国土技術政策総合研究所資料 · no.880 december 2015 国土交通省...

79
ISSN 1346-7328 国総研資料 880 27 12 国土技術政策総合研究所資料 TECHNICAL NOTE of National Institute for Land and Infrastructure Management No.880 December 2015 国土交通省 国土技術政策総合研究所 National Institute for Land and Infrastructure Management Ministry of Land, Infrastructure, Transport and Tourism, Japan 荷重抵抗係数アプローチによる レベル1信頼性設計法に関する基礎的研究 ~永続状態におけるケーソン式岸壁の滑動および転倒照査を対象に~ 竹信 正寛・西岡 悟史・佐藤 健彦・宮田 正史 A Basic Study of the Level 1 Reliability Design Method Based on Load and Resistance Factor Approach ~Performance verifications of sliding failure and overturning failure for caisson type quay walls in permanent situation~ Masahiro TAKENOBU, Satoshi NISHIOKA, Takehiko SATO, Masafumi MIYATA

Upload: others

Post on 10-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

ISSN 1346-7328

国総研資料 第 880 号

平 成 27 年 12 月

国土技術政策総合研究所資料

TECHNICAL NOTE of

National Institute for Land and Infrastructure Managemen t

No.880 December 2015

国土交通省 国土技術政策総合研究所

National Institute for Land and Infrastructure Management

Ministry of Land, Infrastructure, Transport and Tourism, Japan

荷重抵抗係数アプローチによる

レベル1信頼性設計法に関する基礎的研究

~永続状態におけるケーソン式岸壁の滑動および転倒照査を対象に~

竹信 正寛・西岡 悟史・佐藤 健彦・宮田 正史

A Basic Study of the Level 1 Reliability Design Method

Based on Load and Resistance Factor Approach

~Performance verifications of sliding failure and overturning failure

for caisson type quay walls in permanent situation~

Masahiro TAKENOBU, Satoshi NISHIOKA, Takehiko SATO, Masafumi MIYATA

i

No. 880 2015 12

(YSK-N-323)

19

1

2

1

4.5 20.0

1

*

** ***

****

- - -- Fax e-mail: [email protected]

ii

Technical Note of NILIM

No. 880 Dec.2015

(YSK-N-323)

A Basic Study of the Level 1 Reliability Design MethodBased on Load and Resistance Factor Approach

Performance verifications of sliding failure and overturning failure for caisson type quay walls in permanent situation

Masahiro TAKENOBUSatoshi NISHIOKATakehiko SATOMasafumi MIYATA

Synopsis

The level 1 reliability design method (partial factor design method) has been introduced as a

performance verification method for overall stability of breakwaters and mooring facilities, according to

the Japanese design standard for port facilities whose title is "Technical Standards and Commentaries for

Port and Harbour Facilities in Japan (2007)". The purpose of this study is to show a new direction for the

Level 1 reliability design method in preparation for the next revision of the standard, focusing on the

following two points;

1) Adoption of the partial factor design method based on Load and Resistance Factor

Approach instead of the Material Factor Approach, and

2) Readjustment of the target safety level for sliding failure and overturning failure of

caisson type quay walls in permanent situations.

Regarding the first point, the authors came to the conclusion that it’s rational to adopt Load and

Resistance Factor Approach as the partial factor design method, especially for overall stability checks of

port structures which are exposed to strong interaction effects between ground and structures.

Regarding the second point, the authors proposed that the target safety level should be readjusted to

the level of past structures designed by safety factor method. In addition, the authors also proposes two sets

of partial factors based on Load and Resistance Factor Approach, which was calculated by using Monte

Carlo Simulation as a reliability analysis method.

Key Words : Level 1 reliability design method, Load and Resistance Factor Approach, Target safety

level, Caisson type quay wall, Permanent situation, Monte Carlo Simulation

* Senior Researcher, Port Facilities Division, Port and Harbor Department, NILIM ** Exchanging Researcher, Port Facilities Division, Port and Harbor Department, NILIM

(TOA CORPORATION) *** Exchanging Researcher, Port Facilities Division, Port and Harbor Department, NILIM

(PENTA-OCEAN CONSTRUCTION Co., Ltd.) **** Head, Port Facilities Division, Port and Harbor Department, NILIM 3-1-1 Nagase, Yokosuka, 239-0826 Japan Phone +81-468-44-5029 Fax +81-468-44-5081 e-mail: [email protected]

iii

iv

No 880

- 1 -

1)

1

2)

2)

1)

0.1

0.05

3)

ODA

1 FORM First-Order Reliability Method

/

- 2 -

2

3

3

1

4)

5)

No 880

- 3 -

1

1

2

3

3 1) 3Pf 2 ��

1 ��

3

2

1 FORM First-Order Reliability

Method

1

Rd Sd

1

3 2

1

3

3 PfT � Pf 2 �T � � 1 Rd � Sd

1 2

1 2

a)

6)

6)

b)

/

- 4 -

=1.0

γ α μ/Xk

V

1

0.9

0.9

0.9 1.1 1.8

1.1

1.0

w1

w2

w3

w1

w2

w3

No 880

- 5 -

7)

a)

8)

1

b)

8)

1

9)

/

- 6 -

10)

