on z-transform and its applications

121
An-Najah National University Faculty of Graduate Studies On Z-transform and Its Applications By Asma Belal Fadel Supervisor Dr. ''Mohammad Othman'' Omran This thesis is submitted in Partial Fulfillment of the Requirements for the Degree of Master of Mathematics , Faculty of Graduate Studies, An- Najah National University, Nablus, Palestine. 2015

Upload: others

Post on 11-Sep-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On Z-transform and Its Applications

An-Najah National University

Faculty of Graduate Studies

On Z-transform and Its Applications

By

Asma Belal Fadel

Supervisor

Dr. ''Mohammad Othman'' Omran

This thesis is submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Mathematics , Faculty of Graduate Studies, An-

Najah National University, Nablus, Palestine.

2015

Page 2: On Z-transform and Its Applications

II

On Z-transform and Its Applications

By

Asma Belal Fadel

This thesis was defended successfully on 30/6 /2015 and approved by:

Defense Committee Members Signature

Dr. "Mohammad Othman" Omran / Supervisor โ€ฆโ€ฆ.โ€ฆ.โ€ฆโ€ฆโ€ฆ.

Dr. Saed Mallak /External Examiner .โ€ฆ.โ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ

Dr. Mohammad Assa'd /Internal Examiner โ€ฆ..โ€ฆโ€ฆ.โ€ฆโ€ฆโ€ฆ

Page 3: On Z-transform and Its Applications

III

Dedication

To my parents and brothers.

Page 4: On Z-transform and Its Applications

IV

Acknowledgements

I would like to express my sincere gratitude to my Supervisor

Dr. ''Mohammad Othman'' Omran for the continuous

support, helpful suggestion, patience and encouragement

throughout the course of this thesis. His guidance helped me

at all times of research and writing of this thesis.

I would also like to thank my defense thesis committee: Dr.

Mohammad Assa'd and Dr. Saed Mallak.

I want to take this opportunity to express gratitude to all

my friends and to all people who help me do this work.

Last but not least, I wish to thank my parents, for the

unceasing encouragement, support and attention they

provide me throughout my life.

Page 5: On Z-transform and Its Applications

V

ู‚ุฑุงุง ุงู„ุฅ

ุฃู†ุง ุงู„ู…ูˆู‚ุฑุน ุฃุฏู†ุงู‡ ู…ู‚ุฏู… ุงู„ุงุณุงู„ุฉ ุงู„ุชูŠ ุชุญู…ู„ ุงู„ุนู†ูˆุงู†

On Z-transform and Its Applications

ุงู‚ุฑุง ุจุฃู† ู…ุง ุงุดุชู…ู„ุช ุนู„ูŠู‡ ู‡ุฐู‡ ุงู„ุงุณุงู„ุฉ ุฅู†ู…ุง ู‡ูŠ ู†ุชุงุฌ ุฌู‡ุฏูŠ ุงู„ุฎุงุตุŒ ุจุงุณุชุซู†ุงุก ู…ุง ุชู…ุช ุงู„ุฅุดุง ุฉ

ุฅู„ูŠู‡ ุญูŠุซู…ุง ูˆ ุฏ ูˆุฃู† ู‡ุฐู‡ ุงู„ุงุณุงู„ุฉ ูƒูƒู„ ุฃูˆ ุฃูŠ ุฌุฒุก ู…ู†ู‡ุง ู„ู… ูŠู‚ุฏู… ู…ู† ู‚ุฑุจู„ ู„ู†ูŠู„ ุฃูŠุฉ ุฏ ุฌุฉ ุนู„ู…ูŠุฉ ุฃูˆ

ุจุญุซ ุนู„ู…ูŠ ุฃูˆ ุจุญุซูŠ ู„ุฏู‰ ุฃูŠุฉ ู…ุคุณุณุฉ ุชุนู„ูŠู…ูŠุฉ ุฃูˆ ุจุญุซูŠุฉ ุฃุฎุงู‰.

Declaration

The work provided in this thesis, unless otherwise referenced, is the

researcher's own work, and has not been submitted elsewhere for any other

degree or qualifications.

Student's name: :ุงุณู… ุงู„ุทุงู„ุจ

Signature: :ุงู„ุชูˆู‚ุฑูŠุน

Date: :ุงู„ุชุง ูŠุฎ

Page 6: On Z-transform and Its Applications

VI

List of Contents No Subject page

Dedication iii Acknowledgments iv

Declaration v

List of Contents vi List of Figures viii Abstract ix Introduction 1

1 Chapter One Definitions and Concepts 3

2 Chapter Two The Z-transform 8

2.1 Definition of Z-transform 8

2.2 Properties of Z-transform. 15

2.3 Examples on the Properties of Z-transform. 21

2.4 Definition and Properties of the One-Sided Z-transform. 26

3 Chapter Three The Inverse Z-transform 34

3.1 The Inverse Z-transform 34

3.2 The Relation Between Z-transform and the Discrete

Fourier Transform.

48

3.3 The Relation Between Z-transform and Laplace Transform. 49

3.4 The Two-Dimensional Z-transform. 50

3.4.1 Definition of the Two-Dimensional Z-transform. 50

3.4.2 Properties of the Two-Dimensional Z-transform. 51

3.4.3 The Inverse of the Two-Dimensional Z-transform 53

4 Chapter Four Z-transform and Solution of Some

Difference Equations.

55

4.1 Linear Difference Equations with Constant Coefficients. 55

4.2 Volterra Difference Equations of Convolution Type. 59

5 Chapter Five Z-transform and Digital Signal

Processing.

61

5.1 Introduction. 61

5.2 Analysis of Linear Shift-Invariant (LSI) Systems and Z-

transform.

64

5.3 Realization of FIR Systems. 72

5.4 Realization of IIR Systems. 79

5.5 Design of IIR Filters From Analog Filters. 87

6 Chapter Six The Chirp Z-transform Algorithm and Its

Applications.

95

Conclusion 101

References 102

Page 7: On Z-transform and Its Applications

VII

Appendix A: Some Maple Commands on Z-transform: 105

Appendix B: Example on using Chirp Z-transform

Algorithm.

106

Appendix C: A Table of Properties of Z-transform. 109

Appendix D: A Table of Common Z-transform Pair. 110

ุจ ุงู„ู…ู„ุฎุต

Page 8: On Z-transform and Its Applications

VIII

List of Figures

No Subject page

Figure (2.1) ๐‘…๐‘‚๐ถ for Z-transform in Example 2.3 11

Figure (2.2) ๐‘…๐‘‚๐ถ for Z-transform in Example 2.4 12

Figure (2.3) ๐‘…๐‘‚๐ถ for Z-transform in Example 2.5 where

|๐‘| > |๐›ผ| 13

Figure (5.1) Direct-form realization of FIR systems. 73

Figure (5.2) Cascade-form realization of FIR systems. 74

Figure (5.3) An (๐‘€ โˆ’ 1)-stage lattice filter with typical stage. 76

Figure (5.4) Direct-form ฮ™ realization of IIR systems. 81

Figure (5.5) Direct-form ฮ™ฮ™ realization of IIR systems. 81

Figure (5.6) Cascade-form realization of IIR systems. 82

Figure (5.7) Parallel -form realization of IIR systems. 83

Figure (5.8) Lattice-form realization of IIR systems. 87

Page 9: On Z-transform and Its Applications

IX

On Z-transform and Its Applications

by

Asma Belal Fadel

Supervisor

Dr. ''Mohammad Othman'' Omran

Abstract

In this thesis we study Z-transform (the two-sided Z-transform), the one-

sided Z-transform and the two-dimensional Z-transform with their

properties, their inverses and some examples on them. We also present the

relation between Z-transform and Laplace transform and between Z-

transform and Fourier transform. Some applications of Z-transform

including solutions of some kinds of linear difference equations, analysis of

linear shift-invariant systems, implementation of FIR and IIR filters and

design of IIR filters from analog filters are discussed. Chirp Z-transform

algorithm is also presented with two applications: enhancement in poles and

high resolution and narrow band frequency analysis.

Page 10: On Z-transform and Its Applications

1

Introduction

Transformation is a very powerful mathematical tool so using it in

mathematical treatment of problem is arising in many applications [1].

The idea of Z-transform back to 1730 when De Moivre introduced the

concept of โ€œgenerating functionsโ€ to probability theory [8]. In 1947 a

transform of sampled signal or sequence defined by W. Hurewicz as a

tractable way to solve linear constant-coefficients difference equations. The

transformation named "Z-transform" by Ragazzini and Lotfi Zadeh in the

sampled-data control group at Columbia University in 1952 [21].

Z-transform is transformation for discrete data equivalent to the Laplace

transform of continuous data and its a generalization of discrete Fourier

transform [6].

Z-transform is used in many areas of applied mathematics as digital signal

processing, control theory, economics and some other fields [8].

In this thesis, we present Z-transform, the one-sided Z-transform and the two-

dimensional Z-transform with their properties, finding their inverse and some

examples on them. Many applications of Z-transform are discussed as solving

some kinds of linear difference equations, applications in digital signal

processing. Finally chirp Z-transform is represented.

In the first chapter, some basic definitions and concepts of sequences are

presented together with some theorems on integration in complex plane

[1,2,5,6,10,14,19].

Page 11: On Z-transform and Its Applications

2

In the second chapter, the definition of Z-transform and one-sided Z-

transform are discussed as well as some important properties and examples

of them [6,8,9,13,14].

In the third chapter, methods for determining the inverse of Z-transform are

represented, also we have discussed the relation between Z-transform and

Laplace transform and discrete Fourier transform. The chapter is closed by

describing the definition and properties of two-sided Z-transform in addition

to its inverse [5,9,12,13,14,20].

In the fourth chapter, Z-transform is used to solve some kind of linear

difference equations as linear difference equation of constant coefficient and

Volterra difference equations of convolution type [3,4,7,18].

In the fifth chapter, applications of Z-transform in digital signal processing

such as analysis of linear shift-invariant systems, implementation of finite-

duration impulse response (FIR) and infinite-duration impulse response (IIR)

systems and design of IIR filters from analog filters [1,6,9,11,14].

In the sixth chapter, the chirp Z-transform algorithm is studied with two

applications of it such as: enhancement of poles and high resolution and

narrow band frequency analysis [9,16,17,19].

Page 12: On Z-transform and Its Applications

3

Chapter One

Definitions and Concepts

In this chapter we give some basic definitions, concepts and theorems

important for our thesis.

Definition 1.1: [5] The complex sequence {๐‘Ž๐‘˜} is called geometric

sequence if โˆƒ a constant ๐‘  โˆˆ โ„‚ s.t ๐‘Ž๐‘˜+1๐‘Ž๐‘˜

= ๐‘ , โˆ€๐‘˜ โˆˆ โ„• (1.1)

In that case

๐‘Ž๐‘˜ = ๐‘Ž๐‘ ๐‘˜ (1.2)

A geometric series is of the form

โˆ‘๐‘Ž๐‘ ๐‘˜โˆž

๐‘˜=0

= ๐‘Ž + ๐‘Ž๐‘  + ๐‘Ž๐‘ 2 +โ‹ฏ (1.3)

Note that a finite geometric series is summable with

โˆ‘๐‘Ž๐‘ ๐‘˜๐‘›

๐‘˜=0

= {๐‘Ž(1 โˆ’ ๐‘ ๐‘›+1)

1 โˆ’ ๐‘ , ๐‘  โ‰  1

๐‘Ž(๐‘› + 1) , ๐‘  = 1

(1.4)

If |๐‘ | < 1, then

โˆ‘๐‘Ž๐‘ ๐‘˜โˆž

๐‘˜=0

=๐‘Ž

1 โˆ’ ๐‘  (1.5)

Definition 1.2: [10]A sequence ๐‘ฅ(๐‘›) is called:

a) causal if:

๐‘ฅ(๐‘›) = 0, for ๐‘› < 0 (1.6)

b) anticausal if:

๐‘ฅ(๐‘›) = 0, for ๐‘› โ‰ฅ 0 (1.7)

Page 13: On Z-transform and Its Applications

4

Definition 1.3:[1,19]The unit step sequence or Heaviside step sequence is

defined as

๐‘ข(๐‘›) = {1, ๐‘› โ‰ฅ 00, ๐‘› < 0

(1.8)

And for two-dimensional space it has the form

๐‘ข(๐‘›,๐‘š) = {1, ๐‘›,๐‘š โ‰ฅ 0 0, ๐‘œ๐‘ก๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

(1.9)

Definition 1.4:[1,19] The unit impulse or unit sample sequence is defined

as

๐›ฟ(๐‘›) = {1, ๐‘› = 0 0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

(1.10)

And for two-dimensional space it has the form

๐›ฟ(๐‘›,๐‘š) = {1, ๐‘› = ๐‘š = 0 0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

(1.11)

Definition 1.5: [6] The convolution between two infinite sequences ๐‘ฅ(๐‘›)

and ๐‘ฆ(๐‘›) is defined as

๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

(1.12)

Example 1.1: Find the convolution of the two sequences

๐‘ฅ(๐‘›) = ๐›ฟ(๐‘›) โˆ’ 5๐›ฟ(๐‘› โˆ’ 1), ๐‘ฆ(๐‘›) = 5๐‘›๐‘ข(๐‘›)

Solution:

๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

= โˆ‘ [๐›ฟ(๐‘˜) โˆ’ 5๐›ฟ(๐‘˜ โˆ’ 1)]5๐‘›โˆ’๐‘˜๐‘ข(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

For ๐‘› < ๐‘˜, ๐‘ข(๐‘› โˆ’ ๐‘˜) = 0,

For ๐‘˜ โ‰  0 and ๐‘˜ โ‰  1, ๐›ฟ(๐‘˜) โˆ’ 5๐›ฟ(๐‘˜ โˆ’ 1) = 0

So

๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = 5๐‘› ๐‘ข(๐‘›) โˆ’ 5. 5๐‘›โˆ’1๐‘ข(๐‘› โˆ’ 1)

Page 14: On Z-transform and Its Applications

5

= 5๐‘› (๐‘ข(๐‘›) โˆ’ ๐‘ข(๐‘› โˆ’ 1))

Since ๐›ฟ(๐‘˜) = 1 when ๐‘˜ = 1 and ๐›ฟ(๐‘˜ โˆ’ 1) = 1 when ๐‘˜ = 1.

Then we have

๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = {1, ๐‘› = 0 0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Or it can be written as

๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = ๐›ฟ(๐‘›)

Definition 1.6: [14] The correlation between two sequences ๐‘ฅ(๐‘›) and ๐‘ฆ(๐‘›)

is defined as

๐‘Ÿ๐‘ฅ๐‘ฆ(๐‘™) = โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘› โˆ’ ๐‘™)

โˆž

๐‘›=โˆ’โˆž

= ๐‘ฅ(๐‘™) โˆ— ๐‘ฆ(โˆ’๐‘™) (1.13)

where ๐‘™ is an integer.

Definition 1.7: [14] The autocorrelation ๐‘Ÿ๐‘ฅ๐‘ฅ(๐‘™) of a sequence ๐‘ฅ(๐‘›) is the

correlation with itself.

Definition 1.8: A function ๐‘“(๐‘ง) is analytic at a point ๐‘ง0 if it has a

derivative at each point in some neighborhood of ๐‘ง0.

Theorem 1.1:[2] If a function ๐‘“(๐‘ง) is analytic at all points interior to and

on a simple contour ๐ถ then,

โˆฎ๐‘“(๐‘ง)๐‘‘๐‘ง๐ถ

= 0 (1.14)

Theorem 1.2:[2] Laurentโ€™s Theorem

Suppose that a function ๐‘“(๐‘ง) is analytic throughout an annular domain ๐‘Ÿ <

|๐‘ง โˆ’ ๐‘ง0| < ๐‘…, centered at ๐‘ง0, and let ๐ถ be any positively oriented simple

closed contour a round ๐‘ง0 and lying in that domain. Then, at each point in

the domain, ๐‘“(๐‘ง) has the series representation

Page 15: On Z-transform and Its Applications

6

๐‘“(๐‘ง) = โˆ‘ ๐‘๐‘›

โˆž

๐‘›=โˆ’โˆž

(๐‘ง โˆ’ ๐‘ง0)๐‘›, ๐‘Ÿ < |๐‘ง โˆ’ ๐‘ง0| < ๐‘… (1.15)

where

๐‘๐‘› =1

2๐œ‹๐‘— โˆฎ

๐‘“(๐‘ง)

(๐‘ง โˆ’ ๐‘ง0)๐‘›+1

๐‘‘๐‘ง๐ถ

, ๐‘› โˆˆ โ„ค (1.16)

The representation of ๐‘“(๐‘ง) in Eq(1.15) is called a Laurent series.

Definition 1.9: [2] If ๐‘ง0 is an isolated singular point of a function ๐‘“(๐‘ง), then

there is a positive number ๐‘… such that ๐‘“(๐‘ง) is analytic at each point ๐‘ง for

which 0 < |๐‘ง โˆ’ ๐‘ง0| < ๐‘…. Consequently, ๐‘“(๐‘ง) has a Laurent series

representation as in Eq(1.15). The complex number ๐‘โˆ’1, which is the

coefficient of 1/(๐‘ง โˆ’ ๐‘ง0) in Eq(1.15) is called the residue of ๐‘“(๐‘ง) at the

isolated singular point ๐‘ง0, and we shall often write

๐‘โˆ’1 = ๐‘…๐‘’๐‘ [๐‘“(๐‘ง), ๐‘ง0 ]

Theorem 1.3: [2] An isolated singular point ๐‘ง0 of a function ๐‘“(๐‘ง) is a pole

of order ๐‘  if and only if ๐‘“(๐‘ง) can be written in the form

๐‘“(๐‘ง) =๐‘”(๐‘ง)

(๐‘ง โˆ’ ๐‘ง0)๐‘ 

where ๐‘”(๐‘ง) is analytic and nonzero at ๐‘ง0.

Moreover, if ๐‘  = 1 then,

๐‘…๐‘’๐‘ [๐‘“(๐‘ง), ๐‘ง0 ] = ๐‘…๐‘’๐‘  [๐‘”(๐‘ง)

๐‘ง โˆ’ ๐‘ง0, ๐‘ง0 ] = ๐‘”(๐‘ง0) (1.17)

And if ๐‘  โ‰ฅ 2

๐‘…๐‘’๐‘ [๐‘“(๐‘ง), ๐‘ง0 ] = ๐‘…๐‘’๐‘  [๐‘”(๐‘ง)

(๐‘ง โˆ’ ๐‘ง0)๐‘ , ๐‘ง0 ]

=1

(๐‘  โˆ’ 1)!

๐‘‘๐‘ โˆ’1

๐‘‘๐‘ง๐‘ โˆ’1๐‘”(๐‘ง)| .๐‘ง = ๐‘ง0

๐‘Ž๐ด (1.18)

Theorem 1.4: [2] Residue Theorem or Cauchy's Residue Theorem.

Page 16: On Z-transform and Its Applications

7

If a function ๐‘“(๐‘ง) is analytic inside and on a simple closed contour ๐ถ

(described in the positive sense) except for a finite number of singular

points ๐‘ง๐‘˜ , ๐‘˜ = 1, 2,โ€ฆ , ๐‘› inside ๐ถ then,

1

2๐œ‹๐‘— โˆฎ๐‘“(๐‘ง)๐‘‘๐‘ง๐ถ

= โˆ‘๐‘…๐‘’๐‘ [๐‘“(๐‘ง), ๐‘ง๐‘˜ ]

๐‘›

๐‘˜=1

(1.19)

Theorem 1.5:[2] Taylorโ€™s Theorem

Suppose that a function ๐‘“(๐‘ง) is analytic throughout a disk |๐‘ง โˆ’ ๐‘ง0| < ๐‘…

centered at ๐‘ง0 and with radius ๐‘…. Then ๐‘“(๐‘ง) has the power series

representation

๐‘“(๐‘ง) = โˆ‘๐‘Ž๐‘›

โˆž

๐‘›=0

(๐‘ง โˆ’ ๐‘ง0)๐‘›, |๐‘ง โˆ’ ๐‘ง0| < ๐‘… (1.20)

where

๐‘Ž๐‘› =๐‘“(๐‘›)(๐‘ง)

๐‘›! , ๐‘› = 0, 1, 2, โ€ฆ (1.21)

The series in Eq(1.20) is called the Taylor series of ๐‘“(๐‘ง) about ๐‘ง = ๐‘ง0 and

its converges to ๐‘“(๐‘ง) when ๐‘ง lies in the given open disk.

Page 17: On Z-transform and Its Applications

8

Chapter Two

The Z-transform

In this chapter we introduce the two-sided and the one-sided Z-transforms,

investigate their properties and give some examples on them.

Section 2.1: Definition of Z-transform.

Definition 2.1:[9] Given an infinite complex sequence ๐‘ฅ(๐‘›), we define

its Z-transform ๐‘‹(๐‘ง) by the two sided infinite power series

๐‘‹(๐‘ง) = ๐›ง[๐‘ฅ(๐‘›)] = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(2.1)

where ๐‘ง is a complex variable. This Z-transform is called a two-sided or a

bilateral Z-transform.

Note: Whenever we talk about Z-transform we mean the two-sided Z-

transform.

Z-transform exists only for those values of ๐‘ง for which the series in Eq(2.1)

converges. These values of ๐‘ง define the region of convergence (๐‘…๐‘‚๐ถ) of

๐‘‹(๐‘ง). Thus, the ๐‘…๐‘‚๐ถ is the domain of the Z-transform. So, whenever ๐‘‹(๐‘ง)

is found, its ๐‘…๐‘‚๐ถ should be also defined.

The region of convergence of ๐‘‹(๐‘ง) is identical to the set of all values of ๐‘ง

which make the sequence in Eq(2.1) absolutely summable, i.e [9]

โˆ‘ |๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›| < โˆž

โˆž

๐‘›=โˆ’โˆž

(2.2)

Example 2.1: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) ={โ€ฆ , 0, 1,0,โ†‘2โ†‘, 0,0,7,0,0, โ€ฆ }= {

1 , ๐‘› = โˆ’2 2 , ๐‘› = 0 7 , ๐‘› = 3 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Page 18: On Z-transform and Its Applications

9

Note: The arrow in this sequence indicates the position of ๐‘ฅ(0).

Solution:

๐‘‹(๐‘ง) = ๐›ง[๐‘ฅ(๐‘›)] = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= ๐‘ง2 + 2 + 7 ๐‘งโˆ’3 ,

๐‘‹(๐‘ง) converges for the entire z-plane except ๐‘ง = 0 and ๐‘ง = โˆž, so

๐‘…๐‘‚๐ถ: 0 < |๐‘ง| < โˆž

Example 2.2: Determine the Z-transform of the following sequences.

a) ๐‘ฅ(๐‘›) = (1

2)๐‘›

, where ๐‘› โ‰ฅ 0

b) (๐‘›) = (1

2)๐‘›

, where ๐‘› < 0

c) (๐‘›) = (1

2)๐‘›

, where ๐‘› โˆˆ โ„ค

Solution:

a)

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

=โˆ‘(1

2)๐‘›

๐‘งโˆ’๐‘›โˆž

๐‘›=0

= โˆ‘ (1

2๐‘ง)๐‘›

=

โˆž

๐‘›=0

1

1 โˆ’ (2๐‘ง)โˆ’1=

๐‘ง

๐‘ง โˆ’12

The above series is an infinite geometric series that converges only if |1

2๐‘ง| < 1

or |z| >1

2. Thus, the ๐‘…๐‘‚๐ถ is |z| >

1

2 , the exterior of a circle of radius

1

2

centered at the origin of the complex plane.

Note that: From Definition 1.2 (a) The sequence ๐‘ฅ(๐‘›) is causal.

b)

๐‘Œ(๐‘ง) = โˆ‘ ๐‘ฆ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ (1

2)๐‘›

๐‘งโˆ’๐‘›โˆ’1

๐‘›=โˆ’โˆž

= โˆ‘ (2๐‘ง)โˆ’๐‘›

โˆ’1

๐‘›=โˆ’โˆž

Substitute ๐‘š = โˆ’๐‘› we get

Page 19: On Z-transform and Its Applications

11

๐‘Œ(๐‘ง) = โˆ‘(2๐‘ง)๐‘šโˆž

๐‘š=1

=1

1 โˆ’ 2๐‘งโˆ’ 1 =

๐‘ง

12โˆ’ ๐‘ง

Again, this is an infinite geometric series that converges only if |2z| < 1 or

|z| <1

2. Thus, the ๐‘…๐‘‚๐ถ is |๐‘ง| <

1

2. In this case the ๐‘…๐‘‚๐ถ is the interior of a

circle centered at the origin of the complex plane of radius 1

2.

Note that: From Definition 1.2 (b) The sequence ๐‘ฆ(๐‘›) is anticausal.

c)

๐‘…(๐‘ง) = โˆ‘ ๐‘Ÿ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ (1

2)๐‘›

๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ (1

2)๐‘›

๐‘งโˆ’๐‘›โˆ’1

๐‘›=โˆ’โˆž

+โˆ‘(1

2)๐‘›

๐‘งโˆ’๐‘›โˆž

๐‘›=0

= โˆ‘ ๐‘ฆ(๐‘›)๐‘งโˆ’๐‘›โˆ’1

๐‘›=โˆ’โˆž

+ โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›

โˆž

๐‘›=1

But the first power series converges if |๐‘ง| < 1

2 where the second power

series converges if |๐‘ง| > 1

2, so there is no ๐‘ง in the region of convergence

for ๐‘…(๐‘ง).

โˆด ๐‘…๐‘‚๐ถ = โˆ… (the empty set).

Example 2.3: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) = ๐›ผ ๐‘› ๐‘ข(๐‘›), ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›ผ โˆˆ โ„‚

Solution:

๐‘ฅ(๐‘›) = ๐›ผ ๐‘› ๐‘ข(๐‘›) = { ๐›ผ๐‘› , ๐‘› โ‰ฅ 00 , ๐‘› < 0

Note that this sequence is the same as the sequence in Example 2.2(a) with

๐›ผ =1

2 so,

Page 20: On Z-transform and Its Applications

11

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

=โˆ‘๐›ผ ๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0

=๐‘ง

๐‘ง โˆ’ ๐›ผ

โˆด ๐›ง[๐›ผ ๐‘› ๐‘ข(๐‘›)] =๐‘ง

๐‘ง โˆ’ ๐›ผ (2.3)

๐‘…๐‘‚๐ถ: |๐‘ง| > |๐›ผ| the exterior of a circle centered at the origin of the complex

plane having radius |๐›ผ|.

Example 2.4: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) = โˆ’๐‘ ๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1)

Solution:

๐‘ฅ(๐‘›) = โˆ’๐‘ ๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1) = {0 , ๐‘› โ‰ฅ 0

โˆ’๐‘๐‘›, ๐‘› < 0

Note that this sequence is the negative of the sequence in Example 2.2 (b)

so

๐‘‹(๐‘ง) = โˆ‘ โˆ’๐‘๐‘›๐‘งโˆ’๐‘›โˆ’1

๐‘›=โˆ’โˆž

= โˆ’โˆ‘(๐‘โˆ’1๐‘ง)๐‘š

โˆž

๐‘š=1

=๐‘ง

๐‘ง โˆ’ ๐‘

โˆด ๐›ง[โˆ’๐‘ ๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1)] =๐‘ง

๐‘ง โˆ’ ๐‘ (2.4)

๐‘…๐‘‚๐ถ: |๐‘ง| < |๐‘| the interior of a circle centered at the origin of the complex-

plane having radius |๐‘|.

Figure 2.1 ๐‘…๐‘‚๐ถ for Z-transform in Example

2.3

|๐›ผ|

Page 21: On Z-transform and Its Applications

12

Note that: if ๐‘ = ๐›ผ then the function ๐‘‹(๐‘ง) in Example 2.3 is identical to

that in Example 2.4 with different ๐‘…๐‘‚๐ถ. This illustrates the important fact

that specifying Z-transform of a sequence requires not only the function ๐‘‹(๐‘ง)

but also its region of convergence.

Example 2.5: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) = ๐›ผ๐‘› ๐‘ข(๐‘›) โˆ’๐‘๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1)

Solution:

๐‘ฅ(๐‘›) = ๐›ผ๐‘› ๐‘ข(๐‘›) โˆ’๐‘๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1) = { ๐›ผ๐‘› , ๐‘› โ‰ฅ 0โˆ’๐‘๐‘› , ๐‘› < 0

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ โˆ’๐‘๐‘›๐‘งโˆ’๐‘›โˆ’1

๐‘›=โˆ’โˆž

+โˆ‘๐›ผ๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0

= โˆ’ โˆ‘(๐‘โˆ’1๐‘ง)๐‘š

โˆž

๐‘š=1

+โˆ‘(๐›ผ ๐‘งโˆ’1)๐‘›โˆž

๐‘›=0

The first power series converges if |๐‘โˆ’1๐‘ง| < 1 or |z| < |๐‘| where the

second power series converges if |ฮฑ zโˆ’1| < 1 or |z| > |๐›ผ|, this gives us

two cases for ๐‘‹(๐‘ง):

Case 1: If |๐‘| โ‰ค |๐›ผ| then, there is no common region of convergence, i.e

๐‘‹(๐‘ง) does not exist.

Figure 2.2 ๐‘…๐‘‚๐ถ for Z-transform in Example

2.4

|๐‘|

Page 22: On Z-transform and Its Applications

13

Case 2: If |๐‘| > |๐›ผ|, then there is a common region of convergence, which

is |๐›ผ| < |z| < |๐‘|, and in this case ๐‘‹(๐‘ง) will be

๐‘‹(๐‘ง) = ๐‘ง

๐‘ง โˆ’ ๐‘ +

๐‘ง

๐‘ง โˆ’ ๐›ผ=

๐‘ง(2๐‘ง โˆ’ ๐›ผ โˆ’ ๐‘)

(๐‘ง โˆ’ ๐‘)(๐‘ง โˆ’ ๐›ผ)

Note: For any sequence ๐‘ฅ(๐‘›) with rational Z-transform the region of

convergence cannot contain any poles and is bounded by poles or by zero or

infinity.

