on dinh dien ap

Upload: nguyen-duc-nguyen

Post on 07-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 ON DINH DIEN AP

    1/33

    i

    Vietnam National University, Ho Chi Minh City

    Ho Chi Minh City University of Technology

    Faculty of Electrical & Electronic Engineering

    Excellence Engineers Training Program in Vietnam---------------o0o---------------

    GRADUATION ESSAY

    DESIGN AC VOLTAGE STABILIZER

    SINGLE PHASE USING AC – 

     AC CONVERTER

    Instructor: Dr. NGUYỄN ĐÌNH TUYÊN Student : NGUYỄN ĐỨ C NGUYỆ N

     HCM city, 6 /2015

  • 8/19/2019 ON DINH DIEN AP

    2/33

      CONTENT

    ii

    CONTENT

    CHAPTER I : INTRODUCTION ............................................................................. 1 

    CHAPTER II : AC voltage stabilizers ...................................................................... 2 

    II.1 Coil-rotation AC voltage regulator ............................................................. 2 

    II.2 Electromechanical ...................................................................................... 3 

    II.3 PWM voltage regulator (PWM) ................................................................. 4 

    CHAPTER III: AC –  AC CONVERTERS AND USING IN VOLTAGESSTABILIZERS .......................................................................................................... 5

     

    III.1 The principle of operation of the AC - AC converter for voltage

    stabilization ........................................................................................................... 5 

    III.2 AC - AC converter ........................................................................................ 6 

    III.2.1 Buck converter : .................................................................................... 6 

    III.2.2 Half - bridge converter : ......................................................................... 9 

    III.2.3 Full –  bridge converter ......................................................................... 17 

    CHAPTER IV : DESIGN A VOLTAGE STABILIZER WITH HALF –  BRIDGESUPPLIDE ON LINE SIDE ................................................................................... 22

     

    IV.1 Selecting components ................................................................................. 22 

    IV.2.1. The control circuit ............................................................................... 22 

    IV.2.2 The Power circuit ................................................................................. 22 

    IV.3 Design Circuit using Orcad 9.2 ................................................................... 24 

    IV.3.1 Design the Controller ........................................................................... 24 

    IV.3.2. Design Power circuit ........................................................................... 29 

    REFERENCE .......................................................................................................... 31 

  • 8/19/2019 ON DINH DIEN AP

    3/33

      CHAPTER I

    1

    CHAPTER I : INTRODUCTION

    Power quality describes the quality of voltage and currenta facility has, and is one of the

    most important considerations in industrial and commercial applications today. It is essential that

     processes, in particular, in industrial plants, operate uninterrupted where high productivity levels

    are an important factor. Power quality problems commonly faced by industrial operations

    include transients, sags, swells, surges, outages, harmonics, and impulses that vary in quantity or

    magnitude of the voltage. Of these, voltage sags, extended undervoltages and overvoltages have

    the largest negative impact on industrial productivity, and could be the most important type of

     power quality variation for many industrial and commercial customers

    Some major problems associated with unregulated line voltages (in particular, long-term

    voltage sags) include equipment tripping, stalling, overheating, and complete process shutdowns.

    These subsequently lead to lower efficiencies, higher power demand, higher cost for power,

    electromagnetic interference to control circuits, excessive heating of cables and equipment, and

    increased risk of equipment damage. The need for line voltage regulation still remains a

    necessity to meet demands for high industrial productivity.

  • 8/19/2019 ON DINH DIEN AP

    4/33

  • 8/19/2019 ON DINH DIEN AP

    5/33

      CHAPTER II

    3

    II.2 Electromechanical 

    Electromechanical regulators called voltage stabilizers or tap-changers, have also been used to

    regulate the voltage on AC power distribution lines. These regulators operate by using

    a servomechanism to select the appropriate tap on an autotransformer with multiple taps, or by

    moving the wiper on a continuously variable auto transfomer. If the output voltage is not in the

    acceptable range, the servomechanism switches the tap, changing the turns ratio of the

    transformer, to move the secondary voltage into the acceptable region. The controls provide

    a dead band wherein the controller will not act, preventing the controller from constantly

    adjusting the voltage ("hunting") as it varies by an acceptably small amount.

    Figure 2.2 : Voltage stabilizer with transformer and servo motor

  • 8/19/2019 ON DINH DIEN AP

    6/33

      CHAPTER II

    4

    II.3 PWM voltage regulator

    This is the latest technology of voltage regulation to provide real-time control of voltage

    fluctuation, sag, surge and also to control other power quality issues such as spikes and EMI/RFI

    electrical noises. This uses an IGBT regulator engine generating pulse width modulated (PWM)

    AC voltage at high switching frequency. This AC PWM wave is superimposed on the main

    incoming wave through a buck-boost transformer, to provide precisely regulated AC voltage.