1

1

1

No 880

- 7 -

N

N

N

11)

12 ,13)

/

- 8 -

R S

Fs R /SFs

17)

R S

R S

R = μ W U PV

S = PH PwH

R = W x1 U x2 PV x3

S = PH y1 PwH y2

μ W U PV PH

PwH x1~3 y1~2

2514)

1.2

1.2

3415)

1.0 4216) 1.1

11 17)

No 880

- 9 -

1)

4

4

α μ/Xk V

μd ( Wd PVd Ud ) γa ( PHd PwHd )

μ W U PV

PH

PwH γa

d

μ

μk k

γf

μd γf μk

RC NC

1) 3.1

1.0×10-3 2.7

4.0×10-3

/

- 10 -

27

1.2

0.001

1.2 1.2

kh=0.05

0.05 0.10 0.15

a)

B

H

27kh=0.05

1.0

γγφ

γφ

γ

μ

No 880

- 11 -

/

- 12 -

0.05

0.05

1.3 1.5

kh=0.05

b)

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25

H11

H11

H19

H11&H19 (kh=0.05)

4.5m 7.5m 10.0m 16.0m 20.0m

No 880

- 13 -

c)

kh=0.05,0.10,0.15

2.0

kh=0.15

kh=0.10

kh=0.10-0.15

1)

18)

5)

1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25

H11

H11 H19 H11&H19 (kh=0.05)H11&H19 (kh=0.10)H11&H19 (kh=0.15)

4.5m 7.5m 10.0m 16.0m 20.0m

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25

H11

H11 H19 H11&H19 (kh=0.05)H11&H19 (kh=0.10)H11&H19 (kh=0.15)

4.5m 7.5m 10.0m 16.0m 20.0m

/

- 14 -

2

kh=0.10-0.15

3

kh 0.15

11

1.2 1.2

No 880

- 15 -

1 FORM First-Order

Reliability Method

MCS10)

MCS

MCS

MCS

1.3

MCS RC

MCS

R S 300

MCS

6600 0. 22 =6,600 300

R S R S

R S

R S

R S γR 0.76 γS 1.00

MCS

(2952.77, 2962.02)

(3865.34, 2965.42)

R

S

/

- 16 -

MCS

FORM

MCS

MCS

3

MCS

a)

20.0m 1.8m 30kN/m2

5.66m

0.24

7.80m

0.33

0.4019)

b)

Z = R - S

= μ[μ]× W [γc] U [RWL]

+ Pv [γsat1 γt1 γt2 RWL Ka cosδ]

PH [γsat1 γt1 γt2 RWL Ka cosδ] PwH [RWL]

Z = R - S

= W×x1 [γc] U×x2 [RWL]

+ Pv×x3 [γsat1 γt1 γt2 RWL Ka cosδ]

PH ×y1 [γsat1 γt1 γt2 RWL Ka cosδ] PwH ×y2[RWL]

μ

W

γγφ

γφ

γ

μ

No 880

- 17 -

U

PV PH PwH x1~3 y1~2 γc RWL γsat1 γt1 γt2 Ka cosδ

c)

R 20)

Z

Z 0

500,000

Z f(z)

54,921

1.0×10-1 =54,921/500,000

Z

S R

S = R

Z 0

Z 0

MCS

γ sat1

γ t1

γ t2

γ c

μR.W.L.

K a cosδ

0Z

f (Z)

Z 0 Z 0β σZ

Pf

μ Z

/

- 18 -

S R

a)MCS

Z

L = p (γc) × p (μ) × p (γsat1) × p (γt1)

× p (γt2) × p (RWL) ×p (Ka cosδ)

L

p ()

γc

μ

γsat1

γt1

γt2

RWL

Ka cosδ

Ln(L) = Ln (p ( c ))+Ln (p ( ))+Ln (p ( sat1 ))

+ Ln (p ( t1 ))+Ln (p ( t2 )) + Ln ( p(RWL )) +Ln (p (Ka cos ))

Ln

b)a)

FORM

1.0

1.0

nj

XXZ

XXZ

j

j

X

n

j j

Xj

j ,,2,1:2

1

2

1

��

��

��

���

����

��

���

����

��

��

X α X Z X* X σ j

MCS

X Z

MCS X0 ΔXj 2Z ΔZ

500

700

900

1100

1300

1500

1700

1900

500 700 900 1100 1300 1500 1700 1900

No 880

- 19 -

αXj = ΔZ / ΔXj

αXj Xj ΔXj Xj ΔZ Z ΔXj

j X

MCS

ΔXj

ΔXj

σ ΔXj

ΔXj

0.9350.157 -0.316

0.5210.094

-0.842

a) MCS

MCS

S R

Sk Rk

Sd Rd

Sk Rk

γS = Sd / Sk

γR = Rd / Rk

Sk

Rk

Sd

Rd

γS Sk

γR Rk

Z

XX *j

X

Z

X *j- X/2 X *j+ X/2

Z (X *j X/2)

Z (X *j+ X/2)

Z (X *j)