A Note on the ๐‘น๐‘ถ๐‘ช of the Z-transform for two sided sequences [9].

Let ๐‘‹(๐‘ง) be the Z-transform of the sequence ๐‘ฅ(๐‘›), then

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

๐‘งโˆ’๐‘›

= โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘› + โˆ‘ ๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=๐‘›1

๐‘›0

๐‘›=โˆ’โˆž

(2.5)

For the series

โˆ‘ ๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=๐‘›1

(2.6)

Suppose that Eq(2.6) is a absolutely convergent for ๐‘ง = ๐‘ง1, so

โˆ‘ |๐‘ฅ(๐‘›) ๐‘ง1โˆ’๐‘›| < โˆž

โˆž

๐‘›=๐‘›1

(2.7)

Figure 2.3 ๐‘…๐‘‚๐ถ for Z-transform in Example 2.5 where |๐‘| > |๐›ผ|

|๐‘| |๐›ผ|

Page 23: On Z-transform and Its Applications

14

We have two cases for the value of ๐‘›1 .

Case 1: If ๐‘›1 โ‰ฅ 0, then for any ๐‘ง โˆˆ โ„‚ such that |๐‘ง| > |๐‘ง1| we get,

โˆ‘ |๐‘ฅ(๐‘›) ๐‘ง1โˆ’๐‘›|

โˆž

๐‘›=๐‘›1

< โˆ‘ |๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›| < โˆž

โˆž

๐‘›=๐‘›1

(2.8)

So the ๐‘…๐‘‚๐ถ in this case is |๐‘ง| > ๐‘Ÿ๐‘ฅ where ๐‘Ÿ๐‘ฅ is the smallest value of |๐‘ง|

make Eq(2.6) convergent

Case 2: If ๐‘›1 < 0, then we express the series in Eq(2.6) as

โˆ‘ ๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=๐‘›1

= โˆ‘ ๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›โˆ’1

๐‘›=๐‘›1

+โˆ‘๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=0

(2.9)

The first series on the right-hand side of Eq(2.9) is finite for any finite

value of ๐‘ง so, its convergent for all values of ๐‘ง except for ๐‘ง = โˆž. Where the

second series by (case 1) convergent for |๐‘ง| > ๐‘Ÿ๐‘ฅ. Thus, the series in

Eq(2.6) has a region of convergence that is the exterior of a circle centered

at the origin of complex-plane with radius ๐‘Ÿ๐‘ฅ with the exception of ๐‘ง = โˆž

for ๐‘›1 < 0.

For the series

โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›

๐‘›0

๐‘›=โˆ’โˆž

(2.10)

If we change the index of summation through the substitution ๐‘› = โˆ’๐‘š, we

obtain the series

โˆ‘ ๐‘ฅ(โˆ’๐‘š)๐‘ง๐‘šโˆž

๐‘š=โˆ’๐‘›0

(2.11)

Applying the result of Eq(2.6) on Eq(2.10) (with n replaced by โ€“๐‘š and ๐‘ง

by ๐‘งโˆ’1) then, the region of convergence of Eq(2.10) is the interior of a

circle centered at the origin of complex-plane with radius ๐‘…๐‘ฅ where ๐‘…๐‘ฅis the

Page 24: On Z-transform and Its Applications

15

largest value of |๐‘ง| make Eq(2.10) convergent and not equal zero for ๐‘›0 >

0.

So for Eq(2.5), The first series has a region of convergence |๐‘ง| < ๐‘…๐‘ฅ while

the region of convergence for the second series is ๐‘Ÿ๐‘ฅ < |๐‘ง|. If ๐‘Ÿ๐‘ฅ < ๐‘…๐‘ฅ then

the region of convergence for ๐‘‹(๐‘ง) is ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ; otherwise there is no

region of convergence for ๐‘‹(๐‘ง) .

Section 2.2: Properties of Z-transform.

In studying discrete-time signals and systems, Z-transform is a very

powerful tool due to its properties [14]. In this section, we examine some of

these properties leaving the Examples to the next section.

Let ๐‘‹(๐‘ง) be the Z-transform of ๐‘ฅ(๐‘›) with ๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ and let ๐‘Œ(๐‘ง)

be the Z-transform of ๐‘ฆ(๐‘›) with ๐‘‚๐ถ ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฆ. Let ๐‘Ÿ = max(๐‘Ÿ๐‘ฅ, ๐‘Ÿ๐‘ฆ)

and ๐‘… = min(๐‘…๐‘ฅ, ๐‘…๐‘ฆ), where ๐‘Ÿ can be as small as 0 and ๐‘… can be as large as

โˆž.

1. Linearity.

For any two complex numbers ฮฑ, ฮฒ we have

๐‘[๐›ผ ๐‘ฅ(๐‘›) + ๐›ฝ ๐‘ฆ(๐‘›)] = ๐›ผ ๐‘‹(๐‘ง) + ๐›ฝ ๐‘Œ(๐‘ง), ๐‘Ÿ < |๐‘ง| < ๐‘… (2.12)

Proof:

Let

๐‘ค(๐‘›) = ๐›ผ ๐‘ฅ(๐‘›) + ๐›ฝ ๐‘ฆ(๐‘›)

then

๐‘Š(๐‘ง) = โˆ‘ ๐‘ค(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

Page 25: On Z-transform and Its Applications

16

= โˆ‘ [๐›ผ ๐‘ฅ(๐‘›) + ๐›ฝ ๐‘ฆ(๐‘›)]๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ ๐›ผ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘› + โˆ‘ ๐›ฝ ๐‘ฆ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

= ๐›ผ โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘› + ๐›ฝ โˆ‘ ๐‘ฆ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

= ๐›ผ ๐‘‹(๐‘ง) + ๐›ฝ ๐‘Œ(๐‘ง)

๐‘…๐‘‚๐ถ of ๐‘Š(๐‘ง) = ๐›ผ ๐‘‹(๐‘ง) + ๐›ฝ ๐‘Œ(๐‘ง) contains all ๐‘ง such that

๐‘ง โˆˆ ๐‘…๐‘‚๐ถ(๐‘‹(๐‘ง)) โˆฉ ๐‘…๐‘‚๐ถ(๐‘Œ(๐‘ง))

then

{๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ} โˆฉ {๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฆ}

โˆด max(๐‘Ÿ๐‘ฅ, ๐‘Ÿ๐‘ฆ) < |๐‘ง| < min(๐‘…๐‘ฅ, ๐‘…๐‘ฆ)

If the linear combination canceled some poles the region of convergence

may be larger. For example, the sequences ๐‘ ๐‘›๐‘ข(๐‘›) and ๐‘ ๐‘›๐‘ข(๐‘› โˆ’ 1) both

have a region of convergence defined by |๐‘ง| > |๐‘|, but the sequence

corresponding to the difference [๐‘ ๐‘› ๐‘ข(๐‘›) โˆ’ ๐‘ ๐‘› ๐‘ข( ๐‘› โˆ’ 1)] = ๐›ฟ(๐‘›) has the

entire z-plane as its ๐‘…๐‘‚๐ถ.

2. Shifting

If ๐‘˜ is any integer then,

๐‘[๐‘ฅ(๐‘› + ๐‘˜)] = ๐‘ง๐‘˜ ๐‘‹(๐‘ง), ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ (2.13)

Proof:

๐‘[๐‘ฅ(๐‘› + ๐‘˜)] = โˆ‘ ๐‘ฅ(๐‘› + ๐‘˜)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(2.14)

Substitute ๐‘š = ๐‘› + ๐‘˜ in Eq(2.14) ,we get

๐‘[๐‘ฅ(๐‘› + ๐‘˜)] = โˆ‘ ๐‘ฅ(๐‘š)๐‘งโˆ’(๐‘šโˆ’๐‘˜)โˆž

๐‘š=โˆ’โˆž

Page 26: On Z-transform and Its Applications

17

= ๐‘ง๐‘˜ โˆ‘ ๐‘ฅ(๐‘š)๐‘งโˆ’๐‘šโˆž

๐‘š=โˆ’โˆž

= ๐‘ง๐‘˜ ๐‘‹(๐‘ง)

The ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง), and ๐‘[๐‘ฅ(๐‘› + ๐‘˜)] are identical, with the possible

exception of ๐‘ง = 0 or ๐‘ง = โˆž.

3. Multiplication by Exponential.

If ๐›ผ is any complex number then,

๐‘[๐›ผ๐‘›๐‘ฅ(๐‘›)] = ๐‘‹(๐›ผโˆ’1๐‘ง), |๐›ผ| ๐‘Ÿ๐‘ฅ < |๐‘ง| < |๐›ผ| ๐‘…๐‘ฅ (2.15)

Proof:

๐‘[๐›ผ๐‘›๐‘ฅ(๐‘›)] = โˆ‘ ๐›ผ๐‘›๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ ๐‘ฅ(๐‘›)(๐›ผโˆ’1๐‘ง)โˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= ๐‘‹(๐›ผโˆ’1๐‘ง)

where ๐‘Ÿ๐‘ฅ < |๐›ผโˆ’1 ๐‘ง| < ๐‘…๐‘ฅ or |๐›ผ|๐‘Ÿ๐‘ฅ < |๐‘ง| < |๐›ผ|๐‘…๐‘ฅ

4. Time Reversal.

In discrete-time signal the variable ๐‘› in the sequence ๐‘ฅ(๐‘›) refer to time.

๐‘[๐‘ฅ(โˆ’๐‘›)] = ๐‘‹(๐‘งโˆ’1), 1

๐‘…๐‘ฅ< |๐‘ง| <

1

๐‘Ÿ๐‘ฅ (2.16)

Proof:

๐‘[๐‘ฅ(โˆ’๐‘›)] = โˆ‘ ๐‘ฅ(โˆ’๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(2.17)

Let ๐‘š = โˆ’๐‘›, then Eq(2.17) become

โˆ‘ ๐‘ฅ(๐‘š)(๐‘ง)๐‘šโˆž

๐‘š=โˆ’โˆž

= โˆ‘ ๐‘ฅ(๐‘š)(๐‘งโˆ’1)โˆ’๐‘šโˆž

๐‘š=โˆ’โˆž

= ๐‘‹(๐‘งโˆ’1)

๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฅ < |๐‘งโˆ’1| < ๐‘…๐‘ฅ ๐‘œ๐‘Ÿ

1

๐‘…๐‘ฅ< |๐‘ง| <

1

๐‘Ÿ๐‘ฅ

The above means that if ๐‘ง0 belongs to the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) then 1/๐‘ง0 is in the

๐‘…๐‘‚๐ถ of ๐‘‹(๐‘งโˆ’1).

Page 27: On Z-transform and Its Applications

18

5. Conjugation.

๐‘[๐‘ฅโˆ—(๐‘›)] = ๐‘‹โˆ—(๐‘งโˆ—), ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ (2.18)

where ๐‘ฅโˆ—(๐‘›) is the complex conjugate of ๐‘ฅ(๐‘›).

Proof:

๐‘[๐‘ฅโˆ—(๐‘›)] = โˆ‘ ๐‘ฅโˆ—(๐‘›)๐‘งโˆ’๐‘› = โˆ‘ [๐‘ฅ(๐‘›)(๐‘งโˆ—)โˆ’๐‘›]โˆ—โˆž

๐‘›=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

= [ โˆ‘ ๐‘ฅ(๐‘›)(๐‘งโˆ—)โˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

]

โˆ—

= ๐‘‹โˆ—(๐‘งโˆ—)

With ๐‘…๐‘‚๐ถ identical to the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง).

6. Multiplication by n or Differentiation of the Transform

๐‘[๐‘› ๐‘ฅ(๐‘›)] = โˆ’๐‘ง๐‘‘๐‘‹(๐‘ง)

๐‘‘๐‘ง, ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ (2.19)

Proof:

From the definition of Z-transform

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

Differentiate both sides of the previous equation with respect to z ,we obtain

๐‘‘๐‘‹(๐‘ง)

๐‘‘๐‘ง= โˆ‘ ๐‘ฅ(๐‘›) (โ€“ ๐‘›)๐‘งโˆ’๐‘›โˆ’1

โˆž

๐‘›=โˆ’โˆž

= โˆ’๐‘งโˆ’1 โˆ‘ [๐‘›๐‘ฅ(๐‘›)] ๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ’๐‘งโˆ’1๐‘[๐‘› ๐‘ฅ(๐‘›)]

โˆด ๐‘[๐‘› ๐‘ฅ(๐‘›)] = โˆ’๐‘ง๐‘‘๐‘‹(๐‘ง)

๐‘‘๐‘ง

With the same ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) which is ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ

7. Convolution of Two Sequences.

The convolution property is one of the most powerful properties of Z-

transform.

Page 28: On Z-transform and Its Applications

19

๐‘[๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›)] = ๐‘‹(๐‘ง)๐‘Œ(๐‘ง) (2.20)

Where the ๐‘…๐‘‚๐ถ is, at least, the intersection of ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) and ๐‘…๐‘‚๐ถ of

๐‘Œ(๐‘ง). However, the ๐‘…๐‘‚๐ถ may be larger if there is a pole-zero cancelation in

the product ๐‘‹(๐‘ง)๐‘Œ(๐‘ง).

Proof:

Let ๐‘Ÿ(๐‘›) be the convolution of ๐‘ฅ(๐‘›) and ๐‘ฆ(๐‘›), then ๐‘Ÿ(๐‘›) is defined as

๐‘Ÿ(๐‘›) = ๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

(2.21)

Taking the Z-transform of Eq(2.21), we obtain

๐‘…(๐‘ง) = ๐‘[๐‘Ÿ(๐‘›)] = โˆ‘ ๐‘Ÿ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘ [ โˆ‘ ๐‘ฅ(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

]

โˆž

๐‘›=โˆ’โˆž

๐‘งโˆ’๐‘› (2.22)

By interchanging the order of the summations of Eq(2.22) and applying the

shifting property, we obtain

๐‘…(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘˜) [ โˆ‘ ๐‘ฆ(๐‘› โˆ’ ๐‘˜)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

]

โˆž

๐‘˜=โˆ’โˆž

= ๐‘Œ(๐‘ง) โˆ‘ ๐‘ฅ(๐‘˜)๐‘งโˆ’๐‘˜โˆž

๐‘˜=โˆ’โˆž

= ๐‘Œ(๐‘ง) ๐‘‹(๐‘ง)

The ๐‘…๐‘‚๐ถ of the convolution is, at least, the intersection of ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง)

and ๐‘…๐‘‚๐ถ of ๐‘Œ(๐‘ง).

8. Correlation of Two Sequences [14].

๐‘[๐‘Ÿ๐‘ฅ๐‘ฆ(๐‘™)] = ๐‘…๐‘ฅ๐‘ฆ(๐‘ง) = ๐‘‹(๐‘ง)๐‘Œ(๐‘งโˆ’1) (2.23)

The ๐‘…๐‘‚๐ถ is, at least, the intersection of ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) and ๐‘…๐‘‚๐ถ of ๐‘Œ(๐‘งโˆ’1).

Proof:

We know from Definition 1.6 that

Page 29: On Z-transform and Its Applications

21

๐‘Ÿ๐‘ฅ๐‘ฆ(๐‘™) = ๐‘ฅ(๐‘™) โˆ— ๐‘ฆ(โˆ’๐‘™) (2.24)

Taking Z-transform of both sides of Eq(2.24), and use the convolution and

time reversal properties, we get

๐‘…๐‘ฅ๐‘ฆ(๐‘ง) = ๐‘[๐‘ฅ(๐‘™)]๐‘[๐‘ฆ(โˆ’๐‘™)] = ๐‘‹(๐‘ง)๐‘Œ(๐‘งโˆ’1).

The proof of the following property and theorem will be delayed till the

introduction of the inverse Z-transform in Chapter 3.

9. Multiplication of Two Sequences

๐‘(๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)) =1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ฃ)๐‘Œ (

๐‘ง

๐‘ฃ)1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

, (2.25)

With ๐‘…๐‘‚๐ถ: ๐‘Ÿ๐‘ฅ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฅ๐‘…๐‘ฆ

where ๐ถ is a counterclockwise closed contour that encloses the origin and

lies within the common region of convergence of ๐‘‹(๐‘ฃ) and ๐‘Œ (๐‘ง

๐‘ฃ).

Parsevalโ€™s Theorem

If

๐‘Ÿ๐‘ฅ๐‘Ÿ๐‘ฆ < |๐‘ง| = 1 < ๐‘…๐‘ฅ๐‘…๐‘ฆ

then we have

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆโˆ—(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ง)Yโˆ— (

1

๐‘งโˆ—)1

๐‘ง๐‘‘๐‘ง

๐ถ

(2.26)

where ๐ถ is a counterclockwise closed contour that encloses the origin and

lies within the common region of convergence of ๐‘‹(๐‘ง) and Yโˆ—(1/zโˆ—).

Note: If ๐‘ฆ(๐‘›) is real sequences, then Parsevalโ€™s theorem will be

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ง)๐‘Œ (

1

๐‘ง)1

๐‘ง๐‘‘๐‘ง

๐ถ

(2.27)

A table of properties of Z-transform is given in Appendix C.

Page 30: On Z-transform and Its Applications

21

Section 2.3: Examples on the Properties of Z-transform.

Example 2.6: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) = ๐‘๐‘œ๐‘ (๐‘›๐‘ค) ๐‘ข(๐‘›), ๐‘ค โˆˆ โ„‚

Solution:

By using Euler's identity

๐‘๐‘œ๐‘ (๐‘›๐‘ค) =๐‘’๐‘›๐‘ค๐‘— + ๐‘’โˆ’๐‘›๐‘ค๐‘—

2

๐‘‹(๐‘ง) will be

๐‘‹(๐‘ง) = ๐‘[๐‘๐‘œ๐‘ (๐‘›๐‘ค)๐‘ข(๐‘›)] = ๐‘ [๐‘’๐‘›๐‘ค๐‘— + ๐‘’โˆ’๐‘›๐‘ค๐‘—

2๐‘ข(๐‘›) ]

By using linear property, we get

๐‘‹(๐‘ง) =1

2[๐‘[๐‘’๐‘›๐‘ค๐‘—๐‘ข(๐‘›)] + ๐‘[๐‘’โˆ’๐‘›๐‘ค๐‘—๐‘ข(๐‘›)]]

By Example 2.3, with ๐›ผ = ๐‘’ยฑ๐‘ค๐‘— (|๐›ผ| = |๐‘’+๐‘ค๐‘—| = 1), we get

๐‘‹(๐‘ง) =1

2[

๐‘ง

๐‘ง โˆ’ ๐‘’๐‘ค๐‘—+

๐‘ง

๐‘ง โˆ’ ๐‘’โˆ’๐‘ค๐‘—]

=1

2[2๐‘ง2 โˆ’ (๐‘’โˆ’๐‘ค๐‘— + ๐‘’๐‘ค๐‘—)๐‘ง

(๐‘ง2 โˆ’ ๐‘ง(๐‘’๐‘ค๐‘— + ๐‘’โˆ’๐‘ค๐‘—) + 1]

=๐‘ง2 โˆ’ ๐‘ง๐‘๐‘œ๐‘ (๐‘ค)

๐‘ง2 โˆ’ 2๐‘ง๐‘๐‘œ๐‘ (๐‘ค) + 1

Since the ๐‘…๐‘‚๐ถ of ๐‘[๐‘’๐‘›๐‘ค๐‘—๐‘ข(๐‘›)] is |๐‘ง| > 1and the ๐‘…๐‘‚๐ถ of ๐‘[๐‘’โˆ’๐‘›๐‘ค๐‘—๐‘ข(๐‘›)] is

also |๐‘ง| > 1 and there is no pole-zero cancelation, then the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) is

the intersection of the two regions, which is |๐‘ง| > 1.

Example 2.7: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) = ๐‘›3๐‘›๐‘ข(โˆ’๐‘›)

Solution:

Using Example 2.3, with ๐›ผ =1

3 (|๐›ผ| = |

1

3| =

1

3) we get

Page 31: On Z-transform and Its Applications

22

๐‘ [1

3

๐‘›

๐‘ข(๐‘›)] =๐‘ง

๐‘ง โˆ’13

, |๐‘ง| >1

3

Then by time reversal property, we obtain

๐‘[3๐‘›๐‘ข(โˆ’๐‘›)] = ๐‘งโˆ’1

๐‘งโˆ’1 โˆ’13

=3

3 โˆ’ ๐‘ง, |๐‘ง| < 3

Finally, using multiplication by n property, it follows that

๐‘[๐‘›3 ๐‘›๐‘ข(โˆ’๐‘›)] = โˆ’๐‘ง๐‘‘

๐‘‘๐‘ง 3

3 โˆ’ ๐‘ง

= โˆ’3๐‘ง

(3 โˆ’ ๐‘ง)2, |๐‘ง| < 3

Example 2.8: Determine the Z-transform of the convolution of

๐‘ฅ(๐‘›) = ๐›ฟ(๐‘›) โˆ’ 5๐›ฟ(๐‘› โˆ’ 1) and ๐‘ฆ(๐‘›) = 5๐‘›๐‘ข(๐‘›)

Solution:

๐‘[๐‘ฅ(๐‘›)] = ๐‘[๐›ฟ(๐‘›) ] โˆ’ 5๐‘[๐›ฟ(๐‘› โˆ’ 1)]

Using shifting property

๐‘[๐‘ฅ(๐‘›)] = ๐‘[๐›ฟ(๐‘›) ] โˆ’ 5๐‘งโˆ’1๐‘[๐›ฟ(๐‘›)]

= 1 โˆ’ 5๐‘งโˆ’1 โˆ™ 1 =๐‘ง โˆ’ 5

๐‘ง, |๐‘ง| > 0

๐‘[๐‘ฆ(๐‘›)] =๐‘ง

๐‘ง โˆ’ 5, |๐‘ง| > 5

However, Z-transform of the convolution of ๐‘ฅ(๐‘›) and ๐‘ฆ(๐‘›) is

๐‘[๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›)] = ๐‘‹(๐‘ง)๐‘Œ(๐‘ง) =๐‘ง โˆ’ 5

๐‘ง.๐‘ง

๐‘ง โˆ’ 5= 1

Which due to the pole-zero cancelation (see property 7), has a region of

convergence that is the entire z-plane.

Note: From Example ๐Ÿ. ๐Ÿ we find that

๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) = [๐›ฟ(๐‘›) โˆ’ 5๐›ฟ(๐‘› โˆ’ 1)] โˆ— 5๐‘›๐‘ข(๐‘›) = ๐›ฟ(๐‘›)

So

Page 32: On Z-transform and Its Applications

23

๐‘[๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›)] = ๐‘[๐›ฟ(๐‘›)] = 1

๐‘…๐‘‚๐ถ is the entire z-plane.

Example 2.9: Determine the Z-transform of the autocorrelation of the

sequence

๐‘ฅ(๐‘›) = (0.1)๐‘› ๐‘ข(๐‘›)

Solution:

Since the autocorrelation of the sequence is its correlation with itself, then

๐‘Ÿ๐‘ฅ๐‘ฅ(๐‘™) = ๐‘ฅ(๐‘™) โˆ— ๐‘ฅ(โˆ’๐‘™)

From correlation property

๐‘…๐‘ฅ๐‘ฅ(๐‘ง) = ๐‘[๐‘Ÿ๐‘ฅ๐‘ฅ(๐‘™)] = ๐‘‹(๐‘ง)๐‘‹(๐‘งโˆ’1)

๐‘‹(๐‘ง) =๐‘ง

๐‘ง โˆ’ 0.1 |๐‘ง| > 0.1

๐‘‹(๐‘งโˆ’1) =1

1 โˆ’ 0.1๐‘ง |๐‘ง| < 10

๐‘…๐‘ฅ๐‘ฅ(๐‘ง) =๐‘ง

๐‘ง โˆ’ 0.1โˆ™

1

1 โˆ’ 0.1๐‘ง

=๐‘ง

โˆ’0.1๐‘ง2 + 1.01๐‘ง โˆ’ 0.1

=โˆ’10๐‘ง

๐‘ง2 โˆ’ 10.1๐‘ง + 1

๐‘…๐‘‚๐ถ 0.1 < |๐‘ง| < 10

Example 2.10: Determine the Z-transform of the sequence ๐‘ค(๐‘›) = ๐‘ฅ(๐‘›) โˆ™

๐‘ฆ(๐‘›) where ๐‘ฅ(๐‘›) = 2 ๐‘› ๐‘ข(๐‘›) and ๐‘ฆ(๐‘›) = 3 ๐‘› ๐‘ข(๐‘›).

Solution:

๐‘‹(๐‘ง) =๐‘ง

๐‘ง โˆ’ 2, |๐‘ง| > 2

๐‘Œ(๐‘ง) =๐‘ง

๐‘ง โˆ’ 3, |๐‘ง| > 3

Using multiplication of two sequences property

๐‘Š(๐‘ง) =1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ฃ)๐‘Œ (

๐‘ง

๐‘ฃ)1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

Page 33: On Z-transform and Its Applications

24

=1

2๐œ‹๐‘— โˆฎ

๐‘ฃ

๐‘ฃ โˆ’ 2

(๐‘ง โ„ ๐‘ฃ)

[(๐‘ง โ„ ๐‘ฃ) โˆ’ 3] 1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

=1

2๐œ‹๐‘— โˆฎ

1

๐‘ฃ โˆ’ 2

๐‘ง

(๐‘ง โˆ’ 3๐‘ฃ) ๐‘‘๐‘ฃ

๐ถ

The integral has two poles, one located at ๐‘ฃ = 2 and the second at

๐‘ฃ = ๐‘ง โ„ 3. The contour of integration must be within the region of

convergence of ๐‘‹(๐‘ฃ), and consequently will enclose the pole at ๐‘ฃ = 2. To

determine whether it encloses the pole at ๐‘ฃ = ๐‘ง โ„ 3, we consider that the Z-

transform ๐‘Œ(๐‘ง) is only valid for |z| > 3. Therefore, the corresponding

expression for Y(z/v) is only valid for |๐‘ง/๐‘ฃ| > 3. Thus if

|๐‘ง

๐‘ฃ| > 3

Then

|๐‘ง

3| > |๐‘ฃ|

For the ๐‘…๐‘‚๐ถ of ๐‘[๐‘ฅ(๐‘›) โˆ™ ๐‘ฆ(๐‘›)] we get

|๐‘ฃ| > 2 and |๐‘ง

3| > |๐‘ฃ|

So

|๐‘ง

3| > |๐‘ฃ| > 2

โˆด ๐‘…๐‘‚๐ถ of ๐‘[๐‘ฅ(๐‘›) โˆ™ ๐‘ฆ(๐‘›)] is |๐‘ง| > 6

Consequently, the pole |๐‘ง

3| lie outside the contour of integration in ๐‘ฃ.

Using Cauchy residue theorem to evaluate ๐‘Š(๐‘ง), we obtain

๐‘Š(๐‘ง) = ๐‘…๐‘’๐‘  [1

๐‘ฃ โˆ’ 2

๐‘ง

(๐‘ง โˆ’ 3๐‘ฃ) ,2 ]

=๐‘ง

(๐‘ง โˆ’ 6), |๐‘ง| > 6

Example 2.11: Use Parseval's Theorem to find

Page 34: On Z-transform and Its Applications

25

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

where ๐‘ฅ(๐‘›) = (1

2) ๐‘› ๐‘ข(๐‘›) and ๐‘ฆ(๐‘›) = (

1

3)๐‘› ๐‘ข(๐‘›).

Solution:

From Parseval's theorem, since ๐‘ฆ(๐‘›) is real we use the expression in

Eq(2.27) we obtain,

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ง)๐‘Œ (

1

๐‘ง)1

๐‘ง๐‘‘๐‘ง

๐ถ

๐‘‹(๐‘ง) =๐‘ง

๐‘ง โˆ’12

, |๐‘ง| >1

2

๐‘Œ (1

๐‘ง) =

3

3 โˆ’ ๐‘ง=

โˆ’3

๐‘ง โˆ’ 3, |๐‘ง| < 3

So, the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) and ๐‘Œ (1

๐‘ง) is

1

2< |๐‘ง| < 3

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ

๐‘ง

๐‘ง โˆ’12

โˆ’3

๐‘ง โˆ’ 3

1

๐‘ง๐‘‘๐‘ง

๐ถ

= 1

2๐œ‹๐‘— โˆฎ

โˆ’3

(๐‘ง โˆ’12)(๐‘ง โˆ’ 3)

๐‘‘๐‘ง๐ถ

where ๐ถ is any circle with radius ๐‘Ÿ, where 1

2< ๐‘Ÿ < 3.

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= ๐‘…๐‘’๐‘  [โˆ’3

(๐‘ง โˆ’12)(๐‘ง โˆ’ 3)

,1

2 ] =

6

5

Example 2.12: If ๐‘Œ(๐‘ง) = ๐‘[(1 + ๐‘—)๐‘›๐‘ข(๐‘›)] =๐‘ง

๐‘งโˆ’(1+๐‘—), |๐‘ง| > โˆš2. Determine

the Z-transform of ๐‘ฅ(๐‘›) = (1 โˆ’ ๐‘—)๐‘›๐‘ข(๐‘›) .