    The regulation in this technology is instantaneous, thus making it suitable for electronic

    machines which need precise regulated power.

    Figure 2.3 : Voltage Stabilizer

  • 8/19/2019 ON DINH DIEN AP

    7/33

      CHAPTER III

    5

    CHAPTER III: AC –  AC CONVERTERS AND USING IN VOLTAGES

    STABILIZERS

    III.1 The principle of operation of the AC - AC converter for voltage

    stabilization

    Configure the AC - AC converter based on the basic configuration as buck, half - bridge, full -

     bridge ... combined with an output transforme.r The converter incorporates fast-switching

    insulated gate bipolar transistor (IGBT) technology, and controls involving pulsewidth

    modulation (PWM) techniques. The model block diagram is shown in this fig

    B)

    Figure 3.1 Model block diagram of the ac voltage – voltage converter system. 

  • 8/19/2019 ON DINH DIEN AP

    8/33

      CHAPTER III

    6

    III.2 AC - AC converter

    III.2.1 Buck converter :

    a)  Configuration and control algorithms

    Figure 3.2 Configuration and control algorithms 

    There will be two states depends on the sign of the source voltage,

    Where Vi> 0, S1 and S2 switching pulse while S3 and S4 is always enabled

    Where Vi 0 :

      When DTs S1,S3,S4 on, S2 off:

  • 8/19/2019 ON DINH DIEN AP

    9/33

      CHAPTER III

    7

    Figure 3.3. Equivalent circuit in DTS where Vi >0

    Then VL = Vi 

      When (1 –  D)Ts S2,S3,S4 on, S1 off:

    Figure 3.4 Equivalent circuit in (1 –  D)TS Vi >0

    Then VL = 0

      Where Vi < 0 :

      When DTs S1,S2,S4 on, S3 off:

    Figure 3.5. Equivalent circuit in DTS  Vi

  • 8/19/2019 ON DINH DIEN AP

    10/33

      CHAPTER III

    8

      When (1 –  D)Ts S2,S1,S3 on, S4 of:

    Figure 3.6. Equivalent circuit in (1 –  D)TS where Vi

  • 8/19/2019 ON DINH DIEN AP

    11/33

      CHAPTER III

    9

    Voltage quality depends on the selection of capacitors and inductors, in a certain range,

    the ratio VL/Vi  D, if L and large C will affect this rate.

    We choose the value inductors and capacitors based on criteria in the ripple current and

    ripple voltage at capacitors

     

     

    III.2.2 Half - bridge converter :

    a)  Configuration and control algorithms

    Figure 3.9 Configuration and control algorithms 

    b)  Switching analysis

    Assuming that the switching frequency is f s  periodTs 

    1. 

    Where Vi > 0 :

    a.  When DTs S1,S3,S4 on, S2 off:

    Equivalent circuit

  • 8/19/2019 ON DINH DIEN AP

    12/33

      CHAPTER III

    10

    Figure 3.10 Equivalent circuit in DTs when Vi > 0

    Then Vo = -Vi/na

     b.  When (1- D)Ts S2,S3,S4 on, S1 off:

    Equivalent circuit

    Figure 3.11 Equivalent circuit in (1 –  D)Ts when Vi > 0

    Then Vo = Vi/nb

    Calculate the RMS voltages when Vi > 0

    Vo = Vi(

    )

     Vi

    2. 

    Where Vi < 0 :

    a.  When DTs S1,S3,S2 on, S4 off:

  • 8/19/2019 ON DINH DIEN AP

    13/33

      CHAPTER III

    11

    Figure 3.12 Equivalent circuit in DTs when Vi < 0

    Then Vo = -Vi/na

     b. 