αXj

-1.0

-0.5

0.0

0.5

1.0

γc μ γsat1 γt2 γt1 R.W.L. Ka2.cosδ Ka1.cosδ

-1.0

-0.5

0.0

0.5

1.0

γc γsat1 γt2 γt1 R.W.L. Ka2.cosδ Ka1.cosδ

/

- 20 -

Sk=946kN, Rk=1138kN

Sd=1000kN Rd=1000kN S

R γS 1.06 γR 0.88

γR γS 1.2

1.2

1.2

b)

a)

3

2

1.2

1.0

1.2

a)MCS

300

500

700

900

1100

1300

1500

1700

1900

2100

300 800 1300 1800

Rk Sk

Rd Sd

SR

WUP V

P H

P wH

γ C

γ sat1

γ t1

γ t2

R.W.L.K a cos

300

500

700

900

1100

1300

1500

1700

1900

2100

300 800 1300 1800

Rk Sk

Rd Sd

α

α

αα

No 880

- 21 -

Z = R -

S 0

Z = R – S + α

Z α

α

b)

α

R S

4

4 Z 0 -100

-200 -300 α

MCS

500

700

900

1100

1300

1500

1700

1900

500 700 900 1100 1300 1500 1700 1900

Rk Sk

Rd Sd

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0E-03 1.0E-02 1.0E-01 1.0E+00

γ

Pf

/

- 22 -

MCS

FORM First-Order Reliability Method

FORM MCS

β α

MCS

FORM MCS

MCS

MCS

FORM

FORM MCS

FORM MCS

γγφ

γφ

γ

μ

No 880

- 23 -

2 1 3

a)

MCS

3

1.2

1.2

1.2

1.0

4

kh

0.05

0.05

1.0 1.1

17)

b)

1.01 0.03

( ,

1.02 0.04

L.W.L 1.00 0.05

1.00 0.12

1.06 0.15

a)

27

L.W.L.

H

/

- 24 -

LWL/H

1.0×10-1 10%

4.0×10-4 0.04%

1.2 2.0

2

1.0×10-2 1%

1.0×10-3 0.1%

1.2 1.3

1

b)

0

1.2

10%

10%

L.W.L.

H.W.L.

L.W.L 1/3

No 880

- 25 -

-3.2

30kN/m2

30kN/m2

3

w1

w2 w1

1 w1 w2

2 w2 3

21)

( 1

γγφ

γφ

γ

μ

γγφ

γφ

γ

μ

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30

Pf

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30

Pf

/

- 26 -

6

6

6

1.2

0.05

0.05

0.55

1

1

1.2

10%

10%

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

Pf

No 880

- 27 -

kh=0.05

2

1.2

1.2

0.3 0.4 19)

0.35 0.4

1.2 1.2

φ 40

/

- 28 -

9.3 10-2 3.6 10-3

27 27

.

3

3

3

A

A

B

B

A B

LWL/H 0.75

LWL/H 0.75

MCS

R γR

S γS

μ γμ

W γW

U γU

Pv γPV

PH γPH

PwH γPwH

γc γγμ γμ

γsat1 γγsat

γt2 γt2

γt1 γt1

R.W.L. γRWL

Ka.cosδ γKa

No 880

- 29 -

B B

/

- 30 -

No 880

- 31 -

A 27

A

LWL/H =0.75

LWL/H 0.75

0.75 LWL/H 0.75

0.75

A

2

A

1.0

Pf

/

- 32 -

B

H B/H

B/H B/H

26.0m 20m, 4.5m,

+6.0m 15cm

B/H 0.005

10cm

1.0E-02

1.0E-01

1.0E+00

0.0 0.2 0.4 0.6 0.8 1.0

Pf

LWL/H

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.0 0.2 0.4 0.6 0.8 1.0

Pf

LWL/H

No 880

- 33 -

10cm

3

27

a)3

1.0

27

3 A

B

R γR 0.87 0.99

S γS 1.06 1.23

μ γμ 0.86 -

W γW 1.00 0.96

U γU 1.00 1.00

Pv γPV 1.06 1.27

PH γPH 1.06 1.26

PwH γPwH 1.00 1.02

γc γγ 1.00 0.95

μ γμ 0.86 -

γsat1 γγsat 1.03 1.03

γt2 γt2 1.02 1.04

γt1 γt1 1.02 1.03

R.W.L. γRWL 1.00 1.02

Ka.cosδ γKa 1.04 1.22

/

- 34 -

A B

15cm

26.0m 20m, 4.5m, +6.0m

b)

3

1.0

3

No 880

- 35 -

c)

a) b)

3

10cm

A B

27

3 A B

1.0E-02

1.0E-01

1.0E+00

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pf

LWL/H

1.0E-02

1.0E-01

1.0E+00

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pf

LWL/H

1.0E-02

1.0E-01

1.0E+00

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pf

LWL/H

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pf

LWL/H

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pf

LWL/H

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pf

LWL/H

/

- 36 -

1)

2)

1.5

kh 0.10 0.15

3) 2)

1.21.2

4) MCS

MCS

MCS FORM

5

2

A B

-4.5m -20.0m

A

B

R γR 0.87 0.99

S γS 1.06 1.23

μ γμ 0.86 -

W γW 1.00 0.96

U γU 1.00 1.00

Pv γPV 1.06 1.27

PH γPH 1.06 1.26

PwH γPwH 1.00 1.02

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

/B/H

H11

H19

A

4.5m 7.5m 10.0m 16.0m 20.0m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

/B/H

H11

H19

B

4.5m 7.5m 10.0m 16.0m 20.0m

No 880

- 37 -

1)

2007.