Solution:

Note that ๐‘ฅ(๐‘›) = [(1 + ๐‘—)๐‘›๐‘ข(๐‘›)]โˆ—

Using conjugation property

Page 35: On Z-transform and Its Applications

26

๐‘[๐‘ฅ(๐‘›)] = ๐‘Œโˆ—(๐‘งโˆ—) = [๐‘งโˆ—

๐‘งโˆ— โˆ’ (1 + ๐‘—)]โˆ—

, |๐‘ง| > โˆš2

=๐‘ง

๐‘ง โˆ’ (1 โˆ’ ๐‘—)ูซ |๐‘ง| > โˆš2

Example 2.13: Determine the Z-transform of the sequence

๐‘ฅ(๐‘›) = (โˆ’1

2)|๐‘›|

Solution:

We can write ๐‘ฅ(๐‘›) as

๐‘ฅ(๐‘›) = (โˆ’1

2)๐‘›

๐‘ข(๐‘›) + (โˆ’1

2)โˆ’๐‘›

๐‘ข(โˆ’๐‘›) โˆ’ ๐›ฟ(๐‘›)

Using linearity and time reversal properties, we get

๐‘‹(๐‘ง) =๐‘ง

๐‘ง +12

+๐‘งโˆ’1

๐‘งโˆ’1 +12

โˆ’ 1, |โˆ’1

2| < |๐‘ง| <

1

|โˆ’12|

=3๐‘ง

(2๐‘ง + 1)(๐‘ง + 2) ,

1

2< |๐‘ง| < 2

2.4: Definition and Properties of the One-Sided Z-transform.

Definition 2.2:[6] The one-sided or unilateral Z-transform of a sequence is

๐‘‹+(๐‘ง) = ๐›ง+[๐‘ฅ(๐‘›)] = โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=0

(2.28)

where ๐‘ง is a complex variable.

The one-sided Z-transform differs from the two-sided Z- transform in the

lower limit of the summation, which is always zero whether or not the

sequence ๐‘ฅ(๐‘›) is zero for ๐‘› < 0 (i.e., causal). So, it does not contain any

information about the sequence ๐‘ฅ(๐‘›) for the negative values of ๐‘›.

Note: The one-sided Z-transform ๐‘‹+(๐‘ง) of ๐‘ฅ(๐‘›) is identical to the two-sided

Z- transform of the sequence ๐‘ฅ(๐‘›)๐‘ข(๐‘›). Since ๐‘ฅ(๐‘›)๐‘ข(๐‘›) is causal, the region

Page 36: On Z-transform and Its Applications

27

of convergence of its transform is always the exterior of a circle centered at

the origin of z-plane.

Example 2.14: Determine the one-sided Z-transform of the sequences.

a) ๐‘ฅ(๐‘›) = {โ†‘7โ†‘, 3,0,1,2,6}

b) ๐‘ฆ(๐‘›) = {2,โ†‘3โ†‘,โˆ’4,0,5}

c) ๐‘Ÿ(๐‘›) = {7,3,2,โ†‘3โ†‘,โˆ’4,0,5}

d) ๐‘ค(๐‘›) = 4๐‘›

e) โ„Ž(๐‘›) = ๐‘ข(โˆ’๐‘› โˆ’ 1)

Solution:

a)

๐‘‹+(๐‘ง) = โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=0

= 7 + 3 ๐‘งโˆ’1 + 1 ๐‘งโˆ’3 + 2 ๐‘งโˆ’4 + 6๐‘งโˆ’5

๐‘…๐‘‚๐ถ: entire z-plane except ๐‘ง = 0

b)

๐‘Œ+(๐‘ง) = 3 โˆ’ 4 ๐‘งโˆ’1 + 5 ๐‘งโˆ’3 , |๐‘ง| > 0

c)

๐‘…+(๐‘ง) = 3 โˆ’ 4 ๐‘งโˆ’1 + 5 ๐‘งโˆ’3 , |๐‘ง| > 0

d)

๐‘Š+(๐‘ง) =๐‘ง

๐‘ง โˆ’ 4 , |๐‘ง| > 4

e)

๐ป+(๐‘ง) = 0, ๐‘…๐‘‚๐ถ is all z โˆ’ plane

Page 37: On Z-transform and Its Applications

28

Note: The one-sided Z-transform is not unique for noncausal sequence. for

example, in the previous example ๐‘Œ+(๐‘ง) = ๐‘…+(๐‘ง) but ๐‘ฆ(๐‘›) โ‰  ๐‘Ÿ(๐‘›). Also

it's not unique for anticausal sequences it's always equal zero.

Most of the properties of the one-sided Z-transform are the same as those for

the two-sided Z-transform except the shifting property.

Shifting Property for the One-Sided Z-transform

If ๐‘‹+(๐‘ง) is the one-sided Z-transform of the sequence ๐‘ฅ(๐‘›) with ๐‘…๐‘‚๐ถ |๐‘ง| >

๐‘Ÿ๐‘ฅ, and ๐‘˜ is any positive integer then,

a) ๐›ง+[๐‘ฅ(๐‘› โˆ’ ๐‘˜)] = ๐‘งโˆ’๐‘˜ [๐‘‹+(๐‘ง) +โˆ‘๐‘ฅ(โˆ’๐‘›)๐‘ง๐‘›๐‘˜

๐‘›=1

] , |๐‘ง| > ๐‘Ÿ๐‘ฅ (2.29)

in case ๐‘ฅ(๐‘›) is casual

๐›ง+[๐‘ฅ(๐‘› โˆ’ ๐‘˜)] = ๐‘งโˆ’๐‘˜๐‘‹+(๐‘ง)

b) ๐›ง+[๐‘ฅ(๐‘› + ๐‘˜)] = ๐‘ง๐‘˜ [๐‘‹+(๐‘ง) โˆ’โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›๐‘˜โˆ’1

๐‘›=0

] , |๐‘ง| > ๐‘Ÿ๐‘ฅ (2.30)

Proof:

a)

๐›ง+[๐‘ฅ(๐‘› โˆ’ ๐‘˜)] =โˆ‘๐‘ฅ(๐‘› โˆ’ ๐‘˜)๐‘งโˆ’๐‘›โˆž

๐‘›=0

(2.31)

Substitute ๐‘š = ๐‘› โ€“ ๐‘˜ in Eq(2.31), we get

๐›ง+[๐‘ฅ(๐‘› โˆ’ ๐‘˜)] = โˆ‘ ๐‘ฅ(๐‘š)๐‘งโˆ’(๐‘š+๐‘˜)โˆž

๐‘š=โˆ’๐‘˜

= ๐‘งโˆ’๐‘˜ [โˆ‘ ๐‘ฅ(๐‘š)๐‘งโˆ’๐‘š +โˆ‘๐‘ฅ(๐‘š)๐‘งโˆ’๐‘šโˆž

๐‘š=0

โˆ’1

๐‘š=โˆ’๐‘˜

]

= ๐‘งโˆ’๐‘˜ [โˆ‘ ๐‘ฅ(๐‘š)๐‘งโˆ’๐‘š + ๐‘‹+(๐‘ง)

โˆ’1

๐‘š=โˆ’๐‘˜

] (2.32)

Substitute ๐‘› = โˆ’๐‘š in Eq(2.32), we obtain

Page 38: On Z-transform and Its Applications

29

๐›ง+[๐‘ฅ(๐‘› โˆ’ ๐‘˜)] = ๐‘งโˆ’๐‘˜ [๐‘‹+(๐‘ง) +โˆ‘๐‘ฅ(โˆ’๐‘›)๐‘ง๐‘›๐‘˜

๐‘›=1

]

b)

๐›ง+[๐‘ฅ(๐‘› + ๐‘˜)] = โˆ‘๐‘ฅ(๐‘› + ๐‘˜)๐‘งโˆ’๐‘›โˆž

๐‘›=0

(2.33)

Changing the index of summation of Eq(2.33) from n to ๐‘š = ๐‘› + ๐‘˜

๐›ง+[๐‘ฅ(๐‘› + ๐‘˜)] = โˆ‘๐‘ฅ(๐‘š)๐‘งโˆ’(๐‘šโˆ’๐‘˜)โˆž

๐‘š=๐‘˜

= ๐‘ง๐‘˜โˆ‘๐‘ฅ(๐‘š)๐‘งโˆ’๐‘š)โˆž

๐‘š=๐‘˜

= ๐‘ง๐‘˜ [โˆ‘ ๐‘ฅ(๐‘š)๐‘งโˆ’๐‘šโˆž

๐‘š=0

โˆ’โˆ‘๐‘ฅ(๐‘š)๐‘งโˆ’๐‘š๐‘˜โˆ’1

๐‘š=0

]

= ๐‘ง๐‘˜ [๐‘‹+(๐‘ง) โˆ’โˆ‘๐‘ฅ(๐‘š)๐‘งโˆ’๐‘š๐‘˜โˆ’1

๐‘š=0

] (2.34)

Changing the index of summation of Eq(2.34) from m to ๐‘› = ๐‘š

๐›ง+[๐‘ฅ(๐‘› + ๐‘˜)] = ๐‘ง๐‘˜ [๐‘‹+(๐‘ง) โˆ’โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›๐‘˜โˆ’1

๐‘›=0

]

Example 2.15: Determine the one-sided Z-transform of the sequences.

a) ๐‘ฅ(๐‘›) = 3๐‘›, ๐‘› โˆˆ โ„ค

b) ๐‘ฆ(๐‘›) = ๐‘ฅ(๐‘› โˆ’ 2)

c) ๐‘ค(๐‘›) = ๐‘ฅ(๐‘› + 3)

Solution:

a)

๐‘‹+(๐‘ง) = โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=0

= โˆ‘3๐‘›๐‘งโˆ’๐‘›โˆž

๐‘›=0

=๐‘ง

๐‘ง โˆ’ 3, |๐‘ง| > 3

Page 39: On Z-transform and Its Applications

31

b)

Using shifting property in Eq(2.29) for the one-sided Z-transform with

๐‘˜ = 2

๐›ง+[๐‘ฅ(๐‘› โˆ’ 2)] = ๐‘งโˆ’2 [๐‘‹+(๐‘ง) +โˆ‘๐‘ฅ(โˆ’๐‘›)๐‘ง๐‘›2

๐‘›=1

]

= ๐‘งโˆ’2[๐‘‹+(๐‘ง) + ๐‘ฅ(โˆ’1)๐‘ง1 + ๐‘ฅ(โˆ’2)๐‘ง2]

= ๐‘งโˆ’2๐‘‹+(๐‘ง) + ๐‘ฅ(โˆ’1)๐‘งโˆ’1 + ๐‘ฅ(โˆ’2)

since ๐‘ฅ(โˆ’1) = 3โˆ’1 =1

3, ๐‘ฅ(โˆ’2) = 3โˆ’2 =

1

9, we obtain ,

๐›ง+[๐‘ฅ(๐‘› โˆ’ 2)] =1

๐‘ง2 โˆ’ 3๐‘ง+1

3๐‘ง+1

9, |๐‘ง| > 3

c)

Using shifting property in Eq(2.30) for the one-sided Z-transform with

๐‘˜ = 3

๐›ง+[๐‘ฅ(๐‘› + 3)] = ๐‘ง3 [๐‘‹+(๐‘ง) โˆ’โˆ‘๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›3โˆ’1

๐‘›=0

]

= ๐‘ง3[๐‘‹+(๐‘ง) โˆ’ (๐‘ฅ(0)๐‘ง0 + ๐‘ฅ(1)๐‘งโˆ’1 + ๐‘ฅ(2)๐‘งโˆ’2)]

= ๐‘ง3๐‘‹+(๐‘ง) โˆ’ ๐‘ฅ(0)๐‘ง3 โˆ’ ๐‘ฅ(1)๐‘ง2 + ๐‘ฅ(2)๐‘ง1

since ๐‘ฅ(0) = 30 = 1, ๐‘ฅ(1) = 31 = 3 and ๐‘ฅ(2) = 32 = 9, we obtain,

๐›ง+[๐‘ฅ(๐‘› + 3)] = ๐‘ง3๐‘ง

๐‘ง โˆ’ 3โˆ’ ๐‘ง3 โˆ’ 3๐‘ง2 + 9๐‘ง

=๐‘ง4

๐‘ง โˆ’ 3โˆ’ ๐‘ง3 โˆ’ 3๐‘ง2 + 9๐‘ง, |๐‘ง| > 3

Now, we will talk about two important theorems in the analysis of sequences:

the Initial value theorem and Final value theorem. They are useful if we

are interested in asymptotic behavior of a sequences ๐‘ฅ(๐‘›) and we know its

one-sided Z-transform but not the sequences.

Page 40: On Z-transform and Its Applications

31

Initial Value Theorem[6]

Let ๐‘ฅ(๐‘›) be a sequence, the initial value, ๐‘ฅ(0), can be found from ๐‘‹+(๐‘ง) as

follows:

๐‘ฅ(0) = ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘‹+(๐‘ง) (2.35)

Proof:

๐‘‹+(๐‘ง) = โˆ‘๐‘ฅ(๐‘›) ๐‘งโˆ’๐‘›โˆž

๐‘›=๐‘œ

= ๐‘ฅ(0) + ๐‘ฅ(1) ๐‘งโˆ’1 + ๐‘ฅ(2) ๐‘งโˆ’2 +โ‹ฏ

If we let ๐‘ง โ†’ โˆž ,each term in ๐‘‹+(๐‘ง) goes to zero except the first one.

โˆด ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘‹+(๐‘ง) = ๐‘ฅ(0)

Final Value Theorem[8]

If ๐‘‹+(๐‘ง) is the one-sided Z-transform of the sequence ๐‘ฅ(๐‘›),then

๐‘™๐‘–๐‘š๐‘›โ†’โˆž

๐‘ฅ(๐‘›) = ๐‘™๐‘–๐‘š๐‘งโ†’1

(๐‘ง โˆ’ 1)๐‘‹+(๐‘ง) , ๐‘–๐‘“ ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

๐‘ฅ(๐‘›) exist (2.36)

Proof:

๐›ง+[๐‘ฅ(๐‘˜ + 1) โˆ’ ๐‘ฅ(๐‘˜)] = ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

โˆ‘[๐‘ฅ(๐‘˜+1)โˆ’๐‘ฅ(๐‘˜)]

๐‘›

๐‘˜=0

๐‘งโˆ’๐‘˜

๐‘ง๐‘‹+(๐‘ง) โˆ’ ๐‘ง๐‘ฅ(0) โˆ’ ๐‘‹+(๐‘ง) = ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

โˆ‘[๐‘ฅ(๐‘˜+1)โˆ’๐‘ฅ(๐‘˜)]

๐‘›

๐‘˜=0

๐‘งโˆ’๐‘˜

(๐‘ง โˆ’ 1)๐‘‹+(๐‘ง) โˆ’ ๐‘ง๐‘ฅ(0) = ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

โˆ‘[๐‘ฅ(๐‘˜+1)โˆ’๐‘ฅ(๐‘˜)]

๐‘›

๐‘˜=0

๐‘งโˆ’๐‘˜

By taking the limit as ๐‘ง โ†’ 1 ,the above equation become

๐‘™๐‘–๐‘š๐‘งโ†’1

(๐‘ง โˆ’ 1)๐‘‹+(๐‘ง) โˆ’ ๐‘ฅ(0)

= ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

โˆ‘[๐‘ฅ(๐‘˜+1)โˆ’๐‘ฅ(๐‘˜)]

๐‘›

๐‘˜=0

= ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

[๐‘ฅ(1) โˆ’ ๐‘ฅ(0) + ๐‘ฅ(2) โˆ’ ๐‘ฅ(1) + โ‹ฏ

๐‘ฅ(๐‘›) โˆ’ ๐‘ฅ(๐‘› โˆ’ 1) + ๐‘ฅ(๐‘› + 1) โˆ’ ๐‘ฅ(๐‘›)]

= ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

[โˆ’๐‘ฅ(0) + ๐‘ฅ(๐‘› + 1)]

= โˆ’๐‘ฅ(0) + ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

๐‘ฅ(๐‘›)

โˆด ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

๐‘ฅ(๐‘›) = ๐‘™๐‘–๐‘š๐‘งโ†’1

(๐‘ง โˆ’ 1)๐‘‹+(๐‘ง)

Page 41: On Z-transform and Its Applications

32

Example 2. 16: If ๐‘‹+(๐‘ง) = ๐‘ง2 (๐‘ง โˆ’ 1)(๐‘ง โˆ’ ๐‘’โˆ’1)โ„ , |๐‘ง| > 1,is the one-sided

Z-transform of the sequence ๐‘ฅ(๐‘›). Find the value of ๐‘ฅ(0) and ๐‘™๐‘–๐‘š๐‘›โ†’โˆž

๐‘ฅ(๐‘›).

Solution:

From initial value theorem

๐‘ฅ(0) = ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘‹+(๐‘ง) = ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘ง2

(๐‘ง โˆ’ 1)(๐‘ง โˆ’ ๐‘’โˆ’1)= 1

And from final value theorem

๐‘™๐‘–๐‘š๐‘›โ†’โˆž

๐‘ฅ(๐‘›) = ๐‘™๐‘–๐‘š๐‘งโ†’1

(๐‘ง โˆ’ 1)๐‘‹+(๐‘ง)

= ๐‘™๐‘–๐‘š๐‘งโ†’1

(๐‘ง โˆ’ 1)๐‘ง2

(๐‘ง โˆ’ 1)(๐‘ง โˆ’ ๐‘’โˆ’1)

=1

(1 โˆ’ ๐‘’โˆ’1)

Example 2.17: Generalize the Initial value theorem to find the value of

๐‘ฅ(1) for a causal sequence ๐‘ฅ(๐‘›) and find it for

๐‘‹(๐‘ง) =4๐‘ง3 + 5๐‘ง2

8๐‘ง3 โˆ’ 2๐‘ง + 3

Solution:

If ๐‘ฅ(๐‘›) is causal then

๐‘‹(๐‘ง) = ๐‘ฅ(0) + ๐‘ฅ(1)๐‘งโˆ’1 + ๐‘ฅ(2)๐‘งโˆ’2 +โ‹ฏ (2.37)

Subtract ๐‘ฅ(0) from both sides of Eq(2.37)

๐‘‹(๐‘ง) โˆ’ ๐‘ฅ(0) = ๐‘ฅ(1)๐‘งโˆ’1 + ๐‘ฅ(2)๐‘งโˆ’2 +โ‹ฏ (2.38)

Multiply both sides of Eq(2.38) with z

๐‘ง[๐‘‹(๐‘ง) โˆ’ ๐‘ฅ(0)] = ๐‘ง[๐‘ฅ(1)๐‘งโˆ’1 + ๐‘ฅ(2)๐‘งโˆ’2 +โ‹ฏ] (2.39)

If we take the limit as ๐‘ง โ†’ โˆž for Eq(2.39)

๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘ง[๐‘‹(๐‘ง) โˆ’ ๐‘ฅ(0)] = ๐‘ฅ(1) (2.40)

Eq(2.40) is a generalize the Initial value theorem to find the value of ๐‘ฅ(1)

for a causal sequence ๐‘ฅ(๐‘›).

Page 42: On Z-transform and Its Applications

33

For the given Z-transform

๐‘ฅ(0) = ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘‹(๐‘ง) = 1

2

๐‘ฅ(1) = ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

๐‘ง[๐‘‹(๐‘ง) โˆ’ ๐‘ฅ(0)]

๐‘ง[๐‘‹(๐‘ง) โˆ’ ๐‘ฅ(0)] = ๐‘ง [4๐‘ง3 + 5๐‘ง2

8๐‘ง3 โˆ’ 2๐‘ง + 3โˆ’1

2] =

10๐‘ง3 + 2๐‘ง2 โˆ’ 3๐‘ง

16๐‘ง3 โˆ’ 4๐‘ง + 6

Therefore

๐‘ฅ(1) = ๐‘™๐‘–๐‘š๐‘งโ†’โˆž

10๐‘ง3 + 2๐‘ง2 โˆ’ 3๐‘ง

16๐‘ง3 โˆ’ 4๐‘ง + 6=5

8

Example 2.18: Let ๐‘ฅ(๐‘›) be a left-sided sequence that is equal zero for ๐‘› >

0. If

๐‘‹(๐‘ง) =5๐‘ง + 4

9๐‘ง2 โˆ’ 3๐‘ง + 2

Find ๐‘ฅ(0).

Solution:

For a left-sided sequence that is equal zero for ๐‘› > 0, the Z-transform is

๐‘‹(๐‘ง) = ๐‘ฅ(0) + ๐‘ฅ(โˆ’1)๐‘ง + ๐‘ฅ(โˆ’2)๐‘ง2 +โ‹ฏ

If we take the limit as ๐‘ง โ†’ 0, we get

๐‘™๐‘–๐‘š๐‘งโ†’0

๐‘‹(๐‘ง) = ๐‘ฅ(0)

For our example

๐‘ฅ(0) = ๐‘™๐‘–๐‘š๐‘งโ†’0

๐‘‹(๐‘ง) = ๐‘™๐‘–๐‘š๐‘งโ†’0

5๐‘ง + 4

9๐‘ง2 โˆ’ 3๐‘ง + 2= 2

Page 43: On Z-transform and Its Applications

34

Chapter Three

The Inverse Z-transform

In this chapter we investigate methods for finding the inverse of the Z-

transform, clarify the relation between Z-transform and discrete Fourier-

transform and its relation with Laplace transform, then we introduce the

definition of two-dimensional Z-transform, investigate its properties and how

to find its inverse.

Section 3.1: The Inverse Z-transform

Just as important as technique for finding the Z-transform of a sequence are

methods that may be used to invert the Z-transform and recover the sequence

๐‘ฅ(๐‘›) from ๐‘‹(๐‘ง). Three methods are often used for the evaluation of the

inverse of Z-transform.

1. Integration.

2. Power Series.

3. Partial-Fraction.

1. Integration Method.[9]

Integration method relies on Cauchy integral formula, which state that if ๐ถ is

a closed contour that encircles the origin in a counterclockwise direction then, 1

2๐œ‹๐‘— โˆฎ๐‘ง๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

= {1, ๐‘˜ = 00, ๐‘˜ โ‰  0

(3.1)

The Z-transform of a sequence ๐‘ฅ(๐‘›) is given by

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(3.2)

Page 44: On Z-transform and Its Applications

35

Multiply both sides of Eq(3.2) by 1

2๐œ‹๐‘— ๐‘ง๐‘˜โˆ’1 and integrating over a contour ๐ถ

that encloses the origin counterclockwise and lies entirely in the region of

convergence of ๐‘‹(๐‘ง), we obtain

1

2๐œ‹๐‘— โˆฎ๐‘‹(๐‘ง) ๐‘ง๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

=1

2๐œ‹๐‘— โˆฎ โˆ‘ ๐‘ฅ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

๐‘งโˆ’๐‘›+๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

(3.3)

Interchanging the order of integration and summation on the right-hand side

of Eq(3.3) (valid if the series is convergent) we get

1

2๐œ‹๐‘— โˆฎ๐‘‹(๐‘ง) ๐‘ง๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

= โˆ‘ ๐‘ฅ(๐‘›)

โˆž

๐‘›=โˆ’โˆž

1

2๐œ‹๐‘— โˆฎ ๐‘งโˆ’๐‘›+๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

(3.4)

Applying Cauchy integral formula on the integral in the right hand side of

Eq(3.4), we get 1

2๐œ‹๐‘— โˆฎ ๐‘งโˆ’๐‘›+๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

= {1, ๐‘› = ๐‘˜0, ๐‘› โ‰  ๐‘˜

(3.5)

So Eq(3.4) becomes 1

2๐œ‹๐‘— โˆฎ๐‘‹(๐‘ง) ๐‘ง๐‘˜โˆ’1๐‘‘๐‘ง๐ถ

= ๐‘ฅ(๐‘˜) (3.6)

Therefore, the inverse of Z-transform is given by the integral

๐‘ฅ(๐‘›) =1

2๐œ‹๐‘— โˆฎ๐‘‹(๐‘ง) ๐‘ง๐‘›โˆ’1๐‘‘๐‘ง๐ถ

(3.7)

where ๐ถ is a counterclockwise closed contour in the region of convergence

of ๐‘‹(๐‘ง) and encircling the origin of the z-plane and ๐‘› โˆˆ โ„ค.

Note: For a rational Z-transform ๐‘‹(๐‘ง), ๐‘ฅ(๐‘›) is often evaluated using the

residue theorem, i.e.,

๐‘ฅ(๐‘›) = โˆ‘[๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‹(๐‘ง) ๐‘ง๐‘›โˆ’1๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘™๐‘’๐‘  ๐‘–๐‘›๐‘ ๐‘–๐‘‘๐‘’ ๐ถ ] (3.8)

Example 3.1: Find the inverse Z-transform of

๐‘‹(๐‘ง) =๐‘ง

๐‘ง + 3 , |๐‘ง| > 3

Page 45: On Z-transform and Its Applications

36

Solution:

From Eq(3.7) ๐‘ฅ(๐‘›), will be

๐‘ฅ(๐‘›) =1

2๐œ‹๐‘— โˆฎ

๐‘ง

๐‘ง + 3 ๐‘ง๐‘›โˆ’1๐‘‘๐‘ง

๐ถ

=1

2๐œ‹๐‘— โˆฎ

๐‘ง๐‘›

๐‘ง + 3๐‘‘๐‘ง

๐ถ

where the contour of integration, C is a circle of radius greater than 3.

For ๐‘› โ‰ฅ 0, the contour of integration encloses only one pole at ๐‘ง = โˆ’3. So

๐‘ฅ(๐‘›) = ๐‘…๐‘’๐‘  [ ๐‘ง๐‘›

๐‘ง + 3,โˆ’3 ] = (โˆ’3)๐‘›

For ๐‘› < 0, in an addition to the pole at ๐‘ง = โˆ’3 there is a multiple-order

pole at ๐‘ง = 0 whose order depends on ๐‘›.

For ๐‘› = โˆ’1,

๐‘ฅ(โˆ’1) =1

2๐œ‹๐‘— โˆฎ

1

๐‘ง(๐‘ง + 3) ๐‘‘๐‘ง

๐ถ

= ๐‘…๐‘’๐‘  [1

๐‘ง(๐‘ง + 3) , 0 ] + ๐‘…๐‘’๐‘  [

1

๐‘ง(๐‘ง + 3) , โˆ’3 ] =

1

3 +โˆ’1

3 = 0

For ๐‘› = โˆ’2,

๐‘ฅ(โˆ’2) =1

2๐œ‹๐‘— โˆฎ

1

๐‘ง2(๐‘ง + 3) ๐‘‘๐‘ง

๐ถ

= ๐‘…๐‘’๐‘  [1

๐‘ง2(๐‘ง + 3) , 0 ] + ๐‘…๐‘’๐‘  [

1

๐‘ง2(๐‘ง + 3) , โˆ’3 ]

=1

(1)!

๐‘‘

๐‘‘๐‘ง

1

(๐‘ง + 3) | .๐‘ง = 0

๐‘Ž๐ด +1

9 =โˆ’1

9 +1

9 = 0

Continuing this procedure it can be verified that ๐‘ฅ(๐‘›) = 0, ๐‘› < 0. So

๐‘ฅ(๐‘›) = { (โˆ’3)๐‘› , ๐‘› โ‰ฅ 00 , ๐‘› < 0

or

๐‘ฅ(๐‘›) = (โˆ’3)๐‘›๐‘ข(๐‘›)

Example 3.2: Find the inverse Z-transform of

๐‘‹(๐‘ง) = ๐‘ง2 + 6 + 7๐‘งโˆ’3, 0 < |๐‘ง| < โˆž

Page 46: On Z-transform and Its Applications

37

Solution:

From Eq(3.7) ๐‘ฅ(๐‘›), will be

๐‘ฅ(๐‘›) =1

2๐œ‹๐‘— โˆฎ(๐‘ง2 + 6 + 7๐‘งโˆ’3) ๐‘ง๐‘›โˆ’1๐‘‘๐‘ง๐ถ

where ๐ถ is the unit circle taken counterclockwise .

๐‘ฅ(๐‘›) =1

2๐œ‹๐‘— [โˆฎ ๐‘ง๐‘›+1๐‘‘๐‘ง

๐ถ

+ 6โˆฎ ๐‘ง๐‘›โˆ’1๐‘‘๐‘ง๐ถ

+ 7โˆฎ ๐‘ง๐‘›โˆ’4๐‘‘๐‘ง๐ถ

]

From Cauchy integral formula in Eq(3.1) we get,

๐‘ฅ(โˆ’2) =1

2๐œ‹๐‘— [2๐œ‹๐‘— โˆ™ 1 + 0 + 0] = 1

๐‘ฅ(0) =1

2๐œ‹๐‘— [0 + 6 โˆ™ 2๐œ‹๐‘— + 0] = 6

๐‘ฅ(3) =1

2๐œ‹๐‘— [0 + 0 + 7 โˆ™ 2๐œ‹๐‘—] = 7

For ๐‘› โ‰  โˆ’2, 0, 3

๐‘ฅ(๐‘›) = 0

So

๐‘ฅ(๐‘›) = {

1 , ๐‘› = โˆ’2 6 , ๐‘› = 0 7 , ๐‘› = 3 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Note: Integration method is particularly useful if only a specific values of

x(n) are needed.

We now prove the Multiplication of Two Sequences Property and

Parseval's Theorem.

Multiplication of Two Sequences Property:

If ๐‘‹(๐‘ง) is the Z-transform of ๐‘ฅ(๐‘›) with ๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ and ๐‘Œ(๐‘ง) is the

Z-transform of ๐‘ฆ(๐‘›) with ๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฆ, then

Page 47: On Z-transform and Its Applications

38

๐‘(๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)) =1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ฃ)๐‘Œ (

๐‘ง

๐‘ฃ)1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

, (3.9)

๐‘…๐‘‚๐ถ: ๐‘Ÿ๐‘ฅ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฅ๐‘…๐‘ฆ

where ๐ถ is a counterclockwise closed contour that encloses the origin and

lies within the common region of convergence of ๐‘‹(๐‘ฃ) and ๐‘Œ (๐‘ง

๐‘ฃ).