    When (1- D)Ts S2,S1,S4 on, S3 off:

    Figure 3.13 Equivalent circuit (1 –  D )Ts when Vi < 0

    Then Vo = Vi/nb , similar in Vi > 0 , we have

    Vo =

     Vi

    So Vo =  Vi

    We choose the value inductors and capacitors based on criteria in the ripple current and

    ripple voltage at capacitors

     

     

  • 8/19/2019 ON DINH DIEN AP

    14/33

      CHAPTER III

    12

    c)  

    Simulation Half  –  bridge by PSIM

    Figure 3.14 Control Pulse in a period voltage 

  • 8/19/2019 ON DINH DIEN AP

    15/33

      CHAPTER III

    13

    a)

     b)

    Figure 3.15: Output voltages: a) before using filter b) after using filter

    Comment : with a defined Transformer ( na and nb is constant ) we can modulate

    opposite in phase voltage or same phase with source voltages this mean we can use this

    converter in voltage regulator to increase or decrease output voltage by voltage superposition

    method

  • 8/19/2019 ON DINH DIEN AP

    16/33

      CHAPTER III

    14

    d)  

    Vol tage Regulator using Half - bridge

    Figure 3.16 Half –  bridge voltage regulators supplied on line side

    Control algorithms is base on Half –  bridge converter.

    We have VL = Vi + V 

    Replace V by Vi  base on ratio output/input of Half –  bridge converter

    VL  Vi

    For calculater the value na and nb of transformer we use

     

    And

     

    Replace VL by Vi we have

     

  • 8/19/2019 ON DINH DIEN AP

    17/33

      CHAPTER III

    15

    We choose the value inductors and capacitors based on criteria in the ripple current and

    ripple voltage at capacitors

     

     

    e)   Simulation Voltage regulator by PSIM

    Figure 3.17 Output voltages while source voltage change

  • 8/19/2019 ON DINH DIEN AP

    18/33

      CHAPTER III

    16

    Figure 3.18 At setting time

    Comment : In the transitional period, the overshoot is not too high, in the setting time the

    error can be negligible

    Conclusion : Half - bridge AC - AC converter with supplied on line side configuration

    can be applied to the voltage regulator in fact, combined with PI closed-loop control for almost

    exactly the result, high quality .

  • 8/19/2019 ON DINH DIEN AP

    19/33

      CHAPTER III

    17

    III.2.3 Full –  bridge converter

    a)  Configuration and control algorithms

    Figure 3.19 Configuration and control algorithms Full –  bridge converter

    b)  Switching analysis 2 level

      When Vi > 0 : with S5,S6,S7,S8 always on we have

    +Vi : S1 and S4 on in the same time, S2 and S3 off

    -Vi  : S2 and S3 on in the same time , S1 and S4 off

      When DTs S5,S6,S7,S8,S1,S4 on, S2,S3 off:

    Equivalent circuit

    Figure 3.20 Equivalent circuit in DTs when Vi >0

  • 8/19/2019 ON DINH DIEN AP

    20/33

      CHAPTER III

    18

    Then Vo=Vi

      When (1 –  D)Ts S5,S6,S7,S8,S2,S3 on, S1,S4 off:

    Figure 3.21 Equivalent circuit in (1 –  D)Ts when Vi >0

    Then Vi 

      Where Vi < 0 :Similar in Vi >0

    We have

    Vo= DVi  - (1 –  D) Vi = (2D –  1 )Vi 

    We choose the value inductors and capacitors based on criteria in the ripple current and

    ripple voltage at capacitors

     

     

  • 8/19/2019 ON DINH DIEN AP

    21/33

      CHAPTER III

    19

    c)  

    Simulation Full  –  bri dge 2 level by PSIM

    Figure 3.22 Control Pulse

    a) 

     b) 

    Figure 3.23: Output voltage of full –  bridge 2 level, a) before using filter, b) after using filter

  • 8/19/2019 ON DINH DIEN AP

    22/33

      CHAPTER III

    20

    d)  

    Use fu ll  –  bri dge 2 level in Voltage Regulator

    Figure 3.24 Full - bridge supplied on load side

    Control algorithms is base on Full –  bridge converter

    We have VL = Vi + V 

    Replace V by Vi  base on ratio output/input of Full –  bridge converter

    VL  Vi

    For calculater the value n of transformer we use

     And

     

  • 8/19/2019 ON DINH DIEN AP

    23/33

      CHAPTER III

    21

    Replace VL by Vi we have

     

    We choose the value inductors and capacitors based on criteria in the ripple current and

    ripple voltage at capacitors

     

       

    e)  

    Simulation by PSIM

    Figure 3.25 Output voltage with source voltage change

  • 8/19/2019 ON DINH DIEN AP

    24/33

      CHAPTER IV

    22

    CHAPTER IV : DESIGN A VOLTAGE STABILIZER WITH HALF –  

    BRIDGE SUPPLIDE ON LINE SIDE

    IV.1 Selecting components

    IV.2.1. The control circuit

     DSP TMS320F28069 for PWM and PI control

     IC 7407  and  IC 3120 for driver and isolation circuit

    Voltage sensor LV25P  for read the feedback voltages

    IV.2.2 The Power circuitUsing Half –  bridge supplied on side line, with this parameter :

      Vi = 220 ± 20% V, ( = 0.2)

      Vo = 220 V, Io  5 A

      Power 1kW;

    Transformer:

    Calculate na and nb follow this formulas

     

    Figure 4.1 Transformer fo Half –  bridge .