2)

2014.

3) (OCDI) TECHNICAL

STANDARDS AND COMMENTARIES FOR PORT

AND HARBOUR FACILITIES IN JAPAN 2009.

4)

340 1983.

5)

1983.

6) -

2014.

7)Honjo,Y. T.C.Kieu Le T.Hara M.Shirato M.Suzuki and

Y.Kikuchi Code calibration in reliability based design

lebel verification format for geotechnical structures

Geotechnical Safety and Risk(Proc. of Is-Gifu) CRC

press,pp.433-452 2009.

8) -

2014.

9)

1984.

10)

2015

11)

2014.

12)

57 2002.

13)No.448 -19

1992.

14) 1950.

15) 1959.

16)

1979.

17)

1999.

18)

Vol.51A 2005.

19) 1932.

20 R Development Core Team.R A language and

environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. 2007.

21)

No.5

2002.

/

- 38 -

251

10

25 1

34 42

19

4

(1)

251 1.2

34 2

A-1

1.0

F

μ

W

P

(2)

25

A-1

No.880

- 39 -

1 1.2

423 A-2

1.1

F

W

t

P

h

(3)

251

A-4

342

A-3 6

Pai i

Phi i

Pvi i

Kai i

i i

hi i

i i

’ 0

: ’ :

A-3

A-4

A-5

A-2

A-6

/

- 40 -

544

A-7

t

hi i

hj

j

w

h

75

(4)

251 34

2

423

A-8

pdw

k

w

H

y

54 4 6

11 7

A-9

A-10

Pdw

hdw

(A-8)

(5)

25 1

1/2 1/4 342 1/3 2/3 42

3

1/3

1/3

46 8

(A-9)

A-7

A-8

A-9

A-10

No.880

- 41 -

hw R.W.L. L.W.L.

H H.W.L. L.W.L.

(6)

251 0.5

0.6 16

7)

7

1) 1950

2) 1959

3) 1967

4) 1979

5) 1932

6)

1989

7)

1999

8)

No.115 1971

9)

2007

A-9

/

- 42 -

1)

50

4.34m

0.27m

1.3m 2.0m

2)

1992

4.5m

0.4m 1.7m

H.W.L.

L.W.L. 0.3m

1.8m 4.5m

1)

2)

No.880

- 43 -

2)

20m 4 5

3

10

1/3

H.W.L.-L.W.L.

1/3

2)

3) 63

180

-10.0m 26.6% -7.5m

21.2%

-4.5m

-4.5m

-16.0m

-20.0m

4.5m

16.0m 10.0m

7.5m 4 20.0m

5

3)

3) L.W.L.

3.0 4.5m 8 3.5

4.0m 1.5m 6.0m

H.W.L.

L.W.L.

0.3m 1.8m 4.5m

L.W.L.+2.0m L.W.L.+4.0m L.W.L.+6.0m

/

- 44 -

3)

3

3) 1.0m

1.0m

3)

0.5m 6

1 2

0.5m

3)

3)

3)

No.880

- 45 -

3)

sat = 20.0 kN/m3

t = 18.0 kN/m3

4)

Vs

Vc

Vs/Vc

3.03 2.78

3.0

Vs

Vc 3.0

sat = 20.0 kN/m3

c = 24.0 kN/m3

c = 1 24.0+3 20.0 / 4 = 21.0 kN/m3

4)

5)

100kgf/cm2(9.8MN/m2)

1.0kgf/cm2(98kN/m2) 4kgf/cm2(382kN/m2)

40

35 40

/

- 46 -

40

40

=40

N φ

N

N φ

070

1002.325

v

N�

���

��

rD15.028���

070

10021

vr

ND���

N1225���

φ

N N

Dr

σ’v0

N 4

φ 30

40

φ=30

15 20

1/2

6)

20cm 30cm 50cm 80cm

20cm

45%

42 51%

30cm tanδ

0.30 =16.7 6)

=15

No.880

- 47 -

6)

10 30kN/m2

30kN/m2

8),9)

50t

2

1 12 15t

3 5

0.6

0.6

μ 0.6

1)

31 3 1992

2)

No.115 1971

3)

No.702 1991

4)

No.716 1991

5)

No.924 1999

6)

No.916 1998

7)

No.268 1977

8)

25 1978

9)

( 2 ) 26 1979

8)9)

/

- 48 -

Z

5 MCS

MCS

MCS

MCS

MCS

20

N=20

MCS 10

50

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000

1200

1250

1300

1350

1400

1450

1500

1200 1250 1300 1350 1400 1450 1500

No.880

- 49 -

(1)

(2)