Proof: [14]

Let ๐ถ be as given in the above theorem and

๐‘ค(๐‘›) = ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›) (3.10)

Then, the Z-transform of ๐‘ค(๐‘›) is

๐‘Š(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(3.11)

But

๐‘ฅ(๐‘›) =1

2๐œ‹๐‘— โˆฎ๐‘‹(๐‘ฃ) ๐‘ฃ๐‘›โˆ’1๐‘‘๐‘ฃ๐ถ

(3.12)

Substituting ๐‘ฅ(๐‘›) in Eq(3.11) and interchanging the order of summation

and integration we obtain

๐‘Š(๐‘ง) =1

2๐œ‹๐‘— โˆฎ๐‘‹(๐‘ฃ)๐ถ

[ โˆ‘ ๐‘ฆ(๐‘›) (๐‘ง

๐‘ฃ)โˆ’๐‘›

โˆž

๐‘›=โˆ’โˆž

]1

๐‘ฃ ๐‘‘๐‘ฃ (3.13)

The sum in the brackets of Eq(3.13) is simply the transform ๐‘Œ(๐‘ง) evaluated

at ๐‘ง/๐‘ฃ. Therefore,

๐‘Š(๐‘ง) =1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ฃ)๐‘Œ (

๐‘ง

๐‘ฃ)1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

To obtain the ๐‘…๐‘‚๐ถ of ๐‘Š(๐‘ง) we note that if ๐‘‹(๐‘ฃ) converges for ๐‘Ÿ๐‘ฅ < |๐‘ฃ| <

๐‘…๐‘ฅ and ๐‘Œ(๐‘ง) converges for ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฆ, then the ๐‘…๐‘‚๐ถ of ๐‘Œ(๐‘ง/๐‘ฃ) is

๐‘Ÿ๐‘ฆ < |๐‘ง

๐‘ฃ| < ๐‘…๐‘ฆ

Hence the ๐‘…๐‘‚๐ถ for ๐‘Š(๐‘ง) is at least

๐‘Ÿ๐‘ฅ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฅ๐‘…๐‘ฆ

Page 48: On Z-transform and Its Applications

39

Parsevalโ€™s Theorem

Let ๐‘‹(๐‘ง) be the Z-transform of ๐‘ฅ(๐‘›) with ๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ

and let ๐‘Œ(๐‘ง) be the Z-transform of ๐‘ฆ(๐‘›) with ๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฆ, with

๐‘Ÿ๐‘ฅ๐‘Ÿ๐‘ฆ < |๐‘ง| = 1 < ๐‘…๐‘ฅ๐‘…๐‘ฆ

then we have

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆโˆ—(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ง)Yโˆ— (

1

๐‘งโˆ—)1

๐‘ง๐‘‘๐‘ง

๐ถ

(3.14)

where ๐ถ is a counterclockwise closed contour that encloses the origin and

lies within the common region of convergence of ๐‘‹(๐‘ง) and Yโˆ—(1/zโˆ—).

Proof: [9]

Let

๐‘ค(๐‘›) = ๐‘ฅ(๐‘›)๐‘ฆโˆ—(๐‘›) (3.15)

Noting that

โˆ‘ ๐‘ค(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= ๐‘Š(๐‘ง)|๐‘ง=1 (3.16)

By the multiplication of two sequences and the conjugation of Z-transform

properties, Eq(3.16) becomes

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆโˆ—(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ฃ)๐‘Œโˆ— (

1

๐‘ฃโˆ—)1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

(3.17)

Replace the dummy variable ๐‘ฃ with ๐‘ง in Eq(3.17) we obtain

โˆ‘ ๐‘ฅ(๐‘›)๐‘ฆโˆ—(๐‘›)

โˆž

๐‘›=โˆ’โˆž

= 1

2๐œ‹๐‘— โˆฎ ๐‘‹(๐‘ง)๐‘Œโˆ— (

1

๐‘งโˆ—)1

๐‘ง๐‘‘๐‘ง

๐ถ

where ๐ถ is a counterclockwise closed contour that encloses the origin and

lies within the common region of convergence of ๐‘‹(๐‘ง) and ๐‘Œโˆ—(1/zโˆ—).

Page 49: On Z-transform and Its Applications

41

2. Power Series Method

The idea of this method is to write ๐‘‹(๐‘ง) as a power series of the form

๐‘‹(๐‘ง) = โˆ‘ ๐‘๐‘›๐‘งโˆ’๐‘›

โˆž

๐‘›=โˆ’โˆž

(3.18)

which convergence in the ๐‘…๐‘‚๐ถ. Then by uniqueness of ๐‘‹(๐‘ง) we can say

that ๐‘ฅ(๐‘›) = ๐‘๐‘› for all ๐‘›.

Example 3.3: Find the inverse Z-transform of

๐‘‹(๐‘ง) = ๐‘ง2 + 6 + 7๐‘งโˆ’3, 0 < |๐‘ง| < โˆž

Solution:

Since ๐‘‹(๐‘ง) is a finite-order integer power function, ๐‘ฅ(๐‘›) is a finite-length

sequence. Therefore, ๐‘ฅ(๐‘›) is the coefficient that multiplies ๐‘งโˆ’๐‘› in ๐‘‹(๐‘ง).

Thus, ๐‘ฅ(3) = 7, ๐‘ฅ(0) = 6 and ๐‘ฅ(โˆ’2) = 1.

โˆด ๐‘ฅ(๐‘›) = {

1 , ๐‘› = โˆ’2 6 , ๐‘› = 0 7 , ๐‘› = 3 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Note: Comparing Example 3.3with Example 3.2 we note that the power

series method is easier than integration method in such cases.

Example 3.4: Find the inverse Z-transform of

๐‘‹(๐‘ง) = ๐‘ ๐‘–๐‘› ๐‘ง , |๐‘ง| โ‰ฅ 0

Solution:

Using Taylor series for ๐‘ ๐‘–๐‘› ๐‘ง about ๐‘ง = 0 we get,

๐‘‹(๐‘ง) = โˆ‘(โˆ’1)๐‘š๐‘ง2๐‘š+1

(2๐‘š + 1)!

โˆž

๐‘š=0

Page 50: On Z-transform and Its Applications

41

But

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

So

โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

= โˆ‘(โˆ’1)๐‘š๐‘ง2๐‘š+1

(2๐‘š + 1)!

โˆž

๐‘š=0

Comparing the powers of ๐‘ง on the both sides of the previous equation we

find

โ€“ ๐‘› = 2๐‘š + 1,๐‘š โˆˆ โ„•

So โ€“ ๐‘› is odd integer,

๐‘› = โˆ’1,โˆ’3,โˆ’5,โ€ฆ

Thus ๐‘ฅ(๐‘›) becomes

๐‘ฅ(๐‘›) =(โˆ’1)

โˆ’(๐‘›+12)

(โˆ’๐‘›)! , ๐‘› = โˆ’1,โˆ’3,โˆ’5,โ€ฆ

Example 3.5: Find the inverse Z-transform of

a) ๐‘‹(๐‘ง) =๐‘ง

๐‘ง + 3 , |๐‘ง| > 3

b) ๐‘‹(๐‘ง) =๐‘ง

๐‘ง + 3 , |๐‘ง| < 3

Solution:

a) Since the region of convergence is the exterior of a circle, the sequence is

a right-sided sequence. Furthermore, since lim๐‘งโ†’โˆž

๐‘‹(๐‘ง) = 1 = constant, it's a

causal sequence. By long division to obtain power series in ๐‘งโˆ’1.

Page 51: On Z-transform and Its Applications

42

โˆด ๐‘‹(๐‘ง) = 1 โˆ’ 3๐‘งโˆ’1 + 9๐‘งโˆ’2 +โ‹ฏ =โˆ‘(โˆ’3)๐‘›โˆž

๐‘›=0

๐‘งโˆ’๐‘›

So that

๐‘ฅ(๐‘›) = (โˆ’3)๐‘›๐‘ข(๐‘›)

b) Since the region of convergence is the interior of a circle, the sequence is

a left-sided sequence and since ๐‘‹(0) = 0, the sequence is anticausal. Thus

we divide to obtain a series in powers of z.

๐‘‹(๐‘ง) =1

3๐‘ง โˆ’

1

9๐‘ง2 +

1

27๐‘ง3 +โ‹ฏ = โˆ‘ โˆ’(โˆ’3)๐‘›๐‘งโˆ’๐‘›

โˆ’1

๐‘›=โˆ’โˆž

32

4

43

3

32

2

2

27

1

9

1

3

1

27

1-

27

1

9

1

9

1

9

1

3

1

3

1-

3

1

3

zzz

z

zz

z

zz

z

zz

zz

21

3

32

2

21

1

1

1

931

72-

279

9

93

3

31

131

zz

z

zz

z

zz

z

z

z

Page 52: On Z-transform and Its Applications

43

โˆด ๐‘ฅ(๐‘›) = โˆ’(โˆ’3)๐‘›๐‘ข(โˆ’๐‘› โˆ’ 1)

3. Partial-Fraction Method.

If ๐‘‹(๐‘ง) is rational function then the partial fraction method is often useful

method to find its inverse [9]. The idea of this method is to write ๐‘‹(๐‘ง) as

๐‘‹(๐‘ง) = ๐›ผ1๐‘‹1(๐‘ง) + ๐›ผ2๐‘‹2(๐‘ง) + โ‹ฏ+ ๐›ผ๐‘˜๐‘‹๐‘˜(๐‘ง) (3.19)

where each ๐‘‹๐‘–(๐‘ง) has inverse Z-transform ๐‘ฅ๐‘–(๐‘›) and ๐›ผ๐‘– โˆˆ โ„‚ for ๐‘– =

1, 2,โ€ฆ , ๐‘˜.

If ๐‘‹(๐‘ง) is rational function of ๐‘ง then ๐‘‹(๐‘ง) can be expressed as

๐‘‹(๐‘ง) =๐ด(๐‘ง)

๐ต(๐‘ง)=๐‘Ž0 + ๐‘Ž1๐‘ง + ๐‘Ž2๐‘ง

2 + โ‹ฏ+ ๐‘Ž๐‘€๐‘ง๐‘€

๐‘0 + ๐‘1๐‘ง + ๐‘2๐‘ง2 + โ‹ฏ+ ๐‘๐‘๐‘ง

๐‘ (3.20)

where ๐‘€,๐‘ โˆˆ โ„•.

If ๐‘ โ‰  0 and ๐‘€ < ๐‘ then ๐‘‹(๐‘ง) is called proper rational function, otherwise

๐‘‹(๐‘ง) is improper, and it can always be written as a sum of polynomial and

proper rational function. i.e.

๐‘‹(๐‘ง) = ๐‘0 + ๐‘1๐‘ง + ๐‘2๐‘ง2 + โ‹ฏ+ ๐‘๐‘˜๐‘ง

๐‘˜ +๐ด1(๐‘ง)

๐ต(๐‘ง) (3.21)

The inverse of the polynomial can be easily found but to find the inverse of

the proper rational function we need to write it as a sum of simple functions,

for this purpose we factorized the denominator into factor of poles ๐‘0, ๐‘1, โ€ฆ

, ๐‘๐‘šof ๐‘‹(๐‘ง).

Remark: [5] Sometimes it's better to expand ๐‘‹(๐‘ง)/๐‘ง rather than ๐‘‹(๐‘ง)

because most Z-transforms have the term z in their numerator.

We have two cases for the poles[5].

Case 1: Simple poles.

Page 53: On Z-transform and Its Applications

44

If all poles of ๐‘‹(๐‘ง) are simple then

๐‘‹(๐‘ง) =โˆ‘๐ด๐‘–

๐‘ง โˆ’ ๐‘๐‘–

๐‘š

๐‘–=1

(3.22)

where

๐ด๐‘– = (๐‘ง โˆ’ ๐‘๐‘–)๐‘‹(๐‘ง)| .๐‘ง = ๐‘๐‘–๐‘Ž๐ด (3.23)

Then

๐‘โˆ’1 [๐‘ง

๐‘ง โˆ’ ๐‘๐‘–] = {

(๐‘๐‘–)๐‘›๐‘ข(๐‘›) ๐‘–๐‘“ ๐‘…๐‘‚๐ถ |๐‘ง| > |๐‘๐‘–|

โˆ’(๐‘๐‘–)๐‘›๐‘ข(โˆ’๐‘› โˆ’ 1) ๐‘–๐‘“ ๐‘…๐‘‚๐ถ |๐‘ง| < |๐‘๐‘–|

(3.24)

If ๐‘ฅ(๐‘›) is causal and some poles of ๐‘‹(๐‘ง) are complex then if ๐‘ is a pole

then ๐‘โˆ— is also a pole and in this case

๐‘ฅ(๐‘›) = [๐ด(๐‘)๐‘› + ๐ดโˆ—(๐‘โˆ—)๐‘›]๐‘ข(๐‘›) (3.25)

In polar form Eq(3.25) become

๐‘ฅ(๐‘›) = 2|๐ด||๐‘|๐‘› ๐‘๐‘œ๐‘ (๐œƒ๐‘› + ๐œ‘)๐‘ข(๐‘›) (3.26)

where ๐œƒ and ๐œ‘ are the argument of the pole ๐‘ and the argument of the

partial fraction coefficient ๐ด, respectively.

Case 2: Multiple poles.

For a function ๐‘‹(๐‘ง) with a repeated pole of multiplicity ๐‘Ÿ, ๐‘Ÿ partial fraction

coefficients are associated with this repeated pole. The partial fraction

expansion of ๐‘‹(๐‘ง) will be of the form

๐‘‹(๐‘ง) = โˆ‘๐ด1๐‘˜

(๐‘ง โˆ’ ๐‘1)๐‘Ÿ+1โˆ’๐‘˜

๐‘Ÿ

๐‘˜=1

+ โˆ‘๐ด๐‘˜

๐‘ง โˆ’ ๐‘๐‘˜

๐‘š

๐‘˜=๐‘Ÿ+1

(3.27)

where

๐ด1๐‘˜ =1

(๐‘˜ โˆ’ 1)!

๐‘‘๐‘˜โˆ’1

๐‘‘๐‘ง๐‘˜โˆ’1(๐‘ง โˆ’ ๐‘1)

๐‘Ÿ๐‘‹(๐‘ง)| .๐‘ง = ๐‘1๐‘Ž๐ด , ๐‘˜ = 1, 2,โ€ฆ , ๐‘Ÿ (3.28)

Example 3.6: Find the inverse Z-transform of

Page 54: On Z-transform and Its Applications

45

๐‘‹(๐‘ง) =๐‘ง2 + 3๐‘ง

๐‘ง2 โˆ’ 3๐‘ง + 2 if ๐‘…๐‘‚๐ถ is

a) |๐‘ง| > 1

b) |๐‘ง| < 2

c) 1 < |๐‘ง| < 2

Solution:

First we write ๐‘‹(๐‘ง)/๐‘ง as a partial fraction ๐‘‹(๐‘ง)

๐‘ง=

๐‘ง + 3

๐‘ง2 โˆ’ 3๐‘ง + 2 =

๐‘ง + 3

(๐‘ง โˆ’ 2)(๐‘ง โˆ’ 1)

=๐ด

๐‘ง โˆ’ 2 +

๐ต

๐‘ง โˆ’ 1

๐ด = (๐‘ง โˆ’ 2)๐‘‹(๐‘ง)

๐‘ง| .๐‘ง = 2

๐‘Ž๐ด = 5

๐ต = (๐‘ง โˆ’ 1)๐‘‹(๐‘ง)

๐‘ง| .๐‘ง = 1

๐‘Ž๐ด = โˆ’4

So

๐‘‹(๐‘ง) = 5๐‘ง

๐‘ง โˆ’ 2 โˆ’ 4

๐‘ง

๐‘ง โˆ’ 1

For (a):

Since the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) is |๐‘ง| > 1, the sequence ๐‘ฅ(๐‘›) is causal sequence so

we obtain,

๐‘ฅ(๐‘›) = (5 (2)๐‘› โˆ’ 4)๐‘ข(๐‘›)

b) The ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) is |๐‘ง| < 2 so the sequence ๐‘ฅ(๐‘›) is anticausal so,

๐‘ฅ(๐‘›) = (โˆ’5 (2)๐‘› + 4)๐‘ข(โˆ’๐‘› โˆ’ 1)

c) The last ๐‘…๐‘‚๐ถ 1 < |๐‘ง| < 2 of ๐‘‹(๐‘ง) is annular, so the sequence ๐‘ฅ(๐‘›) is two-

sided. Thus one of the terms is causal and the other is anticausal. The ๐‘…๐‘‚๐ถ is

overlapping |๐‘ง| > 1and |๐‘ง| < 2 so the pole ๐‘1 = 1 provides the causal

sequence and the pole ๐‘2 = 2 provides the anticausal sequence.

Thus

Page 55: On Z-transform and Its Applications

46

๐‘ฅ(๐‘›) = โˆ’4๐‘ข(๐‘›) โˆ’ 5 (2)๐‘›๐‘ข(โˆ’๐‘› โˆ’ 1)

Example 3.7: Find the inverse Z-transform of

๐‘‹(๐‘ง) =๐‘ง + 1

๐‘ง2 โˆ’ 2๐‘ง + 2 ๐‘…๐‘‚๐ถ|๐‘ง| > โˆš2

Solution:

We write ๐‘Œ(๐‘ง) = X(z)/z as a partial fraction

๐‘Œ(๐‘ง) =๐‘‹(๐‘ง)

๐‘ง=

๐‘ง + 1

๐‘ง(๐‘ง2 โˆ’ 2๐‘ง + 2) =๐ด

๐‘ง+

๐ต

๐‘ง โˆ’ (1 + ๐‘—) +

๐ถ

๐‘ง โˆ’ (1 โˆ’ ๐‘—)

๐ด = ๐‘ง๐‘Œ(๐‘ง)| .๐‘ง = 0๐‘Ž๐ด =

1

2

๐ต = [๐‘ง โˆ’ (1 + ๐‘—)]๐‘Œ(๐‘ง) | .๐‘ง = 1 + ๐‘—๐‘Ž๐ด =

2 + ๐‘—

2๐‘— โˆ’ 2= โˆ’(

1 + 3๐‘—

4)

๐ถ = [๐‘ง โˆ’ (1 โˆ’ ๐‘—)]๐‘Œ(๐‘ง) | .๐‘ง = 1 โˆ’ ๐‘—๐‘Ž๐ด =

2 โˆ’ ๐‘—

โˆ’(2 + 2๐‘—)= โˆ’(

1 โˆ’ 3๐‘—

4)

๐‘‹(๐‘ง) =1

2โˆ’ (

1 + 3๐‘—

4)

๐‘ง

๐‘ง โˆ’ (1 + ๐‘—) โˆ’ (

1 โˆ’ 3๐‘—

4)

๐‘ง

๐‘ง โˆ’ (1 โˆ’ ๐‘—)

โˆด ๐‘ฅ(๐‘›) =1

2๐›ฟ(๐‘›) โˆ’ (

1 + 3๐‘—

4) (1 + ๐‘—)๐‘›๐‘ข(๐‘›) โˆ’ (

1 โˆ’ 3๐‘—

4) (1 โˆ’ ๐‘—)๐‘›๐‘ข(๐‘›)

Note that:

๐‘ฅ(0) =1

2โˆ’ (

1 + 3๐‘—

4) โˆ’ (

1 โˆ’ 3๐‘—

4) = 0

So,

๐‘ฅ(๐‘›) = {โˆ’(

1 + 3๐‘—

4) (1 + ๐‘—)๐‘› โˆ’ (

1 โˆ’ 3๐‘—

4) (1 โˆ’ ๐‘—)๐‘› , ๐‘› โ‰ฅ 1

0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

For ๐‘› โ‰ฅ 1, ๐‘ฅ(๐‘›) can be written in polar form as:

๐‘ฅ(๐‘›) = (โˆš10

2) (โˆš2)

๐‘› ๐‘๐‘œ๐‘  (

๐œ‹

4๐‘› + tanโˆ’1 3)

= โˆš5(โˆš2)๐‘›โˆ’1

๐‘๐‘œ๐‘  (๐œ‹

4๐‘› + tanโˆ’1 3)

Example 3.8: Find the inverse Z-transform of

๐‘‹(๐‘ง) =๐‘ง3

๐‘ง3 โˆ’ ๐‘ง2 โˆ’ 5๐‘ง โˆ’ 3 ๐‘…๐‘‚๐ถ|๐‘ง| > 1

Page 56: On Z-transform and Its Applications

47

Solution:

We write ๐‘Œ(๐‘ง) = ๐‘‹(๐‘ง)/๐‘ง as a partial fraction

๐‘Œ(๐‘ง) =๐‘‹(๐‘ง)

๐‘ง=

๐‘ง2

๐‘ง3 โˆ’ ๐‘ง2 โˆ’ 5๐‘ง โˆ’ 3 =

๐‘ง2

(๐‘ง โˆ’ 3)(๐‘ง + 1)2

=๐ด

๐‘ง โˆ’ 3 +

๐ต

๐‘ง + 1 +

๐ถ

(๐‘ง + 1)2

๐ด = (๐‘ง โˆ’ 3)๐‘Œ(๐‘ง)| .๐‘ง = 3๐‘Ž๐ด =

9

16

๐ต =1

(2 โˆ’ 1)!

๐‘‘

๐‘‘๐‘ง(๐‘ง + 1)2๐‘Œ(๐‘ง)| .๐‘ง = โˆ’1

๐‘Ž๐ด =7

16

๐ถ = (๐‘ง + 1)2๐‘Œ(๐‘ง)| .๐‘ง = โˆ’1๐‘Ž๐ด =

โˆ’1

4

๐‘‹(๐‘ง) =9

16

๐‘ง

๐‘ง โˆ’ 3 +7

16

๐‘ง

๐‘ง + 1 โˆ’1

4

๐‘ง

(๐‘ง + 1)2

โˆด ๐‘ฅ(๐‘›) = [9

16(3)๐‘› +

7

16(โˆ’1)๐‘› +

1

4๐‘›(โˆ’1)๐‘›] ๐‘ข(๐‘›)

๐‘ฅ(๐‘›) =1

16[(3)๐‘›+2 + (โˆ’1)๐‘›(7 + 4๐‘›)]๐‘ข(๐‘›)

Example 3.9: Find the inverse Z-transform of

๐‘‹(๐‘ง) =๐‘ง5 + 6๐‘ง3 + 7

๐‘ง3, 0 < |๐‘ง| < โˆž

Solution:

๐‘‹(๐‘ง) is an improper rational function so it can be written as

๐‘‹(๐‘ง) = ๐‘ง2 + 6 +7

๐‘ง3

So,

๐‘ฅ(๐‘›) = ๐›ฟ(๐‘› + 2) + 6๐›ฟ(๐‘›) + 7๐›ฟ(๐‘› โˆ’ 3)

or

๐‘ฅ(๐‘›) = {

1 , ๐‘› = โˆ’2 6 , ๐‘› = 0 7 , ๐‘› = 3 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Page 57: On Z-transform and Its Applications

48

Section 3.2: The Relation Between Z-transform and the Discrete Fourier

Transform.

Let ๐‘ฅ(๐‘›) be a sequence, then the discrete Fourier transform (DFT) of ๐‘ฅ(๐‘›)

is [5],

๐‘‹(๐‘’๐‘—๐œ”) = โˆ‘ ๐‘ฅ(๐‘›)๐‘’โˆ’๐‘›๐œ”๐‘—โˆž

๐‘›=โˆ’โˆž

(3.29)

where ๐œ” is real.

The Z-transform of ๐‘ฅ(๐‘›) is

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(3.30)

where ๐‘ง is a complex variable.

In polar form ๐‘ง is written as

๐‘ง = ๐‘Ÿ๐‘’๐‘—๐œ” (3.31)

where ๐‘Ÿ = |๐‘ง| and ๐œ” = ๐‘Ž๐‘Ÿ๐‘” (๐‘ง).

Substituting Eq(3.31) in Eq(3.30) we obtain

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)(๐‘Ÿ๐‘’๐‘—๐œ”)โˆ’๐‘›

โˆž

๐‘›=โˆ’โˆž

= โˆ‘ ๐‘ฅ(๐‘›)๐‘Ÿโˆ’๐‘›(๐‘’๐‘—๐œ”)โˆ’๐‘›โˆž

๐‘›=โˆ’โˆž

(3.32)

which is the discrete Fourier-transform for [๐‘ฅ(๐‘›)๐‘Ÿโˆ’๐‘›]. If ๐‘Ÿ = 1, then ๐‘ง =

๐‘’๐‘—๐œ”and the Z-transform of ๐‘ฅ(๐‘›) becomes the discrete Fourier-transform.

i.e

๐‘‹(๐‘ง) | .๐‘ง = ๐‘’๐‘—๐œ”

๐‘Ž๐ด = ๐‘‹(๐‘’๐‘—๐œ”)

So, Z-transform is generalization of discrete Fourier-transform.

Page 58: On Z-transform and Its Applications

49

Section 3.3: The Relation Between Z-transform and Laplace Transform.

Let ๐‘“(๐‘ก) be a continuous function, then we can take a sampled discrete

function ๐‘“๐‘ (๐‘ก) which can be written as [13]

๐‘“๐‘ (๐‘ก) = โˆ‘ ๐‘“(๐‘ก)๐›ฟ(๐‘› โˆ’ ๐‘ก)

โˆž

๐‘›=โˆ’โˆž

= โˆ‘ ๐‘“(๐‘›)๐›ฟ(๐‘› โˆ’ ๐‘ก)

โˆž

๐‘›=โˆ’โˆž

(3.33)

The Laplace transform of sampled function ๐‘“๐‘ (๐‘ก) is:

๐‘‹(๐‘ ) = โ„’[๐‘“๐‘ (๐‘ก)] = โˆซ [ โˆ‘ ๐‘“(๐‘›)๐›ฟ(๐‘ก โˆ’ ๐‘›)

โˆž

๐‘›=โˆ’โˆž

] ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โˆž

โˆ’โˆž

(3.34)

where ๐‘  = ๐œŽ + ๐‘—๐œ”, ๐œŽ and ๐œ” are real variables, by interchanging the order of

the summation and the integration of Eq(3.34) we get

๐‘‹(๐‘ ) = โˆ‘ ๐‘“(๐‘›)

โˆž

๐‘›=โˆ’โˆž

[ โˆซ ๐›ฟ(๐‘ก โˆ’ ๐‘›)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โˆž

โˆ’โˆž

] = โˆ‘ ๐‘“(๐‘›)

โˆž

๐‘›=โˆ’โˆž

๐‘’โˆ’๐‘›๐‘ 

= โˆ‘ ๐‘“(๐‘›)

โˆž

๐‘›=โˆ’โˆž

(๐‘’๐‘ )โˆ’๐‘› = ๐‘‹(๐‘ง) | .๐‘ง = ๐‘’๐‘ ๐‘Ž๐ด (3.35)

So the relation between Laplace-transform and Z-transform is

๐‘‹(๐‘ ) = ๐‘‹(๐‘ง) | .๐‘ง = ๐‘’๐‘ ๐‘Ž๐ด (3.36)

or

๐‘‹(๐‘ง) = ๐‘‹(๐‘ ) | .๐‘  = ๐‘™๐‘› ๐‘ง๐‘Ž๐ด (3.37)

The most important correspondence between the s-plane and z-plane are:

1. The points on the jฯ‰-axis in the s-plane mapped onto the unit circle in

the z-plane.

2. The points in the right half of the s-plane mapped outside the unit circle

in the z-plane where the points in the left half mapped inside the unit

circle.

Page 59: On Z-transform and Its Applications

51

3. The lines ๐‘  = ๐œŽ parallel to the jฯ‰-axis in the s-plane mapped into

circles with radius|๐‘ง| = ๐‘’๐œŽin z-plane where the lines ๐‘  = ๐‘—๐‘ข parallel to

the ๐œŽ-axis mapped into rays of the form ๐‘Ž๐‘Ÿ๐‘” ๐‘ง = ๐‘ข radians from ๐‘ง = 0.

4. The origin of the s-plane mapped to the point z = 1 in the z-plane.

Section 3.4: The Two-Dimensional Z-transform.

3.4.1: Definition of the Two-Dimensional Z-transform.

Definition 3.1:[20] The two-dimensional Z-transform ๐‘‹(๐‘ง1, ๐‘ง2) of a

sequence ๐‘ฅ(๐‘›,๐‘š) is defined as

๐‘‹(๐‘ง1, ๐‘ง2) = โˆ‘ โˆ‘ ๐‘ฅ(๐‘›,๐‘š)๐‘ง1โˆ’๐‘›

โˆž

๐‘š=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

๐‘ง2โˆ’๐‘š (3.38)

where (๐‘ง1, ๐‘ง2) โˆˆ โ„‚2 and the ๐‘…๐‘‚๐ถ is the set of all (๐‘ง1, ๐‘ง2) points for which

โˆ‘โˆ‘|๐‘ฅ(๐‘›,๐‘š)||๐‘ง1โˆ’๐‘›||๐‘ง2

โˆ’๐‘š|

๐‘š

< โˆž

๐‘›

Example 3.10: Find the two-dimensional Z-transform of

๐‘ฅ(๐‘›,๐‘š) = {

3, ๐‘› = 0,๐‘š = โˆ’21, ๐‘› = 0,๐‘š = 04, ๐‘› = 5,๐‘š = 30, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Solution:

๐‘‹(๐‘ง1, ๐‘ง2) = โˆ‘ โˆ‘ ๐‘ฅ(๐‘›,๐‘š)๐‘ง1โˆ’๐‘›

โˆž

๐‘š=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

๐‘ง2โˆ’๐‘š

= 3๐‘ง22 + 1 + 4๐‘ง1

โˆ’5๐‘ง2โˆ’3

๐‘…๐‘‚๐ถ all โ„‚2 except ๐‘ง1 = 0 or ๐‘ง2 = 0,โˆž.

