w’  skewness

    SCALE Tanaka  et  al.  (2008)

  • DYCOMS‐II RF01 case (Stratocumulus without rain)

    0

    200

    400

    600

    800

    1000

    1200

    -20 0 20 40 60 80 100 120 140 16

    He

    igh

    t[m

    ]

    w’qt’[W /m2]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    -60 -50 -40 -30 -20 -10 0 10 20

    He

    ight

    [m]

    w’theta’[W /m2]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    He

    ign

    t[m

    ]

    sgs TKE [m2/s2]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    He

    igh

    t[m

    ]

    Grid resolved TKE [m2/s2]

    GCSS max minGCSS meanGCSS mean

    SCALE

    0

    200

    400

    600

    800

    1000

    1200

    -0.15 -0.1 -0.05 0 0.05 0.1 0.1

    He

    ign

    t[m

    ]

    Third moment of w’[m3/s3]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    0 0.1 0.2 0.3 0.4 0.5 0.6

    He

    igh

    t[m

    ]

    Variance of w’[m/s]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    He

    ign

    t[m

    ]

    Liquid water mixing ratio [g/kg]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    1 2 3 4 5 6 7 8 9 10 11

    He

    ign

    t[m

    ]

    Total water mixing ratio [g/kg]

    GCSS max minGCSS std

    GCSS meanSCALE

    GCSS(max-min)

    GCSS(sigma)

    GCSS(mean)

    SCALE(SS)

    Total watermixing ratio

    Liquid watermixing ratio

    Variance of w'

    GR TKE SGS TKE w'θl' w'q'

    Third moment of w'

    Experimental setup is based on Stevens et al. (2005)• Domain size: 3.36km x 3.36km x 1.5 km(3D)• Resolution: dx=dy=35, dz=5m• Calculation time : 4 hour (dt=0.006s)• Cloud physics : 2‐moment bulk (Seiki and 

    Nakajima, 2013) [without rain and sedimentation]• Radiation : Parameterization of Stevens et al. 

    (2005)• Surface flux : Constant value• Numerical diffusion : 10‐6

    810

    820

    830

    840

    850

    860

    870

    880

    890

    0 50 100 150 200

    Zi[m

    ]

    Time [min]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    200

    400

    600

    800

    1000

    1200

    0 50 100 150 200

    Ve

    rtic

    ally

    inte

    gra

    ted

    TK

    E(S

    GS

    +G

    R)[

    m2

    /s2

    ]

    Time [min]

    GCSS max minGCSS std

    GCSS meanSCALE

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 50 100 150 200

    Liq

    uid

    wa

    ter

    pa

    th[g

    /m2

    ]

    Time[min]

    GCSS max minGCSS std

    GCSS meanSCALE

    Tim

    e ev

    olut

    ion

    LWP Zi

    Vertically integratedTKE

    Cloud water mixing ratio at t=3.5h

    © Tema‐SCALEvisualized by R. Yoshida

    Time evolution 

    Hourly averaged profile (last 1 hour)

  • Summary• SCALE‐LES ver. 3.1 is now developing at RIKEN AICS• Several benchmark tests indicate that SCALE‐LES 3.1 shows good performance

    Announce• The SCALE‐LES ver. 3.1 will published from Web site of RIKEN soon.

    • All of you can use the SCALE-LES by free (BSD 2 license)

    Using K computer of Exa‐SCALE computer, experiments with extremely fine grid spacing will be conducted. ⇒ Sensitivity experiment of grid spacing is required before product run!!

  • 4: Sensitivity of grid spacing and aspect ratio of grid

    • Cold bubble• Dry Turbulence• RF01

    From now the detailed description will be skipped because of time limitation….

    If you have any question, please contact me after this session!! The detailed discussion will be shown at JMS Spring meeting by S. Nishizawa (D403), and Y.Sato (B460)

  • 0 0.5 10

    0.5

    1

    1.5 (a) buoyancy flux

    / Fss

    z/h

    AR0001aAR0002aAR0005aAR0010a

    0 0.1 0.2 0.3 0.40

    0.5

    1

    1.5 (b) w variance

    z/h

    / w*2

    0 1 20

    0.5

    1

    1.5 (c) w skewness

    z/h

    / 3/2298 300 302 304 306 3080

    0.5

    1

    1.5

    2

    2.5 (d)

    z (k

    m)

    (K)

    t = 6 h [z=30, U=5.0, Fsm=200]

    AR=5,10: w’w’ and w’w’w’ are different from those in AR=1,2=> the turbulent fields are different from that which should be simulated in the current setting

    Dry turbulence

  • Stratocumulus (RF01)

    Variance of w’ [m2/s2]

    variance of w’

    double mode ⇒decoupling

    dz\dx 70m 35m 15m 5m

    5m 14 (H70V5) 7(H35V5) 3(H15V5) 1(H5V5) Red line : GCSS meanShade :GCSS range

    Z [m

    ]

    Decoupling should not occur from observation⇒ Aspect ratio = 3 (dx=15m, dz=5m) is required!

    AR14 (H70V5)

    AR7(H35V5)

    AR3(H15V5)

    AR1(H5V5)

  • Summary

    • SCALE‐LES ver. 3.1 is now developing at RIKEN AICS• Several benchmark tests indicate that SCALE‐LES 3.1 

    shows good performance• Aspect ratio should be set to 1〜3• The SCALE‐LES ver. 3.1 will published from Web site of 

    RIKEN near future.• All of you can use the SCALE‐LES by free (BSD 2 license)• Effect of grid spacing is now investigating and detailed 

    discussion will be published at JMS Spring meeting!