0.5 1 3 0.5

1 2 5 0.65

1 3

5

3

0.5 0.5 0.5 0.5 0.5σ=0.03σ

1 2 0.5 0.5 0.5 1.0

1.0σ=0.13σ 3 0.65 0.65 0.65 0.65 0.65σ=0.12σ

0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

-4 -2 0 2 4

12

34

5

6

7

89

1011

12

13

14

15

16

17

18

19

0

20

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

/

- 50 -

-1

-2

-3

-1

-2

-3

1

2

345678910111213141516171819

0

20

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

1

2

3456789

0

10

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

1

2 34

0

5

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

1

23

45

6789

1011

1213

141516171819

0 20

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

1

2

3

456

789

0

10

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

1

2 3

40

5

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

No.880

- 51 -

-1

-2

-3

A R

0.004 =0.819 0.814 S

0.005 =1.082 1.077

0.005

1 4 0

0.01

0.01

1

0.005

MCS

-3

1

2

3

4

5

678

9

10111213

1415

16171819

0 20

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

12

3

4

56789

010

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

1

23

4

0

5

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1300 1350 1400 1450 1500

R S R S γ R γ S

γ R γ S γ S /γ R B/H B/HB/H

/

- 52 -

MCS

ΔXj

ΔZ

ΔXj

ΔXj

ΔXj

αXj = ΔZ ΔX j

αXj Xj

ΔZ Z

ΔXj Xj

ΔXj

ΔXj σ

ΔXj

1000

ΔXj

ΔXj

ΔXj

ΔXj 1.0σ

ΔXj

ΔXj

Z

XX *j

ΔXj

ΔZ

X *j ΔXj / 2 X *j ΔXj / 2

Z (X *j ΔXj / 2)

Z (X *j+ΔXj / 2)

Z (X *j)

αXj

γγφ

γφ

γ

γ sat1

γ t1

γ t2

γ c

μR.W.L.

K a cosδ

-1.00

-0.50

0.00

0.50

1.00γc

μ

γsat1

γt2

γt1

R.W.L.

Ka.cosδ

-1.00

-0.50

0.00

0.50

1.00

γc

γsat1

γt2

γt1

R.W.L.

Ka.cosδ

No.880

- 53 -

MCS FORM

First-Order Reliability Method

FORM

Z X1 X2 … Xn

X*1 X*

2 … X*n

� � � � *

1

***

2

*

1 ,...,, Xj

n

jjjn X

gXXXXXgZ��

�� ��

Z μz σz

� � *

1

*

Xj

n

jjXZ X

gXj �

� ��

!!

jX

n

jX

jjZ X

g ��� ��

���

����

��

�1

*

αj

β

ZZ �!� �

3

� � 0,...,, **

2

*

1 �nXXXg

njXjj X

Z

ZjX ,...,2,1:* � � ��!

�!

nj

Xg

Xg

n

jXX

j

XXj

j

j

j

,...,2,1:2

1

1

2

2

*

*

��

��

���

����

��

���

����

��

��

T

Xj j

njX kj

X

X

XTjj

j

j

j,...,2,1:1

,

���

��

� �

!

!

����

FORM

" # " # " # " #� �" # " #)cos,,,,P(

cos,,,,

211H

211

RWLPKRWLKRWLPRWLUW

SRZ

WHattsat

attsatvC

�$

$� %� �

&���

&����!!

" # " # " #" # " #)cos,,,,P(

cos,,,,

22111H

211321

RWLyPKRWLyKRWLxPRWLUxWx

SRZ

WHattsat

attsatvC

�$

$� � �

&���

&����

FORM MCS

β α

α FORM MCS

FORM

MCS

γγφ

γφ

γ

μ

/

- 54 -

μ γ c γ sat1 γ t1 γ t2 RWL K a cosδ

α j

βX *

Z/ Xα j

βX *

Z/ Xα j

βX *

Z/ Xα j

βX *

Z/ Xα j

βX *

Z/ Xα j

βα jβ

MCS

μ γ c γ sat1 γ t1 γ t2 RWL K a cosδ

α j

β

MCS

FORM

No.880

- 55 -

γ c γ sat1 γ t2 γ t1 RWL K a cosδ

α j

βX *

Z/ Xα j

βX *

Z/ Xα j

βX *

Z/ Xα j

βX *

Z/ Xα j

βX *

Z/ Xα j

βα jβ

MCS

γ c γ sat1 γ t2 γ t1 RWL K a cosδ

MCS

FORM

/

- 56 -

( 1 )

Z = Rd Sd = μ × ( W U + Pv ) ( PH + PWH )

μ

W

U

Pv

PH

PWH

W = H ×B × γC

H = 8.5m

B = 2.7285m

γC

W = 8.5 × 2.7285 × γC = 23.192 × γC

U = B × h1× γw

h1 = 4.5m+RWL

RWL

γw = 10.1 kN/m3

U = 2.7285 × ( 4.5 + RWL ) × 10.1 = 124.010 + 27.558 × RWL

PH = 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 + γt1 × h2 + ( γsat1 γw ) × h1 ] × h1

+ 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 + γt1 × h2 ] × h1

+ 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 + γt1 × h2 ] × h2

+ 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 ] × h2

+ 1 / 2 ×Ka2 cosδ× [w + γt2 × h3 ] × h3

+ 1 / 2 ×Ka2 cosδ× [w ] × h3

Ka1 = 0.2011

Ka2 = 0.3014

δ = 15

w = 30.0 kN/m3

γt2

γt1

γsat1

h2 = 1.8m RWL

h3 = 2.2m

μ

γ

γ

γ

γ

γ

δ

No.880

- 57 -

PH = 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 + γt1 × ( 1.8 RWL ) + ( γsat1 10.1 ) × ( 4.5 + RWL ) ] × ( 4.5 + RWL )