Example 3.11: Find the two-dimensional Z-transform of

๐‘ฅ(๐‘›,๐‘š) = 2๐‘›๐›ฟ(๐‘› โˆ’๐‘š)๐‘ข(๐‘›,๐‘š)

Solution:

Page 60: On Z-transform and Its Applications

51

๐‘‹(๐‘ง1, ๐‘ง2) = โˆ‘ โˆ‘ ๐‘ฅ(๐‘›,๐‘š)๐‘ง1โˆ’๐‘›

โˆž

๐‘š=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

๐‘ง2โˆ’๐‘š

= โˆ‘ โˆ‘ 2๐‘›๐›ฟ(๐‘› โˆ’๐‘š)๐‘ข(๐‘›,๐‘š)๐‘ง1โˆ’๐‘›

โˆž

๐‘š=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

๐‘ง2โˆ’๐‘š

= โˆ‘ โˆ‘ 2๐‘›๐›ฟ(๐‘› โˆ’๐‘š)๐‘ข(๐‘›)๐‘ข(๐‘š)๐‘ง1โˆ’๐‘›

โˆž

๐‘š=โˆ’โˆž

โˆž

๐‘›=โˆ’โˆž

๐‘ง2โˆ’๐‘š

= โˆ‘ โˆ‘ 2๐‘›๐›ฟ(๐‘› โˆ’๐‘š)๐‘ง1โˆ’๐‘›

โˆž

๐‘š=0

โˆž

๐‘›=0

๐‘ง2โˆ’๐‘š

= โˆ‘2๐‘›๐‘ง1โˆ’๐‘›

โˆž

๐‘›=0

๐‘ง2โˆ’๐‘› =

๐‘ง1๐‘ง2๐‘ง1๐‘ง2 โˆ’ 2

, |๐‘ง1||๐‘ง2| > 2

3.4.2: Properties of the Two-Dimensional Z-transform.

The properties of the two-dimensional Z-transform are the same as the

properties of Z-transform and their proofs are parallel with an additional

important property, the separable of sequences propriety.

Let ๐‘‹(๐‘ง1, ๐‘ง2) be the two-dimensional Z-transform of ๐‘ฅ(๐‘›,๐‘š) with ๐‘…๐‘‚๐ถ ๏ฟฝฬƒ๏ฟฝ๐‘ฅ

and ๐‘Œ(๐‘ง1, ๐‘ง2) the Z-transform of ๐‘ฆ(๐‘›,๐‘š) with ๐ถ ๏ฟฝฬƒ๏ฟฝ๐‘ฆ. Then the properties are

1. Linearity.

For any complex numbers ฮฑ, ฮฒ we have

๐‘[๐›ผ๐‘ฅ(๐‘›,๐‘š) + ๐›ฝ๐‘ฆ(๐‘›,๐‘š)] = ๐›ผ๐‘‹(๐‘ง1, ๐‘ง2) + ๐›ฝ๐‘Œ(๐‘ง1, ๐‘ง2) (3.39)

๐‘…๐‘‚๐ถ: at least ๏ฟฝฬƒ๏ฟฝ๐‘ฅ โˆฉ ๏ฟฝฬƒ๏ฟฝ๐‘ฆ

2. Shifting.

For ๐‘›1, ๐‘š1 โˆˆ โ„ค

๐‘[๐‘ฅ(๐‘› + ๐‘›1, ๐‘š +๐‘š1)] = ๐‘ง1๐‘›1 ๐‘ง2

๐‘š1๐‘‹(๐‘ง1, ๐‘ง2) (3.40)

๐‘…๐‘‚๐ถ: ๏ฟฝฬƒ๏ฟฝ๐‘ฅwith possible exceptions |๐‘ง1| = 0,โˆž and |๐‘ง2| = 0,โˆž

3. Multiplication by Exponential.

Page 61: On Z-transform and Its Applications

52

For ๐‘Ž, ๐‘ โˆˆ โ„‚

๐‘[๐‘Ž๐‘›๐‘๐‘š๐‘ฅ(๐‘›,๐‘š)] = ๐‘‹(๐‘Žโˆ’1๐‘ง1, ๐‘โˆ’1๐‘ง2) (3.41)

๐‘…๐‘‚๐ถ: ๏ฟฝฬƒ๏ฟฝ๐‘ฅscaled by |a| in the ๐‘ง1variable and by |๐‘| in the ๐‘ง2 variable.

4. Time Reversal.

๐‘[๐‘ฅ(โˆ’๐‘›,โˆ’๐‘š) ] = ๐‘‹(๐‘ง1โˆ’1, ๐‘ง2

โˆ’1) (3.42)

๐‘…๐‘‚๐ถ: ๐‘ง1โˆ’1, ๐‘ง2

โˆ’1 ๐‘–๐‘› ๏ฟฝฬƒ๏ฟฝ๐‘ฅ

5. Conjugation.

๐‘[๐‘ฅ โˆ—(๐‘›,๐‘š)] = ๐‘‹โˆ—(๐‘ง1โˆ—, ๐‘ง2

โˆ—) (3.43)

๐‘…๐‘‚๐ถ: ๏ฟฝฬƒ๏ฟฝ๐‘ฅ

6. Multiplication by n or Differentiation of the Transform

๐‘[๐‘› ๐‘š ๐‘ฅ(๐‘›,๐‘š) ] = ๐‘ง1๐‘ง2๐œ•2๐‘‹(๐‘ง1, ๐‘ง2)

๐œ•๐‘ง1๐œ•๐‘ง2 (3.44)

๐‘…๐‘‚๐ถ: ๏ฟฝฬƒ๏ฟฝ๐‘ฅ

7. Convolution of Two Sequences.

๐‘[๐‘ฅ(๐‘›,๐‘š) โˆ— ๐‘ฆ(๐‘›,๐‘š)] = ๐‘‹(๐‘ง1, ๐‘ง2) ๐‘Œ(๐‘ง1, ๐‘ง2) (3.45)

๐‘…๐‘‚๐ถ: at least ๏ฟฝฬƒ๏ฟฝ๐‘ฅ โˆฉ ๏ฟฝฬƒ๏ฟฝ๐‘ฆ

8. Multiplication of Two Sequences

๐‘[๐‘ฅ(๐‘›,๐‘š))๐‘ฆ(๐‘›,๐‘š)] = (1

2๐œ‹๐‘—)2

โˆฎ โˆฎ ๐‘‹(๐‘ง1, ๐‘ง2)๐‘Œ (๐‘ง1

๐‘ฃ1,๐‘ง2

๐‘ฃ2)1

๐‘ฃ1

1

๐‘ฃ2๐‘‘๐‘ฃ1๐‘‘๐‘ฃ2๐ถ1๐ถ2

(3.46)

9. Separable of Sequences Property

If ๐‘‹1(๐‘ง1), ๐‘‹2(๐‘ง2) are the Z-transform of ๐‘ฅ1(๐‘›), ๐‘ฅ2(๐‘š) respectively and

If ๐‘ฅ(๐‘›,๐‘š) = ๐‘ฅ1(๐‘›) โˆ™ ๐‘ฅ2(๐‘š) then

๐‘‹(๐‘ง1, ๐‘ง2) = ๐‘‹1(๐‘ง1) โˆ™ ๐‘‹2(๐‘ง2) (3.47)

with ๐‘…๐‘‚๐ถ: ๐‘ง1 โˆˆ ๐‘…๐‘‚๐ถ ๐‘‹1(๐‘ง1) and ๐‘ง2 โˆˆ ๐‘…๐‘‚๐ถ ๐‘‹2(๐‘ง2)

Example 3.11: Find the two-dimensional Z-transform of

Page 62: On Z-transform and Its Applications

53

๐‘ฅ(๐‘›,๐‘š) = 3๐‘›โˆ’๐‘š

๐‘›!๐‘ข(๐‘›,๐‘š)

Solution:

๐‘ฅ(๐‘›,๐‘š) = 3๐‘›โˆ’๐‘š

๐‘›!๐‘ข(๐‘›,๐‘š) =

3๐‘›

๐‘›!๐‘ข(๐‘›) โˆ™

1

3๐‘š๐‘ข(๐‘š) = ๐‘ฅ1(๐‘›) โˆ™ ๐‘ฅ2(๐‘›)

Using separable of sequences propriety we get,

๐‘‹(๐‘ง1, ๐‘ง2) = ๐‘‹1(๐‘ง1) โˆ™ ๐‘‹2(๐‘ง2)

= ๐‘’3 ๐‘ง1โ„ โˆ™๐‘ง2

๐‘ง2 โˆ’13

๐‘…๐‘‚๐ถ |๐‘ง1| > 0, |๐‘ง2| >1

3

3.4.3: The Inverse of the Two-Dimensional Z-transform

Definition 3.2:[12] The inverse of the two-dimensional Z-transform

๐‘‹(๐‘ง1, ๐‘ง2) is

๐‘ฅ(๐‘›,๐‘š) = (1

2๐œ‹๐‘—)2

โˆฎ โˆฎ ๐‘‹(๐‘ง1, ๐‘ง2) ๐‘ง1๐‘›โˆ’1 ๐‘ง2

๐‘šโˆ’1๐‘‘๐‘ง1 ๐‘‘๐‘ง2

๐ถ1๐ถ2

(3.48)

where C1and ๐ถ2 are a counterclockwise closed contours encircling the

origin and within the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง1, ๐‘ง2).

Example 3.12: Find the inverse of the two-dimensional Z-transform

๐‘‹(๐‘ง) =3๐‘ง1

3๐‘ง1 โˆ’ ๐‘ง2, |๐‘ง1| >

|๐‘ง2|

3

Solution:

๐‘ฅ(๐‘›,๐‘š) = (1

2๐œ‹๐‘—)2

โˆฎ โˆฎ ๐‘‹(๐‘ง1, ๐‘ง2) ๐‘ง1๐‘›โˆ’1 ๐‘ง2

๐‘šโˆ’1๐‘‘๐‘ง1 ๐‘‘๐‘ง2

๐ถ1๐ถ2

= (1

2๐œ‹๐‘—)2

โˆฎ โˆฎ3๐‘ง1

3๐‘ง1 โˆ’ ๐‘ง2 ๐‘ง1

๐‘›โˆ’1 ๐‘ง2๐‘šโˆ’1

๐‘‘๐‘ง1 ๐‘‘๐‘ง2 ๐ถ1๐ถ2

where C1and ๐ถ2 are a counterclockwise closed contours encircling the

origin and within the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง1, ๐‘ง2).

Page 63: On Z-transform and Its Applications

54

=1

2๐œ‹๐‘— โˆฎ ๐‘ง2

๐‘šโˆ’1 [1

2๐œ‹๐‘—โˆฎ

๐‘ง1๐‘›

๐‘ง1 โˆ’๐‘ง23

๐‘‘๐‘ง1 ๐ถ1

] ๐‘‘๐‘ง2๐ถ2

By using residue theorem and since |๐‘ง1| >|๐‘ง2|

3

1

2๐œ‹๐‘—โˆฎ

๐‘ง1๐‘›

๐‘ง1 โˆ’๐‘ง23

๐‘‘๐‘ง1๐ถ1

= ๐‘…๐‘’๐‘  [ ๐‘ง1

๐‘›

๐‘ง1 โˆ’๐‘ง23

,๐‘ง23 ] = (

๐‘ง23)๐‘›

๐‘ข(๐‘›)

So

๐‘ฅ(๐‘›,๐‘š) =1

2๐œ‹๐‘— โˆฎ ๐‘ง2

๐‘šโˆ’1 (๐‘ง23)๐‘›

๐‘ข(๐‘›)๐‘‘๐‘ง2๐ถ2

=1

2๐œ‹๐‘— โˆฎ ๐‘ง2

๐‘š+๐‘›โˆ’1 (1

3)๐‘›

๐‘ข(๐‘›)๐‘‘๐‘ง2๐ถ2

= (1

3)๐‘›

๐›ฟ(๐‘› +๐‘š)

Page 64: On Z-transform and Its Applications

55

Chapter Four

Z-transform and Solution of Some Difference Equations

One of the most important applications of Z-transform is solving some linear

difference equations. Z-transform is also one of the most effective methods

for solving Volterra difference equations of convolution type[4].

Section 4.1: Linear Difference Equations with Constant Coefficients.

Definition 4.1: [3] A linear difference equation with constant coefficients

has the form,

๐‘ฆ(๐‘› + ๐‘˜) + ๐‘Ž1๐‘ฆ(๐‘› + ๐‘˜ โˆ’ 1) + ๐‘Ž2๐‘ฆ(๐‘› + ๐‘˜ โˆ’ 2) +โ‹ฏ+ ๐‘Ž๐‘˜๐‘ฆ(๐‘›) = ๐‘ฅ(๐‘›) (4.1)

where ๐‘Ž๐‘– 's are real or complex constants for all ๐‘– = 1, 2,โ€ฆ , ๐‘˜. If ๐‘ฅ(๐‘›) = 0

then the equation is called homogeneous otherwise its non homogeneous.

The order of linear difference equation is the difference between the largest

and smallest indices of the unknown sequence ๐‘ฆ(๐‘›).

If the initial values ๐‘ฆ(0), ๐‘ฆ(1), ๐‘ฆ(2), โ€ฆ , ๐‘ฆ(๐‘˜ โˆ’ 1) are all given, then Eq(4.1)

is called initial value problem (IVP).

Theorem 4.1: [7] On the Existence of a Unique Solution

Consider the general ๐‘˜th IVP,

๐‘ฆ(๐‘› + ๐‘˜) = ๐‘”(๐‘›, ๐‘ฆ(๐‘›), ๐‘ฆ(๐‘› + 1),โ€ฆ , ๐‘ฆ(๐‘› + ๐‘˜ โˆ’ 1), ๐‘˜ = 0, 1, 2, โ€ฆ (4.2)

where ๐‘ฆ(0) = ๐‘ฆ0, ๐‘ฆ(1) = ๐‘ฆ1, ๐‘ฆ(2) = ๐‘ฆ2, โ€ฆ , ๐‘ฆ(๐‘˜ โˆ’ 1) = ๐‘ฆ๐‘˜โˆ’1, are given

and the function g is defined for all its arguments ๐‘›, ๐‘ฆ(๐‘›), ๐‘ฆ(๐‘› + 1),

๐‘ฆ(๐‘› + 2),โ€ฆ , ๐‘ฆ(๐‘› + ๐‘˜ โˆ’ 1). Then the IVP has a unique solution

Page 65: On Z-transform and Its Applications

56

corresponding to each arbitrary set of the ๐‘˜ initial values

๐‘ฆ(0), ๐‘ฆ(1), ๐‘ฆ(2),โ€ฆ , ๐‘ฆ(๐‘˜ โˆ’ 1).

Proof: see [7].

Method of Solution:

For solving linear difference equation by using Z-transform method we take

Z-transform of the difference equation which transforms the unknown

sequence ๐‘ฆ(๐‘›) into an a algebraic equation on Z-transform ๐‘Œ(๐‘ง) then we

obtain the sequence ๐‘ฆ(๐‘›) from ๐‘Œ(๐‘ง) by taking the inverse Z-transform of

๐‘Œ(๐‘ง).[4]

In order to solve linear difference equations with constant coefficients with

non zero initial conditions we use the one sided Z-transform.

Example 4.1: Use the Z-transform method to solve the linear difference

equation

๐‘ฆ(๐‘› + 2) = ๐‘ฆ(๐‘› + 1) + ๐‘ฆ(๐‘›)

where ๐‘ฆ(0) = 0 and ๐‘ฆ(1) = 1.

Solution:

Take the one-sided Z-transform for both sides of the linear difference

equation , we get,

๐‘+[๐‘ฆ(๐‘› + 2)] = ๐‘+[๐‘ฆ(๐‘› + 1)] + ๐‘+[๐‘ฆ(๐‘›)]

๐‘ง2๐‘Œ+(๐‘ง) โˆ’ ๐‘ง2๐‘ฆ(0) โˆ’ ๐‘ง ๐‘ฆ(1) = ๐‘ง๐‘Œ+(๐‘ง) โˆ’ ๐‘ง๐‘ฆ(0) + ๐‘Œ+(๐‘ง)

๐‘Œ+(๐‘ง)[๐‘ง2 โˆ’ ๐‘ง โˆ’ 1] = ๐‘ง2๐‘ฆ(0) โˆ’ ๐‘ง๐‘ฆ(0) + ๐‘ง ๐‘ฆ(1)

Substitute ๐‘ฆ(0) = 0 and ๐‘ฆ(1) = 1 in the previous equation we get,

๐‘Œ+(๐‘ง)[๐‘ง2 โˆ’ ๐‘ง โˆ’ 1] = ๐‘ง

So, let

Page 66: On Z-transform and Its Applications

57

๐‘Š(๐‘ง) =๐‘Œ+(๐‘ง)

๐‘ง=

1

๐‘ง2 โˆ’ ๐‘ง โˆ’ 1=

1

[๐‘ง โˆ’ (1 + โˆš52 )] [๐‘ง + (

1 โˆ’ โˆš52 )]

Using partial fraction method we get,

๐‘Š(๐‘ง) = ๐ด

๐‘ง โˆ’ (1 + โˆš52 )

+๐ต

๐‘ง + (1 โˆ’ โˆš52 )

=1

โˆš5

1

๐‘ง โˆ’ (1 + โˆš52 )

โˆ’1

โˆš5

1

๐‘ง + (1 โˆ’ โˆš52 )

So

๐‘Œ+(๐‘ง) =1

โˆš5

๐‘ง

๐‘ง โˆ’ (1 + โˆš52 )

โˆ’1

โˆš5

๐‘ง

๐‘ง + (1 โˆ’ โˆš52 )

Taking the inverse Z-transform we get,

๐‘ฆ(๐‘›) =1

โˆš5 [(1 + โˆš5

2)

๐‘›

โˆ’ (1 โˆ’ โˆš5

2)

๐‘›

]

Using binomial theorem we get,

๐‘ฆ(๐‘›) =1

2๐‘› โˆš5 [โˆ‘(

๐‘›๐‘Ÿ)

๐‘›

๐‘Ÿ=0

(โˆš5)๐‘Ÿโˆ’โˆ‘(

๐‘›๐‘Ÿ)

๐‘›

๐‘Ÿ=0

(โˆ’โˆš5)๐‘Ÿ]

=2

2๐‘› โˆš5 [โˆ‘(

๐‘›2๐‘Ÿ + 1

)

๐ฟ

๐‘Ÿ=0

(โˆš5)2๐‘Ÿ+1

] , ๐ฟ = โŒŠ๐‘› โˆ’ 1

2โŒ‹

=1

2๐‘›โˆ’1 [โˆ‘(

๐‘›2๐‘Ÿ + 1

)

๐ฟ

๐‘Ÿ=0

5๐‘Ÿ] , ๐‘› > 0

Remark: The sequence in our example is called Fibonacci sequence.

Example 4.2: Solve the linear difference equation

๐‘ฆ(๐‘›) โˆ’1

3๐‘ฆ(๐‘› โˆ’ 1) = ๐‘ข(๐‘›), ๐‘ฆ(โˆ’1) = 2

Page 67: On Z-transform and Its Applications

58

Solution:

We take the one sided Z-transform of the linear difference equation, to get

๐‘Œ+(๐‘ง) โˆ’1

3[๐‘งโˆ’1๐‘Œ+(๐‘ง) + ๐‘ฆ(โˆ’1)] =

๐‘ง

๐‘ง โˆ’ 1

Substitute ๐‘ฆ(โˆ’1) = 2 in the previous equation we get,

๐‘Œ+(๐‘ง) [1 โˆ’1

3๐‘งโˆ’1] โˆ’

2

3=

๐‘ง

๐‘ง โˆ’ 1

By some mathematical operation we obtain,

๐‘Œ+(๐‘ง) =๐‘ง(5๐‘ง โˆ’ 2)

(3๐‘ง โˆ’ 1)(๐‘ง โˆ’ 1)

Then, write as ๐‘Œ+(๐‘ง)/z as a partial fraction

๐‘Œ+(๐‘ง)

๐‘ง=

(5๐‘ง โˆ’ 2)

(3๐‘ง โˆ’ 1)(๐‘ง โˆ’ 1)=

๐ด

3๐‘ง โˆ’ 1+

๐ต

๐‘ง โˆ’ 1

Using partial fraction method we get,

๐ด =๐‘Œ+(๐‘ง)

๐‘ง(3๐‘ง โˆ’ 1) | .

๐‘ง =13

๐‘Ž๐ด =1

2

๐ต =๐‘Œ+(๐‘ง)

๐‘ง(๐‘ง โˆ’ 1)| .๐‘ง = 1

๐‘Ž๐ด =3

2

Then

๐‘Œ+(๐‘ง) =1

2

๐‘ง

3๐‘ง โˆ’ 1+3

2

๐‘ง

๐‘ง โˆ’ 1

=1

6

๐‘ง

๐‘ง โˆ’13

+3

2

๐‘ง

๐‘ง โˆ’ 1

Take the inverse Z-transform we obtain

๐‘ฆ(๐‘›) = [1

6(1

3)๐‘›

+3

2] ๐‘ข(๐‘›)

=1

2[(1

3)๐‘›+1

+ 3]๐‘ข(๐‘›)

Page 68: On Z-transform and Its Applications

59

Section 4.2: Volterra Difference Equations of Convolution Type.

In this section we will use Z-transform to solve Volterra difference equations

of convolution type.

Definition 4.2: [18] Volterra difference equation of convolution type of the

first kind is of the form

๐‘ฅ(๐‘›) = โˆ‘ ๐พ(๐‘› โˆ’๐‘š)๐‘ฆ(๐‘š)

๐‘›

๐‘š=0

(4.3)

where ๐‘› = 0, 1, 2, โ€ฆ ๐พ(๐‘›) and ๐‘ฆ(๐‘›) are sequences and ๐พ(๐‘›) is called the

kernel.

For solving Eq(4.3), take the Z-transform for both sides of Eq(4.3) we get,

๐‘‹(๐‘ง) = ๐พ(๐‘ง)๐‘Œ(๐‘ง)

So

๐‘Œ(๐‘ง) =๐‘‹(๐‘ง)

๐พ(๐‘ง)

Thus

๐‘ฆ(๐‘›) = ๐‘โˆ’1 [๐‘‹(๐‘ง)

๐พ(๐‘ง)]

Definition 4.3: [18] Volterra difference equation of convolution type of the

second kind is of the form

๐‘ฆ(๐‘›) = ๐‘“(๐‘›) + โˆ‘ ๐พ(๐‘› โˆ’๐‘š)๐‘ฆ(๐‘š)

๐‘›

๐‘š=0

(4.4)

where ๐‘› = 0, 1, 2, โ€ฆ. ๐‘“(๐‘›), ๐พ(๐‘›), ๐‘ฆ(๐‘›) are sequences and ๐พ(๐‘›) is called the

kernel.

For solving Eq(4.4), take the Z-transform for both sides of Eq(4.4) we get,

Page 69: On Z-transform and Its Applications

61

๐‘Œ(๐‘ง) = ๐น(๐‘ง) + ๐พ(๐‘ง)๐‘Œ(๐‘ง)

So

๐‘Œ(๐‘ง) =๐น(๐‘ง)

1 โˆ’ ๐พ(๐‘ง)

Thus

๐‘ฆ(๐‘›) = ๐‘โˆ’1 [๐น(๐‘ง)

1 โˆ’ ๐พ(๐‘ง)]

Example 4.3: Solve Volterra difference equation

๐‘›2 = โˆ‘(๐‘› โˆ’๐‘š)๐‘ข(๐‘› โˆ’๐‘š)๐‘ฆ(๐‘š)

๐‘›

๐‘š=0

Solution:

We can write the above equation as:

๐‘›2 = ๐‘›๐‘ข(๐‘›) โˆ— ๐‘ฆ(๐‘›)

Take the Z-transform for both sides we get,

๐‘[๐‘›2] = ๐‘[๐‘›๐‘ข(๐‘›) โˆ— ๐‘ฆ(๐‘›) ] ๐‘ง(๐‘ง + 1)

(๐‘ง โˆ’ 1)3=

๐‘ง

(๐‘ง โˆ’ 1)2๐‘Œ(๐‘ง)

Simplify, we get

๐‘Œ(๐‘ง) =๐‘ง + 1

๐‘ง โˆ’ 1

=๐‘ง

๐‘ง โˆ’ 1+

1

๐‘ง โˆ’ 1

=๐‘ง

๐‘ง โˆ’ 1+ ๐‘งโˆ’1

๐‘ง

๐‘ง โˆ’ 1

Taking the inverse Z-transform we get

๐‘ฆ(๐‘›) = ๐‘ข(๐‘›) + ๐‘ข(๐‘› โˆ’ 1) = 2๐‘ข(๐‘›) โˆ’ ๐›ฟ(๐‘›)

Page 70: On Z-transform and Its Applications

61

Chapter Five

Z-transform and Digital Signal Processing

In this chapter we study some applications of Z-transform in digital signal

processing such as analysis of linear shift invariant systems, realization of

finite-duration impulse response (FIR) and infinite-duration impulse

response (IIR) systems and design of IIR filters from analog filters.

Section 5.1: Introduction

In this section we introduce some necessary definitions and theorems in

digital signal processing.

A signal is any physical quantity that varies with time, space or any

independent variable or variables. Mathematically, we describe a signal as a

function of one or more independent variables. In this chapter, time will be

the independent variable whether it's continuous or discrete. If it's continuous

then the signal is called continuous-time signal and it's represented by a

function -of continuous variable ๐‘“(๐‘ก). But, if the time is in discrete form the

signal is called discrete-time signal and is represented by a sequence of

numbers {๐‘Ž๐‘›} where โˆˆ โ„ค [9,14].

Also, the range of the signal (amplitude) can be continuous or discrete.

Analog time signals are signals with continuous time and amplitude, where

digital signals are signals with discrete time and amplitude and they are

represented by a function of an integer independent variable ๐‘› and its values

are taken from a finite set [9,14].

Page 71: On Z-transform and Its Applications

62

Definition 5.1:[14] A system is a physical device that performs an operation

on a signal. These operations are usually referred to as signal processing.

Continuous-time systems are systems for which the input and output are

continuous-time signals, where the discrete-time systems are systems with

discrete-time input and output signals, and its represented by the notation ๐‘‡[. ]

which transforms the input signal ๐‘ฅ(๐‘›) into the output signal ๐‘ฆ(๐‘›). We write

๐‘‡[๐‘ฅ(๐‘›)] = ๐‘ฆ(๐‘›)

Note that any sequence ๐‘ฅ(๐‘›) can be expressed as a sum of scaled and delayed

unit samples. i.e

๐‘ฅ(๐‘›) = โ‹ฏ+ ๐‘ฅ(โˆ’1)๐›ฟ(๐‘› + 1) + ๐‘ฅ(0)๐›ฟ(๐‘›) + ๐‘ฅ(1)๐›ฟ(๐‘› โˆ’ 1) + โ‹ฏ (5.1)

Eq(5.1) can be written as

๐‘ฅ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜)๐›ฟ(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

(5.2)

In discrete-time system, the output of ๐‘ฅ(๐‘›) is

๐‘‡[๐‘ฅ(๐‘›)] = ๐‘ฆ(๐‘›) = ๐‘‡ [ โˆ‘ ๐‘ฅ(๐‘˜)๐›ฟ(๐‘› โˆ’ ๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

] (5.3)

Definition 5.2:[6] A system is said to be linear if

๐‘‡[๐‘Ž๐‘ฅ1(๐‘›) + ๐‘๐‘ฅ2(๐‘›)] = ๐‘Ž๐‘‡[๐‘ฅ1(๐‘›)] + ๐‘๐‘‡[๐‘ฅ2(๐‘›)]

for any two inputs ๐‘ฅ1(๐‘›) and ๐‘ฅ2(๐‘›) and for any complex constants a and b.

If the system is linear, then Eq(5.3) become

๐‘ฆ(๐‘›) = โˆ‘ ๐‘‡

โˆž

๐‘˜=โˆ’โˆž

[๐‘ฅ(๐‘˜)๐›ฟ(๐‘› โˆ’ ๐‘˜)] (5.4)

But ๐‘ฅ(๐‘˜) is constant with respect to ๐‘›, so

๐‘ฆ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜)๐‘‡[๐›ฟ(๐‘› โˆ’ ๐‘˜)]

โˆž

๐‘˜=โˆ’โˆž

(5.5)

Page 72: On Z-transform and Its Applications

63

Let โ„Ž๐‘˜(๐‘›) be the response of the system to at unit sample at ๐‘› = ๐‘˜, then

Eq(5.5) become

๐‘ฆ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜) โ„Ž๐‘˜(๐‘›)

โˆž

๐‘˜=โˆ’โˆž

(5.6)

Definition 5.3:[6] Let ๐‘ฆ(๐‘›) be the response of a system to an arbitrary input

๐‘ฅ(๐‘›). The system is said to be shift-invariant if, for any delay ๐‘›0, the response

to ๐‘ฅ(๐‘› โˆ’ ๐‘›0) is ๐‘ฆ(๐‘› โˆ’ ๐‘›0). Otherwise, the system is shift-varying.

Definition 5.4: [6] A system is called a linear shift-invariant (LSI) system if

it's linear and shift-invariant.

If we have LSI system Eq(5.6) become

๐‘ฆ(๐‘›) = โˆ‘ ๐‘ฅ(๐‘˜)

โˆž

๐‘˜=โˆ’โˆž

โ„Ž(๐‘› โˆ’ ๐‘˜) (5.7)

= ๐‘ฅ(๐‘›) โˆ— โ„Ž(๐‘›) (5.8)

where โ„Ž(๐‘›) is the unit sample response (response of ๐›ฟ(๐‘›) ).