    With  = 0.2 we have na = 4 và nb = 6, to secure we choose na=3.5 và nb = 5.

  • 8/19/2019 ON DINH DIEN AP

    25/33

      CHAPTER IV

    23

    Other factor

    V pmax = 270V (rms) Vs1max  = 77V (rms) Vs2max  = 54V(rms)

    I p max = 3A (rms) Is1max = 3.3 A (rms) Is2 max = 8 A (rms)

    IGBT G60N100

    Figure 4.2 IGBT G60N100

  • 8/19/2019 ON DINH DIEN AP

    26/33

      CHAPTER IV

    24

    IV.3 Design Circuit using Orcad 9.2

    Circuit will be divided into 2 parts

    Controller

    Power circuit

    IV.3.1 Design the Controller

    The control circuit will have board of DSP, driver and isolation circuit, feedback voltage

    circuit. Using Orcad Capture to draw principle diagram

    Figure 4.3 Driver and isolation circuit for one PWM

  • 8/19/2019 ON DINH DIEN AP

    27/33

      CHAPTER IV

    25

    Figure 4.4 Driver and isolation circuit

  • 8/19/2019 ON DINH DIEN AP

    28/33

      CHAPTER IV

    26

    Figure 4.5 Feedback voltage circuit

    Using Orcad Layout to draw PCB circuit with 2 layer, we have

  • 8/19/2019 ON DINH DIEN AP

    29/33

      CHAPTER IV

    27

    Figure 4.6 Top layer

    Figure 4.7 Bottom layer

  • 8/19/2019 ON DINH DIEN AP

    30/33

      CHAPTER IV

    28

    Figure 4.8 : Control circuit in real

    Figure 4.9 : Control Pulse for IGBT 

  • 8/19/2019 ON DINH DIEN AP

    31/33

      CHAPTER IV

    29

    IV.3.2. Design Power circuit

    The Power circuit will have : the connections, IGBT, capacitor, inductor

    Figure 4.10 Power circuit

  • 8/19/2019 ON DINH DIEN AP

    32/33

      CHAPTER IV

    30

    And PCB circuit with one layer

    Figure 4.11 PCB of Power circuit

    For some objective reasons so I can not finish on time power circuit

  • 8/19/2019 ON DINH DIEN AP

    33/33

      REFERENCE

    REFERENCE

    [1] T. Shinyama, A. Ueda, and A. Torri, “AC chopper using four switches,” 

    in Proc. PCC , Apr. 2002, pp. 1056 – 1060.

    [2] Steven M. Hietpas “Automatic Voltage Regulator Using an AC Voltage –Voltage Converter” IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL.36, NO. 1, JANUARY/FEBRUARY 2000

    [3] Thiago B. Soeiro, Clovis A. Petry “Direct AC– AC Converters Using Commercial PowerModules Applied to Voltage Restorers” IEEE TRANSACTIONS ON INDUSTRIALELECTRONICS, VOL. 58, NO. 1, JANUARY 2011

    [4] C van Schalkwyk, H.J. Beukes and H du T Mouton “AN AC-TO-AC CONVERTER BASED

    VOLTAGE REGULATOR” IEEE Africon 2002

    [5] Jin Nan , Tang Hou-jun, Liu Wei and Ye Peng-sheng “Analysis and Control of Buck -BoostChopper Type AC Voltage Regulator ” Power Electronics and Motion Control Conference,2009. IPEMC '09. IEEE 6th International

    [6] Texas Instruments Co

     

    C2000™ MCU 1 -Day Workshop, February 2012  

      TMS320x2806x Piccolo Technical Reference Manual, March 2014

      TMS320C28x Optimizing C/C++ Compiler v6.4 User's Guide, November 2014

     

    SN5407, SN5417, SN7407, SN7417 HEX BUFFERS/DRIVERS WITH OPEN-

    COLLECTOR HIGH-VOLTAGE OUTPUTS , DECEMBER 1983  –   REVISED NOVEMBER 2000

    [7] Avago Technologies Co , HCPL-3120/J312, HCNW3120 2.5 Amp Output Current IGBT

    Gate Drive Optocoupler datasheet , October 16, 2013

    [8] LEM Co , Voltage Transducer LV 25-P datasheet, 20 November 2012