+ 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 + γt1 × ( 1.8 RWL ) ] × ( 4.5 + RWL )

+ 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 + γt1 × ( 1.8 RWL ) ] × ( 1.8 RWL )

+ 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 ] × ( 1.8 RWL )

+ 1 / 2 × 0.2911 × Ka × [30 + γt2 × 2.2 ] × 2.2

+ 1 / 2 × 0.2911 × Ka × [30 ] × 2.2

= 1 / 2 × 0.1942 × Ka × ( γsat1 γt1 10.1 )RWL2

+ 1 / 2 × 0.1942 × Ka × ( 9.0γsat1 9.0γt1 90.9 )RWL

+ 1 / 2 × 0.1942 × Ka × ( 20.25γsat1 + 19.44γt1 + 27.72γt2 + 173.475 )

+ 1 / 2 × 0.2911 × Ka × ( 4.84γt2 + 132 )

Ka

PV = tanδ× PH = 0.268 × PH

= 0.268 × 1 / 2 × 0.1942 × Ka × ( γsat1 γt1 10.1 )RWL2

+ 0.268 × 1 / 2 × 0.1942 × Ka × ( 9.0γsat1 9.0γt1 90.9 )RWL

+ 0.268 × 1 / 2 × 0.1942 × Ka × ( 20.25γsat1 + 19.44γt1 + 27.72γt2 + 173.475 )

+ 0.268 × 1 / 2 × 0.2911 × Ka × ( 4.84γt2 + 132 )

PWH = 1 / 2 ×γw × RWL2 +γw × RWL ×LWL

LWL = 4.5m

PWH = 1 / 2 × 10.1 × RWL2 + 10.1 × RWL × 4.5

= 5.05 × RWL2 + 45.45 × RWL

( 2 )

Z μ γC RWL Ka γsat1 γt1 γt2

∂Z / ∂μ = W U + PV = W U + 0.268 × PH

=23.192 × γC 124.010 + 27.558 × RWL

+0.268 × 1 / 2 × 0.1942 × Ka × ( γsat1 γt1 10.1 )RWL2

+ 0.268 × 1 / 2 × 0.1942 × Ka × ( 9.0γsat1 9.0γt1 90.9 )RWL

+ 0.268 × 1 / 2 × 0.1942 × Ka × ( 20.25γsat1 + 19.44γt1 + 27.72γt2 + 173.475 )

+ 0.268 × 1 / 2 × 0.2911 × Ka × ( 4.84γt2 + 132 )

∂Z / ∂γC = 23.192 × μ

∂Z / ∂γsat1 = (0.268μ 1 ) × 0.1942 / 2 × Ka × ( RWL2 + 9 × RWL + 20.25 )

∂Z / ∂γt1 = (0.268μ 1 ) × 0.1942 / 2 × Ka × ( RWL2 9 × RWL + 19.44 )

γ

γ

γ

γ

δ

δ

/

- 58 -

∂Z / ∂γt2 = 3.396 × Ka × ( 0.268μ 1 )

∂Z / ∂RWL = 27.558μ + (0.268μ 1 )

× {0.1942 × Ka × ( γsat1 γt1 10.1 )RWL + 1 / 2 × 0.1942 × Ka × ( 9γsat1 9γt1 90.9 )} 10.1RWL 45.45

∂Z / ∂Ka = ( 0.268μ 1 ) × {1 / 2 × 0.1942 × ( γsat1 γt1 10.1 )RWL2

+ 1 / 2 × 0.1942 × ( 9γsat1 9γt1 90.9 )RWL

+ 1 / 2 × 0.1942 × ( 20.25γsat1 + 19.44γt1 + 27.72γt2 + 173.475 )

+ 1 / 2 × 0.2911 × ( 4.84γt2 + 132 )}

(1 )

Z = Rd Sd

= ( Wx Ux + PVx ) ( PHy + PWHy )

Wx

Ux

PVx

PHy

PWHy

WX = H × B × γC × B / 2

H = 8.5m

B = 3.2555m

γC

WX = 8.5 ×3.2555 × γC ×3.2555 / 2 = 45.043 × γC

UX = B × h1× γw × B / 2

h1 = 4.5m+RWL

RWL

γw = 10.1 kN/m3

UX = 3.2555 × 4.5 + RWL ×10.1 ×3.2555 / 2

= 53.521 × RWL + 240.846

PHY = 1 / 2 ×Ka1 cosδ× [w + γt2 ×h3 + γt1 ×h2+ ( γsat1 γw ) ×h1] × h1 × 1 / 3 × h1

+ 1 / 2 ×Ka1 cosδ× [w + γt2 ×h3 + γt1 ×h2 ] × h1 × 2 / 3 × h1

+ 1 / 2 ×Ka1 cosδ× [w + γt2 ×h3 + γt1 ×h2 ] × h2 × [h1 + 1 / 3 × h2]

+ 1 / 2 ×Ka1 cosδ× [w + γt2 ×h3 ] × h2 × [h1 + 2 / 3 × h2]