An LSI system are classified as finite-duration impulse response (FIR) and

infinite-duration impulse response (IIR) according to whether โ„Ž(๐‘›) has finite

or infinite duration, respectively.

Definition 5.5: [11]: A system is said to be causal if the output of the system

at ๐‘›๐‘œ depends on the input at ๐‘› โ‰ค ๐‘›๐‘œ.

Theorem 5.1:[14] A LSI system is causal if and only if the unit sample

response โ„Ž(๐‘›) equals zero for ๐‘› < 0.

Proof: see [14]

Definition 5.6:[11] A system is said to be bounded inputโ€“bounded output

(BIBO) stable if the response of any bounded input remains bounded.

Page 73: On Z-transform and Its Applications

64

Theorem 5.2:[9] A LSI system is (BIBO) stable if and only if the unit

sample response โ„Ž(๐‘›) is absolutely summable.

โˆ‘ |โ„Ž(๐‘›)| < โˆž

โˆž

๐‘›=โˆ’โˆž

Proof: see [9]

Definition 5.7:[6]: A system whose output ๐‘ฆ(๐‘›) depends on any number of

past outputs is called recursive. In contrast, if the output of the system

depends only on the present and past inputs is called non recursive.

Section 5.2: Analysis of Linear Shift-Invariant (LSI) Systems and Z-

transform.

If we have an LSI system with input ๐‘ฅ(๐‘›) and output ๐‘ฆ(๐‘›), then as in Eq(5.8)

๐‘ฆ(๐‘›) = ๐‘ฅ(๐‘›) โˆ— โ„Ž(๐‘›)

where โ„Ž(๐‘›) is the sample response.

Taking Z-transform for both sides of Eq(5.8) we get,

๐‘Œ(๐‘ง) = ๐‘‹(๐‘ง)๐ป(๐‘ง) (5.9)

where ๐ป(๐‘ง) is the Z-transform of โ„Ž(๐‘›) and is called the transfer function.

Theorem 5.3:[9] The LSI system is causal if and only if the ๐‘…๐‘‚๐ถ of transfer

function is the exterior of a circle centered at the origin.

Proof:

The LSI system is causal if and only if the unit sample response is causal if

and only if the ๐‘…๐‘‚๐ถ of the Z-transform of the sample response (transfer

function) is the exterior of a circle centered at the origin.

Page 74: On Z-transform and Its Applications

65

Theorem 5.4:[14] The LSI system is BIBO stable if and only if the ๐‘…๐‘‚๐ถ of

transfer function contains the unit circle.

Proof: a)

Suppose the LSI system is BIBO stable

The transfer function of LSI system is

๐ป(๐‘ง) = โˆ‘ โ„Ž(๐‘›)

โˆž

๐‘›=โˆ’โˆž

๐‘งโˆ’๐‘›

Then

|๐ป(๐‘ง)| = | โˆ‘ โ„Ž(๐‘›)

โˆž

๐‘›=โˆ’โˆž

๐‘งโˆ’๐‘›| โ‰ค โˆ‘ |โ„Ž(๐‘›)๐‘งโˆ’๐‘›|

โˆž

๐‘›=โˆ’โˆž

= โˆ‘ |โ„Ž(๐‘›)|

โˆž

๐‘›=โˆ’โˆž

|๐‘งโˆ’๐‘›|

If |๐‘ง| = 1, then

|๐ป(๐‘ง)| โ‰ค โˆ‘ |โ„Ž(๐‘›)|

โˆž

๐‘›=โˆ’โˆž

But the LSI system is BIBO stable so from Theorem (5.2)

โˆ‘ |โ„Ž(๐‘›)|

โˆž

๐‘›=โˆ’โˆž

< โˆž

Therefore

|๐ป(๐‘ง)| โ‰ค โˆ‘ |โ„Ž(๐‘›)|

โˆž

๐‘›=โˆ’โˆž

< โˆž

So โ„Ž(๐‘›)๐‘งโˆ’๐‘› is summable at each value of ๐‘ง of magnitude 1, so

{|๐‘ง| = 1} โŠ† ๐‘…๐‘‚๐ถ of ๐ป(๐‘ง)

b) Suppose {|๐‘ง| = 1} โŠ† ๐‘…๐‘‚๐ถ of ๐ป(๐‘ง)

Since {|๐‘ง| = 1} โŠ† ๐‘…๐‘‚๐ถ, then โ„Ž(๐‘›)๐‘งโˆ’๐‘› is summable for each value of ๐‘ง of

magnitude 1, which gives

โˆ‘ |โ„Ž(๐‘›)|

โˆž

๐‘›=โˆ’โˆž

< โˆž

Page 75: On Z-transform and Its Applications

66

So, from Theorem (5.3) the system is BIBO stable.

There are many methods for analyzing the behavior or response of linear

systems. One of these methods is to solve the input-output equation of the

system which is for an LSI system with input ๐‘ฅ(๐‘›) and output ๐‘ฆ(๐‘›) is a linear

difference equation with constant-coefficient of the form

โˆ‘๐‘Ž(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

๐‘

๐‘˜=0

=โˆ‘๐‘(๐‘Ÿ)๐‘ฅ(๐‘› โˆ’ ๐‘Ÿ)

๐‘€

๐‘Ÿ=๐‘œ

(5.10)

where ๐‘€,๐‘ are integers and ๐‘ is the order of the difference equation.

Example 5.1: An LSI system is represented by the linear difference equation

๐‘ฆ(๐‘›) โˆ’ ๐‘ฆ(๐‘› โˆ’ 1) +1

4๐‘ฆ(๐‘› โˆ’ 2) = ๐‘ฅ(๐‘›) โˆ’

1

4๐‘ฅ(๐‘› โˆ’ 1)

a) Find the unit sample response of the system.

b) Is the system stable?

c) Find the response of the input signal ๐‘ฅ(๐‘›) = (1

4)๐‘›๐‘ข(๐‘›).

Solution:

a) We take the Z-transform of the linear difference equation and get

๐‘Œ(๐‘ง) โˆ’ ๐‘งโˆ’1๐‘Œ(๐‘ง) +1

4๐‘งโˆ’2๐‘Œ(๐‘ง) = ๐‘‹(๐‘ง) โˆ’

1

4๐‘งโˆ’1๐‘‹(๐‘ง)

๐‘Œ(๐‘ง) (1 โˆ’ ๐‘งโˆ’1 +1

4๐‘งโˆ’2) = ๐‘‹(๐‘ง) (1 โˆ’

1

4๐‘งโˆ’1)

So the transfer function is,

๐ป(๐‘ง) =๐‘Œ(๐‘ง)

๐‘‹(๐‘ง)=

1 โˆ’14๐‘งโˆ’1

1 โˆ’ ๐‘งโˆ’1 +14๐‘งโˆ’2

=๐‘ง (๐‘ง โˆ’

14)

๐‘ง2 โˆ’ ๐‘ง +14

โˆด๐ป(๐‘ง)

๐‘ง=

๐‘ง โˆ’14

๐‘ง2 โˆ’ ๐‘ง +14

=๐‘ง โˆ’

14

(๐‘ง โˆ’12)

2 =๐ด

๐‘ง โˆ’12

+๐ต

(๐‘ง โˆ’12)

2

๐ด (๐‘ง โˆ’1

2) + ๐ต = ๐‘ง โˆ’

1

4 (5.11)

Page 76: On Z-transform and Its Applications

67

If ๐‘ง =1

2 then, ๐ต =

1

4

Differentiate both sides of Eq(5.11) with respect to ๐‘ง we get ๐ด = 1, then the

transfer function can be written as,

๐ป(๐‘ง) =๐‘ง

๐‘ง โˆ’12

+1

4

๐‘ง

(๐‘ง โˆ’12)

2

Since the linear difference equation is causal, the ๐‘…๐‘‚๐ถ of ๐ป(๐‘ง) is |๐‘ง| >1

2 , so

the inverse of the transfer function (sample response of the system) is,

โ„Ž(๐‘›) = (1

2)๐‘›

๐‘ข(๐‘›) +1

2๐‘› (1

2)๐‘›

๐‘ข(๐‘›)

= [1 +๐‘›

2] (1

2)๐‘›

๐‘ข(๐‘›)

b) Since the ๐‘…๐‘‚๐ถ of the transfer function contains the unit circle the system

is stable.

c) To find the response ๐‘ฆ(๐‘›) of the input signal ๐‘ฅ(๐‘›)we first find the Z-

transform of ๐‘ฆ(๐‘›)

๐‘Œ(๐‘ง) = ๐‘‹(๐‘ง)๐ป(๐‘ง) =๐‘ง

๐‘ง โˆ’14

๐‘ง (๐‘ง โˆ’

14)

๐‘ง2 โˆ’ ๐‘ง +14

=๐‘ง2

๐‘ง2 โˆ’ ๐‘ง +14

=๐‘ง2

(๐‘ง โˆ’12)

2

= ๐‘ง

๐‘ง โˆ’12

+1

2

๐‘ง

(๐‘ง โˆ’12)

2

The ๐‘…๐‘‚๐ถ of ๐ป(๐‘ง) can be either |๐‘ง| >1

2 or |๐‘ง| <

1

2 but since the ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง)

is |๐‘ง| >1

4 , and by convolution property of Z-transform the ๐‘…๐‘‚๐ถ of ๐‘Œ(๐‘ง) is

at least the intersection of ๐‘…๐‘‚๐ถ of ๐‘‹(๐‘ง) and ๐‘…๐‘‚๐ถ of ๐ป(๐‘ง), the

๐‘…๐‘‚๐ถ of ๐ป(๐‘ง) is |๐‘ง| >1

2 so the response of ๐‘ฆ(๐‘›) is,

๐‘ฆ(๐‘›) = (1

2)๐‘›

๐‘ข(๐‘›) + ๐‘› (1

2)๐‘›

๐‘ข(๐‘›)

Page 77: On Z-transform and Its Applications

68

= [1 + ๐‘›] (1

2)๐‘›

๐‘ข(๐‘›).

Consider Eq(5.10) again with ๐‘Ž(0) = 1 we get,

๐‘ฆ(๐‘›) = โˆ’โˆ‘๐‘Ž(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

๐‘

๐‘˜=1

+โˆ‘๐‘(๐‘Ÿ)๐‘ฅ(๐‘› โˆ’ ๐‘Ÿ)

๐‘€

๐‘Ÿ=๐‘œ

(5.12)

To find the transfer function for the LSI system we take Z-transform of both

sides of Eq(5.12), we get

๐‘Œ(๐‘ง) +โˆ‘๐‘Ž(๐‘˜)๐‘งโˆ’๐‘˜๐‘Œ(๐‘ง)

๐‘

๐‘˜=1

=โˆ‘๐‘(๐‘Ÿ)๐‘งโˆ’๐‘Ÿ๐‘‹(๐‘ง)

๐‘€

๐‘Ÿ=๐‘œ

(5.13)

So the transfer function is of the form

๐ป(๐‘ง) =๐‘Œ(๐‘ง)

๐‘‹(๐‘ง)=

โˆ‘ ๐‘(๐‘Ÿ)๐‘งโˆ’๐‘Ÿ๐‘€๐‘Ÿ=๐‘œ

1 + โˆ‘ ๐‘Ž(๐‘˜)๐‘งโˆ’๐‘˜๐‘๐‘˜=1

(5.14)

So, an LSI system represented by a linear difference equation with constant

coefficient has a rational transfer function as in Eq(5.14). There are many

cases for the values of ๐‘(๐‘Ÿ) and ๐‘Ž(๐‘˜).

Case 1: ๐‘Ž(๐‘˜) = 0 for 1 โ‰ค ๐‘˜ โ‰ค ๐‘ then, Eq(5.14) becomes,

๐ป(๐‘ง) =โˆ‘๐‘(๐‘Ÿ)๐‘งโˆ’๐‘Ÿ๐‘€

๐‘Ÿ=๐‘œ

=1

๐‘ง๐‘€โˆ‘๐‘(๐‘Ÿ)๐‘ง๐‘€โˆ’๐‘Ÿ๐‘€

๐‘Ÿ=๐‘œ

(5.15)

From Eq(5.15) there is a multiple-pole of order ๐‘€ at ๐‘ง = 0 and ๐‘€ zeros for

๐ป(๐‘ง). If the transfer function in Eq(5.15) contains ๐‘€ nontrivial zeros then

the system is called all-zero system, and has finite-duration impulse response

(FIR).

Case 2: if ๐‘(๐‘Ÿ) = 0 for 1 โ‰ค ๐‘Ÿ โ‰ค ๐‘€ then, Eq(5.14) become,

๐ป(๐‘ง) =๐‘(0)

1 + โˆ‘ ๐‘Ž(๐‘˜)๐‘งโˆ’๐‘˜๐‘๐‘˜=1

(5.16)

=๐‘(0)๐‘ง๐‘

โˆ‘ ๐‘Ž(๐‘˜)๐‘ง๐‘โˆ’๐‘˜๐‘๐‘˜=0

, ๐‘Ž(0) = 1 (5.17)

Page 78: On Z-transform and Its Applications

69

In Eq(5.17) ๐ป(๐‘ง) has ๐‘ poles and a multiple-zero of order ๐‘ at ๐‘ง = 0. If the

transfer function in Eq(5.17) has ๐‘ nontrivial poles then the system is called

all-pole system. Due to the presence of poles, the impulse response of such

systems is infinite in duration, and hence it is an infinite-duration impulse

response (IIR). But the general case of ๐ป(๐‘ง) is to have both zeros and poles,

such system is called a pole-zero system and due to the presence of poles it

is an IIR system.

Schรผr-Cohn Stability Test [14].

Schรผr-Cohn stability test is a test used to determine if the causal linear shift

invariant system is stable or not depends on the theorem which say a linear

shift invariant system is causal and stable if and only if all its poles lies inside

the unit circle.

Before set Schรผr-Cohn stability test we need to define some important

notations.

We know that the transfer function of LSI system is rational, i.e.

๐ป(๐‘ง) =๐ด(๐‘ง)

๐ต(๐‘ง)

Where

๐ต(๐‘ง) = 1 + ๐‘(1)๐‘งโˆ’1 + ๐‘(2)๐‘งโˆ’2 +โ‹ฏ+ ๐‘(๐‘)๐‘งโˆ’๐‘ =โˆ‘๐‘(๐‘˜)๐‘งโˆ’๐‘˜๐‘

๐‘˜=0

Let ๐ต๐‘š(๐‘ง) be a polynomial in ๐‘งโˆ’1 of degree ๐‘š of the form,

๐ต๐‘š(๐‘ง) = โˆ‘๐‘๐‘š(๐‘˜)๐‘งโˆ’๐‘˜

๐‘š

๐‘˜=0

, ๐‘๐‘š(0) = 1

where ๐‘š = 0, 1,โ€ฆ ,๐‘

And ๐ถ๐‘š(๐‘ง) is the reverse polynomial in ๐‘งโˆ’1 of degree ๐‘š defined as,

Page 79: On Z-transform and Its Applications

71

๐ถ๐‘š(๐‘ง) = ๐‘งโˆ’๐‘š๐ต๐‘š(๐‘ง

โˆ’1) = ๐‘งโˆ’๐‘šโˆ‘๐‘๐‘š(๐‘˜)๐‘ง๐‘˜

๐‘š

๐‘˜=0

= โˆ‘๐‘๐‘š(๐‘š โˆ’ โ„Ž)๐‘งโˆ’โ„Ž๐‘š

โ„Ž=0

, โ„Ž = ๐‘š โˆ’ ๐‘˜

We define the reflection coefficients ๐พ1, ๐พ2, โ€ฆ, ๐พ๐‘ taken from ๐ต๐‘š(๐‘ง). First

note that

๐ต(๐‘ง) = ๐ต๐‘(๐‘ง)

Let

๐พ๐‘ = ๐‘๐‘(๐‘)

For computing a lower degree of ๐ต๐‘š(๐‘ง), ๐‘š = ๐‘,๐‘ โˆ’ 1,๐‘ โˆ’ 2,โ€ฆ , 1 we use

the recursive equation,

๐ต๐‘šโˆ’1(๐‘ง) =๐ต๐‘š(๐‘ง) โˆ’ ๐พ๐‘š๐ถ๐‘š(๐‘ง)

1 โˆ’ ๐พ๐‘š2 (5.18)

where ๐พ๐‘šis defined as,

๐พ๐‘š = ๐‘๐‘š(๐‘š)

From Schรผr-Cohn stability test the causal LSI system will be stable if and

only if |๐พ๐‘š| < 1, for all ๐‘š = 1, 2,โ€ฆ , ๐‘.

Example 5.2: A LSI system has the transfer function

๐ป(๐‘ง) =โˆ’๐‘ง

12๐‘ง2 โˆ’ 7๐‘ง + 3

a) Find the difference equation that represented the system.

b) Is the system stable?

Solution:

a) We write ๐ป(๐‘ง) in term of ๐‘งโˆ’1

๐ป(๐‘ง) =โˆ’๐‘งโˆ’1

12 โˆ’ 7๐‘งโˆ’1 + 3๐‘งโˆ’2

So

Page 80: On Z-transform and Its Applications

71

๐‘Œ(๐‘ง)

๐‘‹(๐‘ง)=

โˆ’๐‘งโˆ’1

12 โˆ’ 7๐‘งโˆ’1 + 3๐‘งโˆ’2 (5.19)

By cross multiplication of Eq(5.19) we obtain,

12๐‘Œ(๐‘ง) โˆ’ 7๐‘งโˆ’1๐‘Œ(๐‘ง) + 3๐‘งโˆ’2๐‘Œ(๐‘ง) = โˆ’๐‘งโˆ’1๐‘‹(๐‘ง) (5.20)

We take the inverse Z-transform for both sides of Eq(5.20) and do some

operations we get the difference equation which represented the system,

๐‘ฆ(๐‘›) =7

12๐‘ฆ(๐‘› โˆ’ 1) โˆ’

3

12๐‘ฆ(๐‘› โˆ’ 2) โˆ’

1

12๐‘ฅ(๐‘› โˆ’ 1)

b) Since the system is causal LSI system we can use Schรผr-Cohn stability test

to determine the stability of the system.

First we write ๐ป(๐‘ง) as,

๐ป(๐‘ง) =โˆ’112๐‘งโˆ’1

1 โˆ’712๐‘งโˆ’1 +

312๐‘งโˆ’2

where

๐ต2(๐‘ง) = 1 โˆ’7

12๐‘งโˆ’1 +

3

12๐‘งโˆ’2

Hence

๐พ2 = ๐‘2(2) =3

12

|๐พ2| = |3

12| =

3

12< 1

Now

๐ถ2(๐‘ง) = ๐‘งโˆ’2๐ต2(๐‘ง

โˆ’1) =3

12โˆ’7

12๐‘งโˆ’1 + ๐‘งโˆ’2

And

๐ต1(๐‘ง) =๐ต2(๐‘ง) โˆ’ ๐พ2๐ถ2(๐‘ง)

1 โˆ’ ๐พ22 = 1 โˆ’

63

135๐‘งโˆ’1

So

๐พ1 = ๐‘1(1) =โˆ’63

135,

|๐พ1| = |โˆ’36

135| =

63

135< 1

Page 81: On Z-transform and Its Applications

72

Since |๐พ๐‘š| < 1, for ๐‘š = 1, 2, the system is stable.

Example 5.3: Is the LSI system represented by the following linear

difference equation stable?

๐‘ฆ(๐‘›) = 2.5๐‘ฆ(๐‘› โˆ’ 1) โˆ’ ๐‘ฆ(๐‘› โˆ’ 2) + ๐‘ฅ(๐‘›) โˆ’ 5๐‘ฅ(๐‘› โˆ’ 1) โˆ’ 6๐‘ฅ(๐‘› โˆ’ 2)

Solution:

Since the system is a causal LSI system we can use Schรผr-Cohn stability test.

First, we take Z-transform for both sides of the linear difference equation we

get,

๐‘Œ(๐‘ง) = 2.5๐‘งโˆ’1๐‘Œ(๐‘ง) โˆ’ ๐‘งโˆ’2๐‘Œ(๐‘ง) + ๐‘‹(๐‘ง) โˆ’ 5๐‘งโˆ’1๐‘‹(๐‘ง) โˆ’ 6๐‘งโˆ’2๐‘‹(๐‘ง)

Then, the transfer function is

๐ป(๐‘ง) =๐‘Œ(๐‘ง)

๐‘‹(๐‘ง)=1 โˆ’ 5๐‘งโˆ’1 โˆ’ 6๐‘งโˆ’2

1 โˆ’ 2.5๐‘งโˆ’1 + ๐‘งโˆ’2

So

๐ต2(๐‘ง) = 1 โˆ’ 2.5๐‘งโˆ’1 + ๐‘งโˆ’2

From ๐ต2(๐‘ง) we get ๐พ2 = 1

Since |๐พ2| = 1 โ‰ฎ 1, then by Schรผr-Cohn stability test the system is unstable.

Section 5.3: Realization of FIR Systems.

There are several methods for implementing an FIR system. In this section

we will present some of these methods like direct-form, cascade-form, and

lattice realization for an FIR system.

In general an FIR system is described by the linear difference equation

๐‘ฆ(๐‘›) = โˆ‘ ๐‘(๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜)

๐‘€โˆ’1

๐‘˜=0

(5.21)

or by the transfer function

Page 82: On Z-transform and Its Applications

73

๐ป(๐‘ง) = โˆ‘ ๐‘(๐‘˜)๐‘งโˆ’๐‘˜๐‘€โˆ’1

๐‘˜=0

(5.22)

where the unit sample response of FIR system is,

โ„Ž(๐‘›) = {๐‘(๐‘›), 0 โ‰ค ๐‘› โ‰ค ๐‘€ โˆ’ 1 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

1. Direct-Form Realization.

Direct-form realization is the most common way to implement the FIR

systems. It follows directly from the non recursive difference equation given

by Eq(5.21) or equivalently by,

๐‘ฆ(๐‘›) = โˆ‘ โ„Ž(๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜)

๐‘€โˆ’1

๐‘˜=0

(5.23)

2. Cascade-Form Realization.

Cascade form is alternative to the direct form by factoring the transfer

function into second-order FIR systems as,

๐ป(๐‘ง) = ๐บโˆ(1 + ๐‘๐‘˜(1)๐‘งโˆ’1 + ๐‘๐‘˜(2)๐‘ง

โˆ’2)

๐พ

๐‘˜=1

(5.24)

where ๐พ is the integer part of (๐‘€ + 1) 2โ„ and ๐บ is called the gain parameter.

Figure (๐Ÿ“. ๐Ÿ): Direct-form realization of FIR systems. [14]

Page 83: On Z-transform and Its Applications

74

3. Lattice Realization.

Let us start by defining a sequence of FIR filters with transfer function

๐ป๐‘š(๐‘ง) = ๐ด๐‘š(๐‘ง) (5.25)

where ๐ด๐‘š(๐‘ง) is a polynomial of degree ๐‘š defined by,

๐ด๐‘š(๐‘ง) = 1 +โˆ‘๐‘Ž๐‘š(๐‘˜)๐‘งโˆ’๐‘˜

๐‘š

๐‘˜=1

, ๐‘š โ‰ฅ 1 (5.26)

and ๐ด0(๐‘ง) = 1.

So, the unit sample response โ„Ž๐‘š(๐‘˜) is

โ„Ž๐‘š(๐‘˜) = { 1 , ๐‘˜ = 0๐‘Ž๐‘š(๐‘˜), 1 โ‰ค ๐‘˜ โ‰ค ๐‘š

Lattice realization or FIR lattice filter is a cascade of two-port networks

each one of them has two inputs ๐‘“๐‘šโˆ’1(๐‘›) and ๐‘”๐‘šโˆ’1(๐‘›) related to the two

outputs ๐‘“๐‘š(๐‘›), ๐‘”๐‘š(๐‘›) by the two difference equations give us a relation

between ๐‘š-order direct-form FIR filter and ๐‘š-stage lattice filter,

๐‘“๐‘š(๐‘›) = ๐‘“๐‘šโˆ’1(๐‘›) + ๐พ๐‘š๐‘”๐‘šโˆ’1(๐‘› โˆ’ 1), ๐‘š = 1, 2,โ€ฆ ,๐‘€ โˆ’ 1 (5.27)

๐‘”๐‘š(๐‘›) = ๐พ๐‘š๐‘“๐‘šโˆ’1(๐‘›) + ๐‘”๐‘šโˆ’1(๐‘› โˆ’ 1), ๐‘š = 1, 2,โ€ฆ ,๐‘€ โˆ’ 1 (5.28)

For ๐‘š = 0

๐‘”0(๐‘›) = ๐‘“0(๐‘›) = ๐‘ฅ(๐‘›)

Figure (๐Ÿ“. ๐Ÿ): Cascade-form realization of FIR systems.

[14]

Page 84: On Z-transform and Its Applications

75

And the output of (๐‘€ โˆ’ 1)-stage is

๐‘ฆ(๐‘›) = ๐‘“๐‘€โˆ’1(๐‘›)

Where ๐พ๐‘š is the reflection coefficient which is the same reflection coefficient

of Schรผr-Cohn stability test.

For each ๐‘š = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1, we will define the transfer function as,

the transfer function in Eq(5.25), the relation between the input ๐‘ฅ(๐‘›) and the

intermediate output ๐‘“๐‘š(๐‘›) is given by,

๐‘“๐‘š(๐‘›) = โˆ‘๐‘Ž๐‘š(๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜)

๐‘š

๐‘˜=0

(5.29)

where ๐‘Ž๐‘š(0) = 1.

By taking the Z-transform of both sides of Eq(5.29) we get,

๐น๐‘š(๐‘ง) = ๐ด๐‘š(๐‘ง)๐‘‹(๐‘ง) (5.30)

From Eq(5.27) and Eq(5.28) we can see that for each ๐‘š = 1, 2,โ€ฆ ,๐‘€ โˆ’ 1 the

coefficients of ๐‘”๐‘š(๐‘›) are the same as those of ๐‘“๐‘š(๐‘›) but in reverse order, i.e

๐‘”๐‘š(๐‘›) = โˆ‘๐‘Ž๐‘š(๐‘š โˆ’ ๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜)

๐‘š

๐‘˜=0

= โˆ‘๐‘๐‘š(๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜),

๐‘š

๐‘˜=0

๐‘๐‘š(๐‘˜) = ๐‘Ž๐‘š(๐‘š โˆ’ ๐‘˜)

By taking the Z-transform the previous equation we get,

๐บ๐‘š(๐‘ง) = ๐ต๐‘š(๐‘ง)๐‘‹(๐‘ง)

where

๐ต๐‘š(๐‘ง) = โˆ‘๐‘๐‘š(๐‘˜)๐‘งโˆ’๐‘˜

๐‘š

๐‘˜=0

=โˆ‘๐‘Ž๐‘š(๐‘š โˆ’ ๐‘˜)๐‘งโˆ’๐‘˜๐‘š

๐‘˜=0

=โˆ‘๐‘Ž๐‘š(๐‘™)๐‘ง๐‘™โˆ’๐‘š

๐‘š

๐‘™=0

, ๐‘™ = ๐‘š โˆ’ ๐‘˜

Page 85: On Z-transform and Its Applications

76

= โˆ‘๐‘Ž๐‘š(๐‘™)๐‘ง๐‘™โˆ’๐‘š

๐‘š

๐‘˜=0

= ๐‘งโˆ’๐‘šโˆ‘๐‘Ž๐‘š(๐‘™)๐‘ง๐‘™

๐‘š

๐‘˜=0

= ๐‘งโˆ’๐‘š๐ด๐‘š(๐‘งโˆ’1) (5.31)

So

๐บ๐‘š(๐‘ง) = ๐‘งโˆ’๐‘š๐ด๐‘š(๐‘ง

โˆ’1)๐‘‹(๐‘ง) (5.31)

Taking the Z-transform for both sides of Eq(5.27) and Eq(5.28) and divide

them with ๐‘‹(๐‘ง) then solve the result equations with Eq(5.30) and Eq(5.31)

to get the recurrence relation

๐ด๐‘š(๐‘ง) = ๐ด๐‘šโˆ’1(๐‘ง) + ๐พ๐‘š๐‘งโˆ’๐‘š๐ด๐‘šโˆ’1(๐‘ง

โˆ’1), ๐‘š = 1,2,โ€ฆ ,๐‘€ โˆ’ 1 (5.32)

and ๐ด0(๐‘ง) = 1.

This recurrence relation called step-up recurrence and it used to converse the

lattice reflection coefficient to direct-form filter coefficient.

Example 5.4: Given a three-stage FIR lattice filter with reflection

coefficients ๐พ1 =1

2, ๐พ2 =

โˆ’1

3, ๐พ3 =

1

4, determine the FIR filter coefficients for

the direct-form structure.

Solution:

Figure (5.3):An (๐‘€ โˆ’ 1)-stage lattice filter with typical stage

[14].

Page 86: On Z-transform and Its Applications

77

First,

๐ด0(๐‘ง) = ๐ด0(๐‘งโˆ’1) = 1

From the step-up recurrence in Eq(5.32) with ๐‘š = 1 we get the single-stage

lattice

๐ด1(๐‘ง) = ๐ด0(๐‘ง) + ๐พ1๐‘งโˆ’1๐ด0(๐‘ง

โˆ’1)

= 1 +1

2๐‘งโˆ’1

So, the coefficients of an FIR filter corresponding to single-stage lattice are

๐‘Ž1(0) = 1, ๐‘Ž1(1) =1

2.