γ

γ

No.880

- 59 -

+ 1 / 2 ×Ka2 cosδ× [w + γt2 ×h3 ] × h3 × [h1 + h2 + 1 / 3 × h3]

+ 1 / 2 ×Ka2 cosδ× [w ] × h3 × [h1 + h2 + 2 / 3 × h3]

Ka1 = 0.2011

Ka2 = 0.3014

δ = 15

w = 30.0 kN/m3

γt2

γt1

γsat1

h2 = 1.8m RWL

h3 = 2.2m

PHY = 1 / 2 ×0.1942 × Ka × [30 + γt2 × 2.2 + γt1 × ( 1.8 RWL ) + ( γsat1 10.1 ) × ( 4.5 + RWL )]

× ( 4.5 + RWL ) × 1 / 3 × (4.5 + RWL )

+ 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 + γt1 × ( 1.8 RWL ) ]

× ( 4.5 + RWL ) × 2 / 3 × (4.5 + RWL )

+ 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 + γt1 × ( 1.8 RWL ) ]

× ( 1.8 RWL ) × [(4.5 + RWL ) + 1 / 3 ×(1.8 RWL )]

+ 1 / 2 × 0.1942 × Ka × [30 + γt2 × 2.2 ]

× ( 1.8 RWL ) × [(4.5 + RWL ) + 2 / 3 ×(1.8 RWL )]

+ 1 / 2 × 0.2679 × Ka × [30 + γt2 × 2.2 ]

× 2.2 × [(4.5 + RWL ) + (1.8 RWL ) + 1 / 3 × 2.2]

+ 1 / 2 × 0.2679 × Ka × [30 ]

× 2.2 × [(4.5 + RWL ) + (1.8 RWL ) + 2 / 3 × 2.2]

= 1 / 6 × 0.1942 × Ka ×[ ( γsat1 γt1 10.1 )RWL3 + 13.5(γsat1 γt1 10.1 )RWL2 + 60.75 ( γsat1 γt1 10.1 )RWL

+ (91.125γsat1 + 261.954γt2 + 158.922γt1 + 2651.737 )] + 1 / 6 × 0.2911 × Ka ×[102.124γt2 + 2930.4]

Ka

Pvx = { 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 + γt1 × h2 + ( γsat1 γw ) × h1 ] × h1

+ 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 + γt1 × h2 ] × h1

+ 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 + γt1 × h2 ] × h2

+ 1 / 2 ×Ka1 cosδ× [w + γt2 × h3 ] × h2

+ 1 / 2 ×Ka2 cosδ× [w + γt2 × h3 ] × h3

+ 1 / 2 ×Ka2 cosδ× [w ] × h3 }

×tanδ × B

= 0.1942 / 2 × 3.2555 × 0.2679 × Ka ×

[(γsat1 γt1 10.1 )RWL2 + 9 ( γsat1 γt1 10.1 )RWL

+ (20.25γsat1 + 27.72γt2 + 19.44γt1 + 173.475 )]

+ 0.2911 / 2 × 3.2555 × 0.2679 × Ka × ( 4.84γt2 + 132 )

γ

γ

γ

δ

y2 y3 y4

γ

γ

γ

δ

/

- 60 -

PWHY = 1 / 2 ×γw × RWL2 × 1 / 3 × RWL + LWL

+ γw × RWL × LWL × 1 / 2 × LWL

LWL = 4.5m

PWHY = 1 / 6 × 10.1 × RWL3 + 1 / 2 × 45.45 × RWL2 + 1 / 2 × 204.525 × RWL

( 2 )

Z γC RWL Ka γsat1 γt1 γt2

∂Z / ∂γC = 45.043

∂Z / ∂γsat1 = ∂Pvx / ∂γsat1 ∂PHY / ∂γsat1

= 1 / 2 × 0.1942 × Ka × 3.2555 × 0.2679 × ( RWL2 + 9RWL + 20.25 )

1 / 6 × 0.1942 × Ka × ( RWL3 + 13.5 RWL2 + 60.75RWL + 91.125 )

∂Z / ∂γt1 = ∂Pvx / ∂γt1 ∂PHY / ∂γt1

= 1 / 2 × 0.1942 × Ka × 3.2555 × 0.2679 × ( RWL2 + 9RWL + 19.44 )

1 / 6 × 0.1942 × Ka × ( RWL3 13.5 RWL2 60.75RWL + 158.922 )

∂Z / ∂γt2 = ∂Pvx / ∂γt2 ∂PHY / ∂γt2

= 1 / 2 × 0.1942 × Ka × 3.2555 × 0.2679 × 27.72 + Ka / 2 × 0.2911 × 3.2555 × 0.2679 × 4.84

1 / 6 × 0.1942 × Ka × 261.954 Ka / 6 × 0.2911 × 102.124

= 10.471Ka

∂Z / ∂RWL = ∂UX / ∂RWL + ∂PVX / ∂RWL ∂PHY / ∂RWL ∂PWHY / ∂RWL

= 53.521 + 1 / 2 × 0.1942 × Ka × 3.2555 × 0.2679 × [2 ( γsat1 γt1 10.1 )RWL + 9(γsat1 γt1 10.1 )]

1 / 6 × 0.1942 × Ka × [3 ( γsat1 γt1 10.1 )RWL2 + 27 ( γsat1 γt1 10.1 )RWL + 60.75 ( γsat1 γt1 10.1 ) ]

5.05RWL2 45.45RWL 102.263

= 5.05RWL2 45.45RWL 155.784 + 1 / 2 × 0.1942 × Ka × 3.2555

× 0.2679 × ( 2RWL + 9 )(γsat1 γt1 10.1 ) 1 / 6 × 0.1942 × Ka × ( 3RWL2 + 27RWL + 60.75 )( γsat1 γt1 10.1 )

∂Z / ∂Ka = ∂PVX / ∂Ka ∂PHY / ∂Ka

+ 1 / 2 × 0.1942 × 3.2555 × 0.2679 × [(γsat1 γt1 10.1 )RWL2 + 9 ( γsat1 γt1 10.1 )RWL

+ (20.25γsat1 + 27.72γt2 + 19.44γt1 + 173.475 )] + 1 / 2 × 0.2911 × 3.2555 × 0.2679 × ( 4.84γt2 + 132 )

1 / 6 × 0.1942 × [(γsat1 γt1 10.1 )RWL3 + 13.5(γsat1 γt1 10.1 )RWL2

+ 60.75 ( γsat1 γt1 10.1 )RWL + (91.125γsat1 + 261.954γt2 + 158.922γt1 + 2651.737 )]

1 / 6 × 0.2911 × ( 102.124γt + 2930.4 )

γ

y'2

No.880

- 61 -

1)

=2.41(t/m3) =0.0448(t/m3) 1)

2 10

=1.019 =0.0376

1)

RC = 24.00 kN/m3

/Xk = 2.41 9.8 / 24.0 = 0.98

= 0.0448 9.8 = 0.44

V = 0.44 / (2.41 9.8) = 0.02

*RC = 24.0 0.98 = 23.52 kN/m3

S = 20.00 kN/m3

/Xk = 1.019 = 1.02

= 0.0376 = 0.04

V =0.04 / 1.02 = 0.04

*S = 20.00 1.02 = 20.4 kN/m3

=0.04 20.4 = 0.816

1)

3 1

C = 1 24.0+3 20.0 / 4 = 21.0

/Xk = (1/4 23.52+3/4 20.40) / 21.0

= 1.01

= {(1/4 0.44)2+(3/4 0.816)2 }1/2

= 0.62

V = 0.62 / (21.0 1.01) = 0.03

/Xk = 1.01

V = 0.03

2)

20cm 30cm 50cm 80cm

20cm

40 45%

/

- 62 -

(Ka cos )

Ka cosδ

Ka cosδ

/Xk = 1.00

V = 0.12

Ka

Ka

cosδ

φ

MCS

2)

3)

19784) 19795)

4) 5)

/Xk = 1.06

V = 0.15

No.880

- 63 -

1/3 2/3

L.W.L.

1/3 L.W.L. 2/3

6)

6)

6)

L.W.L

/Xk = 1.00

V = 0.05

5 25

6)

6)

6)

6)

6)

6)

/

- 64 -

6)

6)

6)

6)

6)

6)

6)

6)

No.880

- 65 -

6)

6)

6)

6)

6)

6)

6)

6)

/

- 66 -

1)

/Xk = 1.02

V = 0.04

1)

No.716

1991

2)

No.811 1995

3)

31 5

1993

4)

25

1978

5)

( 2 ) 26

1979

6)

No.115 1971

No.880

- 67 -

A

B

5 27

MCS

αXj = ΔZ / ΔXj

αXj Xj

ΔXj Xj

ΔZ Z ΔXj

j X

4.3

27

27

γc Ka cosδ

γc

Ka cosδ

B

27

27

W

PH

MW

MH

A

27

27

μ

R

MH

S

/

- 68 -

B

B

27

27

B 27

B 27

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20 25 30

μ

γc

γsat1

γt2

γt1

RWL

Ka.cosδ

-1.0

-0.5

0.0

0.5

1.0

0 5 10 15 20 25 30

γc

γsat1

γt2

γt1

RWL

Ka.cosδ

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30

μ

W

U

PH

Pv

PwH

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30

MvMuMHMvMwH

-1.0

-0.5

0.0

0.5

1.0

γc μ γsat1 γt2 γt1 RWL Ka.cosδ

-1.0

-0.5

0.0

0.5

1.0

γc γsat1 γt2 γt1 RWL Ka.cosδ

-1.0

-0.5

0.0

0.5

1.0

μ W U PH Pv PwH

-1.0

-0.5

0.0

0.5

1.0

Mv Mu MH Mv MwH

No.880

- 69 -

A

A

A 27

A 27

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30

R

S

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30

R

S

-1.0

-0.5

0.0

0.5

1.0

R S

-1.0

-0.5

0.0

0.5

1.0

R S

/

- 70 -

1.0

β

A

B

1.0

β

No.880

- 71 -

=1.0

/

- 72 -

=1.0

国土技術政策総合研究所資料

TECHNICAL NOTE of N I L I M

No. 880 December 2015

編集・発行 国土技術政策総合研究所

本資料の転載・複写のお問い合わせは

〒239-0826 神奈川県横須賀市長瀬 3-1-1

管理調整部企画調整課 電話:046-844-5019