Next, for ๐‘š = 2 we get the second-stage of lattice filter,

๐ด2(๐‘ง) = ๐ด1(๐‘ง) + ๐พ2๐‘งโˆ’2๐ด1(๐‘ง

โˆ’1)

= 1 +1

2๐‘งโˆ’1 +

โˆ’1

3 ๐‘งโˆ’2 (1 +

1

2๐‘ง)

= 1 +1

3๐‘งโˆ’1 โˆ’

1

3๐‘งโˆ’2

Hence, the coefficients of an FIR filter corresponding to second-stage lattice

are ๐‘Ž2(0) = 1, ๐‘Ž2(1) =1

3. ๐‘Ž2(2) =

โˆ’1

3.

Finally, for ๐‘š = 3 we get the result of the third-stage of lattice filter,

๐ด3(๐‘ง) = ๐ด2(๐‘ง) + ๐พ3๐‘งโˆ’3๐ด2(๐‘ง

โˆ’1)

= 1 +1

3๐‘งโˆ’1 โˆ’

1

3๐‘งโˆ’2 +

1

4 ๐‘งโˆ’3 (1 +

1

3๐‘ง โˆ’

1

3๐‘ง2 )

= 1 +1

4๐‘งโˆ’1 โˆ’

1

4๐‘งโˆ’2 +

1

4๐‘งโˆ’3

Hence, direct-form of an FIR filter is characterized the coefficients,

๐‘Ž3(0) = 1, ๐‘Ž3(1) =1

4, ๐‘Ž3(2) =

โˆ’1

4, ๐‘Ž3(3) =

1

4.

To find the lattice reflection coefficients from direct-form FIR filter

coefficients we use the step-down recurrence relation determined from step-

up recurrence in Eq(5.32),

Page 87: On Z-transform and Its Applications

78

๐ด๐‘š(๐‘ง) = ๐ด๐‘šโˆ’1(๐‘ง) + ๐พ๐‘š๐‘งโˆ’๐‘š๐ด๐‘šโˆ’1(๐‘ง

โˆ’1), ๐‘š = 1,2,โ€ฆ ,๐‘€ โˆ’ 1

If we substitute ๐‘งโˆ’1 instead of ๐‘ง in Eq(5.32) we get,

๐ด๐‘š(๐‘งโˆ’1) = ๐ด๐‘šโˆ’1(๐‘ง

โˆ’1) + ๐พ๐‘š๐‘ง๐‘š๐ด๐‘šโˆ’1(๐‘ง), ๐‘š = 1,2,โ€ฆ ,๐‘€ โˆ’ 1 (5.33)

If we solve Eq(5.33) for ๐ด๐‘šโˆ’1(๐‘งโˆ’1) we obtain,

๐ด๐‘šโˆ’1(๐‘งโˆ’1) = ๐ด๐‘š(๐‘ง

โˆ’1) โˆ’ ๐พ๐‘š๐‘ง๐‘š๐ด๐‘šโˆ’1(๐‘ง), ๐‘š = 1,2,โ€ฆ ,๐‘€ โˆ’ 1 (5.34)

Substitute Eq(5.34) in Eq(5.32),

๐ด๐‘š(๐‘ง) = ๐ด๐‘šโˆ’1(๐‘ง) + ๐พ๐‘š๐‘งโˆ’๐‘š(๐ด๐‘š(๐‘ง

โˆ’1) โˆ’ ๐พ๐‘š๐‘ง๐‘š๐ด๐‘šโˆ’1(๐‘ง))

๐‘š = 1,2,โ€ฆ ,๐‘€ โˆ’ 1 (5.35)

If we solve Eq(5.35) for ๐ด๐‘šโˆ’1(๐‘ง) we get,

๐ด๐‘šโˆ’1(๐‘ง) =1

1 โˆ’ ๐พ๐‘š2 (๐ด๐‘š(๐‘ง) โˆ’ ๐พ๐‘š๐‘ง

โˆ’๐‘š๐ด๐‘š(๐‘งโˆ’1)) (5.36)

where ๐‘š = ๐‘€ โˆ’ 1,๐‘€ โˆ’ 2,โ€ฆ , 1

Observe that the step-down recurrence works if |๐พ๐‘š| โ‰  1, ๐‘š =

1,2,โ€ฆ ,๐‘€ โˆ’ 1

Example 5.5: Determine the lattice coefficients corresponding to the third-

order FIR filter with transfer function.

๐ป(๐‘ง) = ๐ด3(๐‘ง) = 1 +1

4๐‘งโˆ’1 โˆ’

1

4๐‘งโˆ’2 +

1

4๐‘งโˆ’3

Solution:

๐พ3 = ๐‘Ž3(3) =1

4

From the step-down relation Eq(5.36) with ๐‘š = 3 we get,

๐ด2(๐‘ง) =1

1 โˆ’ ๐พ32 (๐ด3(๐‘ง) โˆ’ ๐พ3๐‘ง

โˆ’3๐ด3(๐‘งโˆ’1))

=1

1 โˆ’ (14)

2 [1 +1

4(๐‘งโˆ’1 โˆ’ ๐‘งโˆ’2 + ๐‘งโˆ’3) โˆ’

1

4๐‘งโˆ’3 (1 +

1

4(๐‘ง โˆ’ ๐‘ง2 + ๐‘ง3 ))]

=16

15(15

16+5

16๐‘งโˆ’1 โˆ’

5

16๐‘งโˆ’2)

Page 88: On Z-transform and Its Applications

79

= 1 +1

3๐‘งโˆ’1 โˆ’

1

3๐‘งโˆ’2

So,

๐พ2 = ๐‘Ž2(2) =โˆ’1

3

Now, by repeating the step-down relation in Eq(5.36) with ๐‘š = 1 we get,

๐ด1(๐‘ง) =1

1 โˆ’ ๐พ22 (๐ด2(๐‘ง) โˆ’ ๐พ2๐‘ง

โˆ’2๐ด2(๐‘งโˆ’1))

=1

1 โˆ’ (โˆ’13 )

2 [1 +1

3๐‘งโˆ’1 โˆ’

1

3๐‘งโˆ’2 โˆ’

โˆ’1

3๐‘งโˆ’2 (1 +

1

3๐‘ง โˆ’

1

3๐‘ง2 )]

=9

8(8

9+4

9๐‘งโˆ’1)

= 1 +1

2๐‘งโˆ’1

Hence,

๐พ1 = ๐‘Ž1(1) =1

2

Section 5.4: Realization of IIR Systems.

As in FIR systems, IIR systems have many types of realization, including

direct form, cascade form, parallel form and lattice form.

IIR systems are described by the difference equation in Eq(5.12) or by the

transfer function in Eq(5.14) for ๐‘ โ‰  0.

1. Direct-Form Realization.

In direct-form realization of IIR systems the transfer function in Eq(5.14) can

be written as a cascade of two transfer functions, as

๐ป(๐‘ง) = ๐ป1(๐‘ง)๐ป2(๐‘ง) (5.37)

where

๐ป1(๐‘ง) =โˆ‘๐‘(๐‘Ÿ)๐‘งโˆ’๐‘Ÿ๐‘€

๐‘Ÿ=๐‘œ

(5.38)

Page 89: On Z-transform and Its Applications

81

and

๐ป2(๐‘ง) =1

1 + โˆ‘ ๐‘Ž(๐‘˜)๐‘งโˆ’๐‘˜๐‘๐‘˜=1

(5.39)

๐ป1(๐‘ง) consists of the zeros of ๐ป(๐‘ง) where ๐ป2(๐‘ง) consists of the poles of

๐ป(๐‘ง). There are two direct forms to realize IIR systems depending whether

๐ป1(๐‘ง) precedes ๐ป2(๐‘ง) or vice versa. If all-zero filter ๐ป1(๐‘ง) placed before all-

pole filter ๐ป2(๐‘ง), then we get direct-form ฮ™ realization which need ๐‘€ +๐‘ +

1 multiplications, ๐‘€ +๐‘ additions and ๐‘€ +๐‘ delays and is depicted in

Fig(5.4). But if the first filter is ๐ป2(๐‘ง), then we obtain direct-form ฮ™ฮ™ and the

system becomes a cascade of the recursive system

๐‘ค(๐‘›) = โˆ’โˆ‘๐‘Ž(๐‘˜)๐‘ค(๐‘› โˆ’ ๐‘˜)

๐‘

๐‘˜=1

+ ๐‘ฅ(๐‘›) (5.40)

with input ๐‘ฅ(๐‘›) and output ๐‘ค(๐‘›), followed by the non recursive system

๐‘ฆ(๐‘›) = โˆ’โˆ‘๐‘(๐‘˜)๐‘ค(๐‘› โˆ’ ๐‘˜)

๐‘€

๐‘˜=1

(5.41)

which has ๐‘ค(๐‘›) as input and ๐‘ฆ(๐‘›) output.

Direct-form ฮ™ฮ™ require ๐‘€ +๐‘ + 1 multiplications, ๐‘€ +๐‘ additions but

๐‘š๐‘Ž๐‘ฅ{๐‘€,๐‘} delays and its depicted in Fig(5.5). Since ๐ป2(๐‘ง) need less

number of delays to realize ๐ป(๐‘ง) it's called canonic.

Page 90: On Z-transform and Its Applications

81

Figure (๐Ÿ“. ๐Ÿ’): Direct-form ฮ™ realization of IIR systems [14].

Figure (๐Ÿ“. ๐Ÿ“): Direct-form ฮ™ฮ™ realization of IIR systems for ๐‘€ = ๐‘

[14].

Page 91: On Z-transform and Its Applications

82

2. Cascade-Form Realization.

Cascade-form realization is derived by factoring the transfer function in

Eq(5.14) into a cascade of second-order sections. We start by considering

๐‘ โ‰ฅ ๐‘€ then ๐ป(๐‘ง) factored as

๐ป(๐‘ง) = ๐บโˆ๐ป๐‘˜(๐‘ง)

๐พ

๐‘˜=1

(5.42)

where is ๐พ the integer part of (๐‘ + 1) 2โ„ and ๐ป๐‘˜(๐‘ง) has the general form

๐ป๐‘˜(๐‘ง) =1 + ๐‘๐‘˜(1)๐‘ง

โˆ’1 + ๐‘๐‘˜(2)๐‘งโˆ’2

1 + ๐‘Ž๐‘˜(1)๐‘งโˆ’1 + ๐‘Ž๐‘˜(2)๐‘ง

โˆ’2 (5.43)

Where ๐บ is the gain parameter and equal ๐‘(0), the coefficients ๐‘Ž๐‘˜(๐‘–), ๐‘๐‘˜(๐‘–)

are real coefficients for ๐‘– = 1,2 and ๐‘˜ = 1 , โ€ฆ , ๐พ.The chosen of the

numerator and denominator of ๐ป๐‘˜(๐‘ง) are arbitrary. If ๐‘ < ๐‘€, then some

coefficients of the denominator of the second-order sections will equal zero.

3. Parallel-Form Realization.

Parallel-form realization can be obtained by expanding the transfer function

๐ป(๐‘ง) in Eq(5.14) using partial fraction method. Without loss of generality,

we assume that the poles of ๐ป(๐‘ง) are distinct. If ๐‘ > ๐‘€, then ๐ป(๐‘ง) expressed

as

๐ป(๐‘ง) = โˆ‘๐ด๐‘˜

1 โˆ’ ๐‘๐‘˜๐‘งโˆ’1

๐‘

๐‘˜=1

(5.44)

Figure (๐Ÿ“. ๐Ÿ”): Cascade-form realization of IIR system [14].

Page 92: On Z-transform and Its Applications

83

where ๐ด๐‘˜ 's are the coefficients of ๐ป(๐‘ง) and ๐‘๐‘˜ 's are the poles.

In general, the poles of ๐ป(๐‘ง) are complex so there corresponding coefficients

are complex. To avoid multiplication of complex numbers we combine the

complex-conjugate poles to have second-order section ๐ป๐‘˜(๐‘ง) of the form

๐ป๐‘˜(๐‘ง) =๐‘๐‘˜(0) + ๐‘๐‘˜(1)๐‘ง

โˆ’1

1 + ๐‘Ž๐‘˜(1)๐‘งโˆ’1 + ๐‘Ž๐‘˜(2)๐‘ง

โˆ’2 (5.45)

where the coefficients are real, then ๐ป(๐‘ง) become

๐ป(๐‘ง) = โˆ‘๐ป๐‘˜(๐‘ง)

๐พ

๐‘˜=1

(5.46)

where ๐พ is the integer part of (๐‘ + 1) 2โ„ .

If ๐‘ โ‰ค ๐‘€, then the partial fraction expansion will contain a term of the form

๐ถ = ๐‘0 + ๐‘1๐‘งโˆ’1 +โ‹ฏ+ ๐‘๐‘€โˆ’๐‘๐‘ง

โˆ’(๐‘€โˆ’๐‘)

which is FIR filter placed in parallel with the other terms of expansion of

๐ป(๐‘ง).

Example 5.6: Determine the transfer function for cascade and parallel

realizations for the system described by the transfer function

Figure (๐Ÿ“. ๐Ÿ•): Parallel -form realization of IIR systems. [14]

Page 93: On Z-transform and Its Applications

84

๐ป(๐‘ง) =(1 โˆ’

12๐‘งโˆ’1) (1 +

34๐‘งโˆ’1)

(1 โˆ’ (12+12๐‘—) ๐‘งโˆ’1) (1 โˆ’ (

12โˆ’12๐‘—) ๐‘งโˆ’1) (1 โˆ’

14๐‘งโˆ’1)

Solution:

Since ๐‘ = 3 > ๐‘€ = 2 then ๐พ = integer part of (3 + 1) 2โ„ = 2

For cascade realization,

๐ป(๐‘ง) =โˆ๐ป๐‘˜(๐‘ง)

2

๐‘˜=1

A possible paring for poles and zeros is

๐ป1(๐‘ง) =1 โˆ’

12๐‘งโˆ’1

(1 โˆ’ (12+12๐‘—) ๐‘งโˆ’1) (1 โˆ’ (

12โˆ’12๐‘—) ๐‘งโˆ’1)

=1 โˆ’

12๐‘งโˆ’1

1 โˆ’ ๐‘งโˆ’1 +12๐‘งโˆ’2

๐ป2(๐‘ง) =1 +

34๐‘งโˆ’1

1 โˆ’14๐‘งโˆ’1

So

๐ป(๐‘ง) =1 +

34๐‘งโˆ’1

1 โˆ’14๐‘งโˆ’1

1 โˆ’

12๐‘งโˆ’1

1 โˆ’ ๐‘งโˆ’1 +12๐‘งโˆ’2

For parallel-form realization we need to expand ๐ป(๐‘ง) using partial fraction

method,

๐ป(๐‘ง) = โˆ‘๐ด๐‘˜

1 โˆ’ ๐‘๐‘˜๐‘งโˆ’1

3

๐‘˜=1

=๐ด1

1 โˆ’14๐‘งโˆ’1

+๐ด2

1 โˆ’ (12+12๐‘—) ๐‘งโˆ’1

+๐ด3

1 โˆ’ (12โˆ’12๐‘—) ๐‘งโˆ’1

Where the coefficients ๐ด1, ๐ด2, ๐ด3 are

Page 94: On Z-transform and Its Applications

85

๐ด1 = ๐ป(๐‘ง) (1 โˆ’1

4๐‘งโˆ’1) | .

๐‘งโˆ’1 = 4๐‘Ž๐ด =

โˆ’4

5

๐ด2 = ๐ป(๐‘ง) [1 โˆ’ (1

2+1

2๐‘—) ๐‘งโˆ’1] | .

๐‘งโˆ’1 = 1 โˆ’ ๐‘—๐‘Ž๐ด =

9 โˆ’ 8๐‘—

10

๐ด3 = ๐ป(๐‘ง) [1 โˆ’ (1

2โˆ’1

2๐‘—) ๐‘งโˆ’1] | .

๐‘งโˆ’1 = 1 + ๐‘—๐‘Ž๐ด =

9 + 8๐‘—

10

So, the transfer function become

๐ป(๐‘ง) =โˆ’4

5

1

1 โˆ’14๐‘งโˆ’1

+1

10

9 โˆ’ 8๐‘—

1 โˆ’ (12+12๐‘—) ๐‘งโˆ’1

+1

10

9 + 8๐‘—

1 โˆ’ (12โˆ’12๐‘—) ๐‘งโˆ’1

or

๐ป(๐‘ง) =โˆ’4

5

1

1 โˆ’14๐‘งโˆ’1

+1

10

18 โˆ’ ๐‘งโˆ’1

1 โˆ’ ๐‘งโˆ’1 +12๐‘งโˆ’2

4. Lattice-Form Realization.

In this section we will develop a lattice filter structure equivalent to IIR

systems, and our notations is the same as in the Lattice realization of FIR

filters.

Let us start with all pole system which has the transfer function

๐ป(๐‘ง) =1

1 + โˆ‘ ๐‘Ž๐‘(๐‘˜)๐‘งโˆ’๐‘˜๐‘

๐‘˜=1

=1

๐ด๐‘(๐‘ง) (5.47)

The direct form realization of the previous system represented by the

difference equation

๐‘ฆ(๐‘›) = โˆ’โˆ‘๐‘Ž๐‘(๐‘˜)๐‘ฆ(๐‘› โˆ’ ๐‘˜)

๐‘

๐‘˜=1

+ ๐‘ฅ(๐‘›) (5.48)

If we interchange the input signal ๐‘ฅ(๐‘›) with the output signal ๐‘ฆ(๐‘›) and the

output ๐‘ฆ(๐‘›) with the input ๐‘ฅ(๐‘›) we get

๐‘ฅ(๐‘›) = โˆ’โˆ‘๐‘Ž๐‘(๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜)

๐‘

๐‘˜=1

+ ๐‘ฆ(๐‘›) (5.49)

Which can be written as

Page 95: On Z-transform and Its Applications

86

๐‘ฆ(๐‘›) = ๐‘ฅ(๐‘›) +โˆ‘๐‘Ž๐‘(๐‘˜)๐‘ฅ(๐‘› โˆ’ ๐‘˜)

๐‘

๐‘˜=1

(5.50)

Which is the linear difference equation describe an FIR system having the

transfer function ๐ป(๐‘ง) = ๐ด๐‘(๐‘ง).

So, we can obtain the IIR lattice filter from an FIR by interchanging the input

and the output. Therefore, the definition of IIR lattice filter is the opposite of

FIR lattice filter.

By solving Eq(5.27) for ๐‘“๐‘šโˆ’1(๐‘›) and let Eq(5.28) stay the same for ๐‘”๐‘š(๐‘›)

we get the following rules for IIR lattice filter

๐‘“๐‘šโˆ’1(๐‘›) = ๐‘“๐‘š(๐‘›) โˆ’ ๐พ๐‘š๐‘”๐‘šโˆ’1(๐‘› โˆ’ 1), ๐‘š = ๐‘,๐‘ โˆ’ 1,โ€ฆ , 1 (5.51)

๐‘”๐‘š(๐‘›) = ๐พ๐‘š๐‘“๐‘šโˆ’1(๐‘›) + ๐‘”๐‘šโˆ’1(๐‘› โˆ’ 1), ๐‘š = ๐‘,๐‘ โˆ’ 1,โ€ฆ , 1 (5.52)

with

๐‘”0(๐‘›) = ๐‘“0(๐‘›) = ๐‘ฆ(๐‘›)

๐‘“๐‘(๐‘›) = ๐‘ฅ(๐‘›)

In general, the transfer function for all-pole IIR system is

๐ป๐‘Ž(๐‘ง) =๐‘Œ(๐‘ง)

๐‘‹(๐‘ง)=๐น0(๐‘ง)

๐น๐‘š(๐‘ง)=

1

๐ด๐‘š(๐‘ง) (5.53)

And for all-zero FIR system is

๐ป๐‘(๐‘ง) =๐บ๐‘š(๐‘ง)

๐‘Œ(๐‘ง)=๐บ๐‘š(๐‘ง)

๐บ0(๐‘ง)= ๐‘งโˆ’๐‘š๐ด๐‘š(๐‘ง

โˆ’1) (5.54)

So, for the IIR system contains both poles and zeros has the transfer function

๐ป(๐‘ง) =โˆ‘ ๐‘๐‘€(๐‘˜)๐‘ง

โˆ’๐‘˜๐‘€๐‘˜=1

1 + โˆ‘ ๐‘Ž๐‘(๐‘˜)๐‘งโˆ’๐‘˜๐‘

๐‘˜=1

=๐ถ๐‘€(๐‘ง)

๐ด๐‘(๐‘ง) (5.55)

Without loss of generality, if ๐‘€ โ‰ค ๐‘, then ๐ป(๐‘ง) consists of two components

the first is an all-pole lattice with parameters ๐พ๐‘š, 1 โ‰ค ๐‘š โ‰ค ๐‘, and the other

is a tapped delay line with coefficients ๐‘๐‘€(๐‘˜).

If ๐‘€ = ๐‘ then

Page 96: On Z-transform and Its Applications

87

๐ถ๐‘š(๐‘ง) = ๐ถ๐‘šโˆ’1(๐‘ง) + ๐‘๐‘š(๐‘š)๐‘งโˆ’๐‘š๐ด๐‘š(๐‘ง

โˆ’1),๐‘š = 1,2,โ€ฆ ,๐‘€ (5.56)

Section 5.5: Design of IIR Filters From Analog Filters.

Before talking about designing IIR filter from analog filter we need to sample

the analog signal ๐‘ฅ๐‘Ž(๐‘ก) by using uniform sample described by the relation

๐‘ฅ(๐‘›) = ๐‘ฅ๐‘Ž(๐‘›๐‘‡) (5.57)

where ๐‘‡ is the sample period and ๐‘ฅ(๐‘›) is the discrete signal obtained by

sampling the analog signal ๐‘ฅ๐‘Ž(๐‘ก).

Note: The subscript ๐‘Ž will denote analog signal.

An analog filter may be described by the transfer function

๐ป๐‘Ž(๐‘ ) =๐ต(๐‘ )

๐ด(๐‘ )=โˆ‘ ๐‘(๐‘˜)๐‘ ๐‘˜๐‘€๐‘˜=0

โˆ‘ ๐‘Ž(๐‘˜)๐‘ ๐‘˜๐‘๐‘˜=0

(5.58)

where ๐‘(๐‘˜)'s, ๐‘Ž(๐‘˜)'s are the filter coefficients.

Or by its impulse response related to ๐ป๐‘Ž(๐‘ ) by Laplace transform

๐ป๐‘Ž(๐‘ ) = โˆซ โ„Ž(๐‘ก)๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

โˆž

โˆ’โˆž

(5.59)

Figure (๐Ÿ“. ๐Ÿ–): Lattice-form realization of IIR systems

[14].

๐‘1(1)

๐‘๐‘โˆ’1(๐‘ โˆ’ 1) ๐‘๐‘(๐‘)

๐‘0(0)

๐‘2(2)

Page 97: On Z-transform and Its Applications

88

Also, such filters can be described by the differential equation

โˆ‘๐‘Ž(๐‘˜)๐‘‘๐‘˜๐‘ฆ(๐‘ก)

๐‘‘๐‘ก๐‘˜

๐‘

๐‘˜=0

=โˆ‘๐‘(๐‘˜)

๐‘€

๐‘˜=0

๐‘‘๐‘˜๐‘ฅ(๐‘ก)

๐‘‘๐‘ก๐‘˜ (5.60)

where ๐‘ฅ(๐‘ก) is the input signal and ๐‘ฆ(๐‘ก) is the output signal.

If all poles of the transfer function are in the left half of s-plane then the

system is stable. For effective conversion from analog signal to digital signal

the mapping which we use should map the points on the ๐‘—ฮฉ-axis in the s-plane

into the unit circle in the z-plane and the points in the right half of the s-plane

into outside the unit circle in the z-plane where the points in the left half

mapped inside the unit circle.

In this section we will design IIR filter from analog filter by using two

methods impulse invariant and bilinear transform.

1. Impulse Invariant Method.

In impulse invariant method the digital IIR filter is designed by sampling the

impulse response of the analog filter.

โ„Ž(๐‘›) = โ„Ž๐‘Ž(๐‘›๐‘‡) (5.61)

where T is the sampling interval.

From sampling theorem, if we have a continuous time signal ๐‘ฅ๐‘Ž(๐‘ก) with

spectrum ๐‘‹๐‘Ž(๐น) sampled at a rate ๐น๐‘  = 1 ๐‘‡โ„ sample per second, the spectrum

of the sampled signal ๐‘‹(๐‘“) is the periodic repetition of the scaled spectrum

๐น๐‘ ๐‘‹๐‘Ž(๐น) with period ๐น๐‘ . Specially the relation is

๐‘‹(๐‘“) = ๐น๐‘  โˆ‘ ๐‘‹๐‘Ž[(๐‘“ โˆ’ ๐‘˜)๐น๐‘ ]

โˆž

๐‘˜=โˆ’โˆž

(5.62)

where ๐‘“ = ๐น ๐น๐‘ โ„ is the normalized frequency.

Page 98: On Z-transform and Its Applications

89

If we apply Eq(5.62) for impulse response of an analog filter with frequency

response ๐ป๐‘Ž(๐น), then the unit sample response โ„Ž(๐‘›) = โ„Ž๐‘Ž(๐‘›๐‘‡) for digital

filter has the frequency response.

๐ป(๐‘“) = ๐น๐‘  โˆ‘ ๐ป๐‘Ž[(๐‘“ โˆ’ ๐‘˜)๐น๐‘ ]

โˆž

๐‘˜=โˆ’โˆž

(5.63)

or, equivalent to

๐ป(๐œ”) = ๐น๐‘  โˆ‘ ๐ป๐‘Ž[(๐œ” โˆ’ 2๐œ‹๐‘˜)๐น๐‘ ]

โˆž

๐‘˜=โˆ’โˆž

(5.64)

or

๐ป(ฮฉ๐‘‡) =1

๐‘‡โˆ‘ ๐ป๐‘Ž (ฮฉ โˆ’

2๐œ‹๐‘˜

๐‘‡)

โˆž

๐‘˜=โˆ’โˆž

(5.65)

To obtain the mapping between the z-plane and the s-plane implied by

sampling process, with a generalization of Eq(5.65) which relates the Z-

transform of โ„Ž(๐‘›) to Laplace transform of โ„Ž๐‘Ž(๐‘›๐‘‡) by the relation

๐ป(z) | .๐‘ง = ๐‘’๐‘ ๐‘‡

๐‘Ž๐ด =1

๐‘‡โˆ‘ ๐ป๐‘Ž (s โˆ’ ๐‘—

2๐œ‹๐‘˜

๐‘‡)

โˆž

๐‘˜=โˆ’โˆž

(5.66)

where

๐ป(z) = โˆ‘โ„Ž(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=0

So

๐ป(z) | .๐‘ง = ๐‘’๐‘ ๐‘‡

๐‘Ž๐ด =โˆ‘โ„Ž(๐‘›)๐‘’โˆ’๐‘ ๐‘‡โˆž

๐‘›=0

(5.67)

The general characteristic of our mapping is

๐‘ง = ๐‘’๐‘ ๐‘‡ (5.68)

where

๐‘  = ๐œŽ + ฮฉ๐‘— (5.69)

Page 99: On Z-transform and Its Applications

91

Substitute Eq(5.69) in Eq(5.68), then express the result equation in polar

form we get

๐‘Ÿ๐‘’๐‘—๐œ” = ๐‘’๐œŽ๐‘‡๐‘’ฮฉT๐‘—

Clearly

๐‘Ÿ = ๐‘’๐œŽ๐‘‡

๐œ” = ฮฉT

To see how poles and zeros of the analog filter mapped using impulse

invariant method we express the transfer function of the analog filter in partial

fraction form. With assumption that the poles of the transfer function of the

analog filter are distinct we get

๐ป๐‘Ž(๐‘ ) = โˆ‘๐‘๐‘˜

๐‘  โˆ’ ๐‘๐‘˜

๐‘

๐‘˜=1

(5.70)

where ๐‘ is a positive integer, ๐‘๐‘˜ , ๐‘˜ = 1, 2,โ€ฆ ,๐‘ are the poles of the transfer

function of the analog filter and ๐‘๐‘˜, ๐‘˜ = 1, 2,โ€ฆ , ๐‘ are the coefficients of the

partial fraction expansion. So, the unit sample response is

โ„Ž๐‘Ž(๐‘ก) = โˆ‘๐‘๐‘˜๐‘’๐‘๐‘˜t

๐‘

๐‘˜=1

, ๐‘ก โ‰ฅ 0 (5.71)

If we sampled โ„Ž๐‘Ž(๐‘ก) periodically at ๐‘ก = ๐‘›๐‘‡ we have

โ„Ž(๐‘›) = โ„Ž๐‘Ž(๐‘›๐‘‡) = โˆ‘๐‘๐‘˜๐‘’๐‘๐‘˜Tn

๐‘

๐‘˜=1

(5.72)

Now, substitute the unit sample response in Eq(5.72) in the transfer function

of digital IIR filter we get

๐ป(z) = โˆ‘โ„Ž(๐‘›)๐‘งโˆ’๐‘›โˆž

๐‘›=0

Page 100: On Z-transform and Its Applications

91

= โˆ‘(โˆ‘๐‘๐‘˜๐‘’๐‘๐‘˜Tn

๐‘

๐‘˜=1

)

โˆž

๐‘›=0

๐‘งโˆ’๐‘›

=โˆ‘๐‘๐‘˜โˆ‘[๐‘’๐‘๐‘˜T๐‘งโˆ’1]๐‘›โˆž

๐‘›=0

๐‘

๐‘˜=1

(5.73)

The inner summation of Eq(5.73) is converges because ๐‘๐‘˜ < 0, so

๐ป(z) = โˆ‘๐‘๐‘˜1

1 โˆ’ ๐‘’๐‘๐‘˜T๐‘งโˆ’1

๐‘

๐‘˜=1

(5.74)

Therefore, the transfer function of the digital IIR filter has poles at

๐‘ง = ๐‘’๐‘๐‘˜T, ๐‘˜ = 1, 2,โ€ฆ ,๐‘ (5.75)

If some poles are complex we can combined them to form two-pole filter

section.

The impulse invariant method is appropriate only for low pass filters and a

limited class of band pass filters.

Example 5.7: Convert the analog filter with transfer function

๐ป๐‘Ž(๐‘ ) =๐‘  + 1

(๐‘  + 1)2 + 9

into a digital IIR filter by impulse invariant method.

Solution:

๐ป๐‘Ž(๐‘ ) has two poles at ๐‘ = โˆ’1 + 3๐‘—,โˆ’1 โˆ’ 3๐‘—, so the transfer function can

be written as

๐ป๐‘Ž(๐‘ ) =๐‘  + 1

[๐‘  โˆ’ (โˆ’1 + 3๐‘—)][๐‘  โˆ’ (โˆ’1 โˆ’ 3๐‘—)]

By partial fraction expansion

๐ป๐‘Ž(๐‘ ) =1

2

1

[๐‘  โˆ’ (โˆ’1 + 3๐‘—)]+1

2

1

[๐‘  โˆ’ (โˆ’1 โˆ’ 3๐‘—)]

Then

Page 101: On Z-transform and Its Applications

92

๐ป(๐‘ง) =1

2

1

[1 โˆ’ ๐‘’(โˆ’1+3๐‘—)๐‘‡๐‘งโˆ’1]+1

2

1

[1 โˆ’ ๐‘’(โˆ’1โˆ’3๐‘—)๐‘‡๐‘งโˆ’1]

=1 โˆ’ ๐‘’โˆ’๐‘‡ cos 3๐‘‡ ๐‘งโˆ’1

1 โˆ’ 2๐‘’โˆ’๐‘‡ cos 3๐‘‡ ๐‘งโˆ’1 + ๐‘’โˆ’2๐‘‡๐‘งโˆ’2

2. Bilinear Transformation Method.

The bilinear transform overcome the limitations of impulse invariant. The

bilinear transformation transform the ๐‘—ฮฉ-axis in the s-plane into the unit circle

in the z-plane only once. The bilinear transformation linked to the trapezoidal

formula for numerical integration. For example, consider an analog filter has

the transfer function.

๐ป(๐‘ ) =๐‘

๐‘  + ๐‘Ž (5.76)

The transfer function in Eq(5.76) can be represented by the differential

equation ๐‘‘๐‘ฆ(๐‘ก)

๐‘‘๐‘ก+ ๐‘Ž๐‘ฆ(๐‘ก) = ๐‘๐‘ฅ(๐‘ก) (5.77)

Integrate the derivative in Eq(5.77)

๐‘ฆ(๐‘ก) = โˆซ๐‘ฆโ€ฒ(๐œ)๐‘‘๐œ

๐‘ก

๐‘ก0

+ ๐‘ฆ(๐‘ก0) (5.78)

where ๐‘ฆโ€ฒ(๐‘ก) is the derivative of y(t).

By using the trapezoidal formula at ๐‘ก = ๐‘›๐‘‡ and ๐‘ก0 = ๐‘›๐‘‡ โˆ’ ๐‘‡ to approximate

the integral in Eq(5.78), we get

๐‘ฆ(๐‘›๐‘‡) =๐‘‡

2[๐‘ฆโ€ฒ(๐‘›๐‘‡) + ๐‘ฆโ€ฒ(๐‘›๐‘‡ โˆ’ ๐‘‡)] + ๐‘ฆ(๐‘›๐‘‡ โˆ’ ๐‘‡) (5.79)

The derivatives of ๐‘ฆ(๐‘ก) at ๐‘ก = ๐‘›๐‘‡ and ๐‘ก = ๐‘›๐‘‡ โˆ’ ๐‘‡ according to Eq(5.77) are

๐‘ฆโ€ฒ(๐‘›๐‘‡) = โˆ’๐‘Ž๐‘ฆ(๐‘›๐‘‡) + ๐‘๐‘ฅ(๐‘›๐‘‡) (5.80)

๐‘ฆโ€ฒ(๐‘›๐‘‡ โˆ’ ๐‘‡) = โˆ’๐‘Ž๐‘ฆ(๐‘›๐‘‡ โˆ’ ๐‘‡) + ๐‘๐‘ฅ(๐‘›๐‘‡ โˆ’ ๐‘‡) (5.81)

Page 102: On Z-transform and Its Applications

93

Substitute Eq(5.80) and Eq(5.81) in Eq(5.79), we obtain the linear

difference equation. With ๐‘ฆ(๐‘›) = ๐‘ฆ(๐‘›๐‘‡) and ๐‘ฅ(๐‘›) = ๐‘ฅ(๐‘›๐‘‡) we get

(1 +๐‘Ž๐‘‡

2)๐‘ฆ(๐‘›) โˆ’ (1 โˆ’

๐‘Ž๐‘‡

2)๐‘ฆ(๐‘› โˆ’ 1) =

๐‘๐‘‡

2[๐‘ฅ(๐‘›) + ๐‘ฅ(๐‘› โˆ’ 1)] (5.82)

Take the Z-transform of the difference equation in Eq(5.82), we get

(1 +๐‘Ž๐‘‡

2)๐‘Œ(๐‘ง) โˆ’ (1 โˆ’

๐‘Ž๐‘‡

2) ๐‘งโˆ’1๐‘Œ(๐‘ง) =

๐‘๐‘‡

2(1 + ๐‘งโˆ’1)๐‘‹(๐‘ง) (5.83)

So, the transfer function is

๐ป(๐‘ง) =๐‘Œ(๐‘ง)

๐‘‹(๐‘ง)=

(๐‘๐‘‡ โ„ 2)(1 + ๐‘งโˆ’1)

1 + ๐‘Ž๐‘‡ 2โ„ โˆ’ (1 โˆ’๐‘Ž๐‘‡2 )

๐‘งโˆ’1 (5.84)

or, equivalent to

๐ป(๐‘ง) =๐‘

2๐‘‡ (1 โˆ’ ๐‘งโˆ’1

1 + ๐‘งโˆ’1) + ๐‘Ž

(5.85)

Therefore, the mapping from the s-plane to the z-plane is

๐‘  =2

๐‘‡(1 โˆ’ ๐‘งโˆ’1

1 + ๐‘งโˆ’1) (5.86)

Which called the bilinear transformation.

Our previous work was for first-order differential equation. In general for ๐‘th

order differential equation let.

๐‘ง = ๐‘Ÿ๐‘’๐‘—๐œ”

๐‘  = ๐œŽ + ฮฉ๐‘—

Then Eq(5.86) can be expressed as

๐‘  =2

๐‘‡

๐‘ง โˆ’ 1

๐‘ง + 1

=2

๐‘‡

๐‘Ÿ๐‘’๐‘—๐œ” โˆ’ 1

๐‘Ÿ๐‘’๐‘—๐œ” + 1

=2

๐‘‡[

๐‘Ÿ2 โˆ’ 1

1 + ๐‘Ÿ2 + 2๐‘Ÿ cos๐œ”+ ๐‘—

2๐‘Ÿ sin๐œ”

1 + ๐‘Ÿ2 + 2๐‘Ÿ cos๐œ”] (5.87)

Page 103: On Z-transform and Its Applications

94

So

๐œŽ =2

๐‘‡

๐‘Ÿ2 โˆ’ 1

1 + ๐‘Ÿ2 + 2๐‘Ÿ cos๐œ” (5.88)

ฮฉ =2

๐‘‡

2๐‘Ÿ sin๐œ”

1 + ๐‘Ÿ2 + 2๐‘Ÿ cos๐œ” (5.89)

Note, if ๐‘Ÿ < 1, then ๐œŽ < 0 and if ๐‘Ÿ > 1, then ๐œŽ > 0. But, if ๐‘Ÿ = 1 then ๐œŽ = 0

and

ฮฉ =2

๐‘‡

sin๐œ”

1 + cos๐œ”

=2

๐‘‡tan

๐œ”

2 (5.90)

or

๐œ” = 2 tanโˆ’1ฮฉ๐‘‡

2 (5.91)

Page 104: On Z-transform and Its Applications

95

Chapter Six

The Chirp Z-transform Algorithm and Its Applications

The chirp Z-transform algorithm is a computational algorithm for numerical

evaluation of Z-transform for a sequence of ๐‘ points. By using it we can

easily find Z-transform of ๐‘€ points in the z-plane lying on circular or spiral

contour beginning at any an arbitrary point in the z-plane. The algorithm

based on the fact that the value of Z-transform on a circular or spiral contour

can be expressed as a discrete convolution [16].

We will restrict our work to the Z-transform of sequences of a finite number

๐‘ of non zero points. Therefore Z-transform of these sequences can be

written without loss of generality as,

๐‘‹(๐‘ง) = โˆ‘ ๐‘ฅ(๐‘›)๐‘งโˆ’๐‘›๐‘โˆ’1

๐‘›=0

(6.1)

Note that ๐‘‹(๐‘ง) converges for all ๐‘ง except ๐‘ง = 0.

If we have a train of impulses with equally space ๐‘‡ of magnitude ๐‘ฅ(๐‘›), it will

be of the form

โˆ‘๐‘ฅ(๐‘›)

๐‘›

๐›ฟ(๐‘ก โˆ’ ๐‘›๐‘‡)

Its Laplace transform will be

โˆ‘๐‘ฅ(๐‘›)

๐‘›

๐‘’โˆ’๐‘ ๐‘›๐‘‡

which is the same of Eq(6.1) if we set

๐‘ง = ๐‘’๐‘ ๐‘‡ (6.2)

Since we can compute Z-transform for a finite set of samples, we can evaluate

it for a finite number of points ๐‘ง๐‘˜where 0 โ‰ค ๐‘˜ โ‰ค ๐‘€ โˆ’ 1 in z-plane, so Z-

transform of ๐‘ฅ(๐‘›) evaluated at ๐‘ง๐‘˜ will be written as,

Page 105: On Z-transform and Its Applications

96

๐‘‹(๐‘˜) = ๐‘‹(๐‘ง๐‘˜) = โˆ‘ ๐‘ฅ(๐‘›)[๐‘ง๐‘˜]โˆ’๐‘›

๐‘โˆ’1

๐‘›=0

(6.3)

We are interested in the set of points equally spaced around the unit circle,

these points are of the form

๐‘ง๐‘˜ = ๐‘’๐‘ฅ๐‘ (๐‘—2๐œ‹

๐‘๐‘˜) , k = 0, 1,โ€ฆ , N โˆ’ 1 (6.4)

If we substitute Eq(6.4) in Eq (6.3) we get

๐‘‹(๐‘˜) = โˆ‘ ๐‘ฅ(๐‘›)๐‘’๐‘ฅ๐‘ (โˆ’๐‘—2๐œ‹

๐‘๐‘›๐‘˜)

๐‘โˆ’1

๐‘›=0

, ๐‘˜ = 0, 1,โ€ฆ , ๐‘ โˆ’ 1 (6.5)

Eq(6.5) is the discrete Fourier transform with (๐œ” =2๐œ‹๐‘˜

๐‘) which has many

applications but finding it requires ๐‘2additions and multiplications so we use

fast Fourier transform to compute it which requires ๐‘ log2๐‘ operation if ๐‘

is a power of 2 and ๐‘โˆ‘ ๐‘š๐‘–๐‘– operation if ๐‘ is not a power of 2 where ๐‘š๐‘– is

the prime factored of ๐‘.

Because fast Fourier transform has many limitations we use chirp Z-

transform which eliminates some of these limitations, for example the

number of samples of the sequence ๐‘ฅ(๐‘›) need not to be equal to the number

of samples in the z-plane. Neither ๐‘ nor ๐‘€ need be composite integers, they

can be primes. The angular spacing of ๐‘ง๐‘˜ is arbitrary and the contour need

not to be a circle, it can be a spiral in or out with respect to the origin [9,17].

Let's compute Z-transform on the more general contour of the form

๐‘ง๐‘˜ = ๐ด๐‘Šโˆ’๐‘˜ , ๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1 (6.6)

where ๐‘€ is arbitrary integer and ๐ด, ๐‘Š are arbitrary complex numbers of the

form

๐ด = ๐ด0๐‘’๐‘ฅ๐‘ (๐‘—2๐œ‹๐œƒ0)

Page 106: On Z-transform and Its Applications

97

and

๐‘Š = ๐‘Š0๐‘’๐‘ฅ๐‘ (๐‘—2๐œ‹๐œ‘0)

The case where ๐ด = 1, ๐‘€ = ๐‘ and ๐‘Š = ๐‘’๐‘ฅ๐‘ (โˆ’๐‘—2๐œ‹ ๐‘โ„ ) correspond to the

discrete Fourier transform.

The equivalent s-plane contour of Eq(6.6) begins with the point

๐‘ 0 = ๐œŽ0 + ๐‘—๐‘ค0 =1

๐‘‡ln๐ด (6.7)

And the form of general contour on the s-plane is

๐‘ ๐‘˜ = ๐‘ 0 + ๐‘˜(โˆ†๐œŽ + ๐‘—โˆ†๐‘ค)

=1

๐‘‡(ln๐ด โˆ’ ๐‘˜ ln๐‘Š), ๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1 (6.8)

Note that the z-plane contour maps into arbitrary finite length straight line in

the s-plane.

To compute Z-transform a long the contour described by Eq(6.6) we need

๐‘€๐‘ multiplications and additions.

Now we will derive the chirp Z-transform algorithm [16,19].

If we find the Z-transform for the point along the contour represented in

Eq(6.6) we get,

๐‘‹(๐‘˜) = โˆ‘ ๐‘ฅ(๐‘›)๐ดโˆ’๐‘›๐‘Š๐‘›๐‘˜

๐‘โˆ’1

๐‘›=0

, ๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1 (6.9)

If we use the Bluestein's ingenious substitution

๐‘›๐‘˜ =๐‘›2 + ๐‘˜2 โˆ’ (๐‘˜ โˆ’ ๐‘›)2

2 (6.10)

in Eq(6.9) we get

๐‘‹(๐‘˜) = โˆ‘ ๐‘ฅ(๐‘›)๐ดโˆ’๐‘›๐‘Š(๐‘›2 2โ„ )๐‘Š(๐‘˜2 2โ„ )๐‘Šโˆ’(๐‘˜โˆ’๐‘›)2 2โ„

๐‘โˆ’1

๐‘›=0

๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1 (6.11)

Page 107: On Z-transform and Its Applications

98

Eq(6.11) can be divided into three steps,

1. Forming a sequence ๐‘ฆ(๐‘›) of the form

๐‘ฆ(๐‘›) = ๐‘ฅ(๐‘›)๐ดโˆ’๐‘›๐‘Š(๐‘›2 2โ„ ), ๐‘› = 0, 1,โ€ฆ ,๐‘ โˆ’ 1 (6.12)

2. Define the sequence ๐‘ฃ(๐‘›) as

๐‘ฃ(๐‘›) = ๐‘Šโˆ’๐‘›2 2โ„ (6.13)

To get the sequence ๐‘”(๐‘˜)

๐‘”(๐‘˜) = โˆ‘ ๐‘ฆ(๐‘›)๐‘ฃ(๐‘˜ โˆ’ ๐‘›)

๐‘โˆ’1

๐‘›=0

, ๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1 (6.14)

which is a convolution of ๐‘ฆ(๐‘›) and ๐‘ฃ(๐‘›) so it can be expressed as

๐‘”(๐‘›) = ๐‘ฆ(๐‘›) โˆ— ๐‘ฃ(๐‘›) (6.15)

3. Multiply ๐‘”(๐‘˜) with ๐‘Š(๐‘˜2 2โ„ ) to give ๐‘‹(๐‘˜)

๐‘‹(๐‘˜) = ๐‘”(๐‘˜)๐‘Š(๐‘˜2 2โ„ ), ๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1 (6.16)

The steps 1 and 3 need ๐‘, ๐‘€ multiplications respectively where step 2

which is the main step in computation needs the most time.

In summary the chirp Z-transform algorithm consist of the following steps

1. Choose ๐ฟ to be the smallest integer greater than or equal to ๐‘ +

๐‘€ โˆ’ 1 to be compatible with discrete Fourier transform which

mean for most users that ๐ฟ is a power of 2.

2. Form the sequence y(n) of L points by the equation

๐‘ฆ(๐‘›) = {๐‘ฅ(๐‘›)๐ดโˆ’๐‘›๐‘Š(๐‘›2 2โ„ ) , ๐‘› = 0, 1,โ€ฆ ,๐‘ โˆ’ 1

0 , ๐‘› = ๐‘,๐‘ + 1,โ€ฆ , ๐ฟ โˆ’ 1 (6.17)

3. Use the fast Fourier transform to compute the discrete Fourier

transform of ๐‘ฆ(๐‘›) and call them ๐‘Œ(๐‘Ÿ) , ๐‘Ÿ = 0, 1,โ€ฆ , ๐ฟ โˆ’ 1.

4. Define the sequence ๐‘ฃ(๐‘›) as

Page 108: On Z-transform and Its Applications

99

๐‘ฃ(๐‘›) = {๐‘Šโˆ’๐‘›2 2โ„ , 0 โ‰ค ๐‘› โ‰ค ๐‘€ โˆ’ 1 0 ,๐‘€ โˆ’ 1 < ๐‘› < ๐ฟ โˆ’ ๐‘ + 1 ๐‘–๐‘“ ๐ฟ > ๐‘ +๐‘€ โˆ’ 1

๐‘Šโˆ’(๐ฟโˆ’๐‘›)2 2โ„ , ๐ฟ โˆ’ ๐‘ + 1 โ‰ค ๐‘› < ๐ฟ

(6.18)

Note that if ๐ฟ = ๐‘ +๐‘€ โˆ’ 1, then there is no value of ๐‘ฃ(๐‘›) equal zero.

5. Compute the ๐ฟ point discrete Fourier transform of ๐‘ฃ(๐‘›) and call

them ๐‘‰(๐‘Ÿ) , ๐‘Ÿ = 0, 1,โ€ฆ , ๐ฟ โˆ’ 1.

6. Multiply ๐‘Œ(๐‘Ÿ) and ๐‘‰(๐‘Ÿ) to get ๐บ(๐‘Ÿ)

๐บ(๐‘Ÿ) = ๐‘Œ(๐‘Ÿ)๐‘‰(๐‘Ÿ) , ๐‘Ÿ = 0, 1,โ€ฆ , ๐ฟ โˆ’ 1

7. Compute the ๐ฟ point of ๐‘”(๐‘Ÿ) by taking the inverse discrete Fourier

transform of ๐บ(๐‘Ÿ).

8. Multiply ๐‘”(๐‘˜) and ๐‘Š(๐‘˜2 2โ„ ) to get ๐‘‹(๐‘˜)

๐‘‹(๐‘˜) = ๐‘”(๐‘˜)๐‘Š(๐‘˜2 2โ„ ), ๐‘˜ = 0, 1,โ€ฆ ,๐‘€ โˆ’ 1

where ๐‘”(๐‘˜) for ๐‘˜ โ‰ฅ ๐‘€ are discarded.

The computational time for the chirp Z-transform is proportional to ๐ฟ log2 ๐ฟ.

Therefore the direct method for computing ๐‘‹(๐‘˜) is most efficient for small

values of ๐‘, ๐‘€ where chirp Z-transform will be efficient for large values or

even for relatively modest values of ๐‘€ and ๐‘ of the order of 50 [9,16].

Chirp Z-transform algorithm has many applications as:

1. Enhancement of Poles.

Evaluating Z-transform at points outside and inside the unit circle is one of

the advantages of Z-transform over fast Fourier transform, this advantage

help us to find the poles and zeros for systems whose transfer function is of

polynomial form by making the contour which we use closer to the poles and

zeros.

Page 109: On Z-transform and Its Applications

111

2. High Resolution, Narrow Band Frequency Analysis.

The ability to evaluate high resolution, narrow band frequency is an important

application of chirp Z-transform algorithm because it allows us to chose the

initial frequency and frequency space independent of the number of time

sample. Where by using the fast Fourier transform, if the frequency resolution

โ‰ค โˆ†๐น and sampling frequency 1 ๐‘‡โ„ , then we require

๐‘ โ‰ฅ 1 (๐‘‡โˆ†๐น)โ„ samples which will be very large for small values of โˆ†๐น.

Page 110: On Z-transform and Its Applications

111

Conclusion

For finding the inverse of Z-transform three methods are used: integration

method is useful for finding a few values of ๐‘ฅ(๐‘›), where the power series

method is efficient when we find the inverse of finite-order integer power

function with partial fraction method is suitable for finding the inverse of

rational Z-transform. Z-transform is a transform for discrete data equivalent

to Laplace transform for continuous data and it's a generalization of discrete

Fourier transform. It's an efficient method for solving linear difference

equations with constant coefficients and Volterra difference equations of

convolution type. Also, it has many important applications in digital signal

processing as analysis of linear shift-invariant systems, implementation of

FIR and IIR filters and design of IIR filters from analog filters. Chirp Z-

transform algorithm is an important algorithm that overcomes the limits of

fast Fourier transform and has many applications such as enhancement of

poles and high resolution, narrow band frequency analysis.

Page 111: On Z-transform and Its Applications

112

References

[1] El Attar, Refaat: Lecture Notes on Z-Transform, Refaat El Attar,

2007.

[2] Brown, James Ward Churchill, Ruel V.: Complex Variables and

Applications, Eighth Edition, The McGraw-Hill Companies, Inc, 2009.

[3] Debashis, Datta: Textbook Of Engineering Mathematics, Second

Edition, New Age International Publishers, 2005.

[4] Elaydi, Saber: An Introduction to Difference Equations, Third

Edition, Springer Science+Business Media, Inc, 2005

[5] Fadali, M. Sam: Digital Control Engineering Analysis and Design,

Elsevier Inc, 2009.

[6 ] Hayes, Monson H.: Schaum's Outline of Theory and Problems of

Digital Signal Processing, Schaum's Outline Series, The McGraw-Hill

Companies, Inc. 1999.

[7] Jerri, Abdul J.: Linear Difference Equations with Discrete

Transform Methods, Kluwer Academic Publishers, 1996.

[8] Jury, E. I.: Theory and Application of the Z-transform Method,

Robert E. Krieger Publishing Co. Huntington, New York ,1964.

[9] Oppenheim, Alan V., Schafer, Ronald W.: Digital Signal Processing,

Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1975.

[10] Oppenheim, Alan V., Willsky, Alan S. with Nawab, S. Hamid:

Signals & Systems, Second Edition, Prentice-Hall International, Inc,

1992 .

Page 112: On Z-transform and Its Applications

113

[11 ] Orfanidis, Sophocles J.: Introduction to Signal Processing,

Sophocles J. Orfanidis, 2010.

[12] Poularikas, Alexander D.: The Handbook of Formulas and Tables

for Signal Processing, Boca Raton: CRC Press LLC, 1999.

[13] Poularikas, Alexander D.: The Transforms and Applications

Handbook, Second Edition, Boca Raton: CRC Press LLC,2000.

[14] Proakis, John G., Manolakis, Dimitris G.: Introduction to Digital

Signal Processing, Macmillan Publishing Company, a division of

Macmillan, Inc, 1988.

[15] Smith, Steven W.: The Scientist and Engineer's Guide to Digital

Signal Processing, Second edition, California Technical Publishing.

1997-1999.

[16] Rabiner, Lawrenge R., Schafer, Ronald W. And Rader, Charles M.:

The Chirp Z-transform Algorithm and Its Application, Manuscript

received November 21,1968, The Bell System Technical Journal,

May-June 1969, pages 1949-1992.

[17] Rabiner, L. R., Schafer, R. W., Rader, C. M.: The Chirp Z-

transform Algorithm, June 1969, IEEE Transactions On Audio And

Electroacoustics Vol. Au-17, No. 2.

[18] Salih, Raghad Kadhim; Z-Transformation for Solving Volterra

Integral Equations of Convolution Type, AL-fateh, Journal,

No26,2006.

[19] Shilling, Steve Alan: A Study Of The Chirp Z-transform And Its

Application, Manhattan, Kansas, Kansas State University, 1970, p57.

Page 113: On Z-transform and Its Applications

114

[20]http://www.dip.ee.uct.ac.za/~nicolls/lectures/eee401f/01_mdsp_slides.p

df

[21] Wikipedia.org, Z-transform, Internet:

http://en.wikipedia.org/wiki/Z-transform

Page 114: On Z-transform and Its Applications

115

Appendix A

Some Maple Commands on Z-transform.

Example 2.3:

๐‘ง๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ (๐‘Ž๐‘›, ๐‘›, ๐‘ง)

Example 2.4:

๐‘ ๐‘ข๐‘š(โˆ’(๐‘ โˆ— ๐‘งโˆ’1)๐‘›, ๐‘› = โˆ’โˆž. . โˆ’1)

Example 2.14:

๐‘ง๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ (7๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘“๐‘๐‘›[0](๐‘›) + 3๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘“๐‘๐‘›[1](๐‘›) + 0๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘“๐‘๐‘›[2](๐‘›)

+1๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘“๐‘๐‘›[3](๐‘›) + 2๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘“๐‘๐‘›[4](๐‘›) + 6๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘“๐‘๐‘›[5](๐‘›), ๐‘›, ๐‘ง)

Example 3.6: (a)

๐‘–๐‘›๐‘ฃ๐‘ง๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  (๐‘ง2 + 3๐‘ง

๐‘ง2 โˆ’ 3๐‘ง + 2 , ๐‘ง, ๐‘›)

Example 3.8:

๐‘–๐‘›๐‘ฃ๐‘ง๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘  (๐‘ง3

๐‘ง3 โˆ’ ๐‘ง2 โˆ’ 5๐‘ง โˆ’ 3 , ๐‘ง, ๐‘›)

Example 4.1:

๐‘Ÿ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘’({๐‘ฆ(0) = 0, ๐‘ฆ(1) = 1, ๐‘ฆ(๐‘› + 2) = ๐‘ฆ(๐‘› + 1) + ๐‘ฆ(๐‘›)}, ๐‘ฆ)

Example 4.2:

๐‘Ÿ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘’ ({๐‘ฆ(โˆ’1) = 2, ๐‘ฆ(๐‘›) =1

3๐‘ฆ(๐‘› โˆ’ 1) + 1} , ๐‘ฆ)

Page 115: On Z-transform and Its Applications

116

Appendix B

Example on using Chirp Z-transform Algorithm.

Example: Use chirp Z-transform algorithm to find the Z-transform of the

sequence

๐‘ฅ(๐‘›) = {1 , ๐‘› = 0 2 , ๐‘› = 1 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

at the given points

๐‘ง๐‘˜ = ๐ด๐‘Šโˆ’๐‘˜ , ๐‘˜ = 0, 1, 2

where

๐ด = 1 and ๐‘Š =1

2โˆ™ ๐‘’

โˆ’๐œ‹๐‘—2

Solution:

1. For choosing ๐ฟ

๐‘ +๐‘€ โˆ’ 1 = 2 + 3 โˆ’ 1 = 4

So ๐ฟ = 4 because 4 is a power of 2.

2.

๐‘ฆ(๐‘›) = {๐‘ฅ(๐‘›)1โˆ’๐‘› [

1

2โˆ™ ๐‘’

โˆ’๐œ‹๐‘—2 ]

(๐‘›2 2โ„ )

, ๐‘› = 0, 1

0 , ๐‘› = 2, 3

= {1 , ๐‘› = 0 1 โˆ’ ๐‘— , ๐‘› = 1 0 , ๐‘› = 2, 3

3.

๐‘Œ(๐‘Ÿ) = โˆ‘๐‘ฆ(๐‘›)๐‘’โˆ’2๐œ‹๐‘—๐‘›๐‘Ÿ

๐ฟ

๐ฟโˆ’1

๐‘›=0

, ๐‘Ÿ = 0, 1,โ€ฆ , ๐ฟ โˆ’ 1

๐‘Œ(๐‘Ÿ) = โˆ‘๐‘ฆ(๐‘›)๐‘’โˆ’๐œ‹๐‘—๐‘›๐‘Ÿ2

3

๐‘›=0

, ๐‘Ÿ = 0, 1, 2,3

Page 116: On Z-transform and Its Applications

117

= {

2 โˆ’ ๐‘— , ๐‘Ÿ = 0 โˆ’๐‘— , ๐‘Ÿ = 1 ๐‘— , ๐‘Ÿ = 2 2 + ๐‘— , ๐‘Ÿ = 3

4.

๐‘ฃ(๐‘›) =

{

[1

2โˆ™ ๐‘’

โˆ’๐œ‹๐‘—2 ]

โˆ’๐‘›2 2โ„

, 0 โ‰ค ๐‘› โ‰ค 2

[1

2โˆ™ ๐‘’

โˆ’๐œ‹๐‘—2 ]

โˆ’(4โˆ’๐‘›)2 2โ„

, 3 โ‰ค ๐‘› < 4

= {

1 , ๐‘› = 0 1 + ๐‘— , ๐‘› = 1 โˆ’4 , ๐‘› = 2 1 + ๐‘— , ๐‘› = 3

5.

๐‘‰(๐‘Ÿ) = โˆ‘๐‘ฃ(๐‘›)๐‘’โˆ’๐œ‹๐‘—๐‘›๐‘Ÿ2

3

๐‘›=0

, ๐‘Ÿ = 0, 1, 2,3

= {

โˆ’1 + 2๐‘— , ๐‘Ÿ = 0 5 , ๐‘Ÿ = 1 โˆ’5 โˆ’ 2๐‘— , ๐‘Ÿ = 2 5 , ๐‘Ÿ = 3

6.

๐บ(๐‘Ÿ) = ๐‘Œ(๐‘Ÿ)๐‘‰(๐‘Ÿ) , ๐‘Ÿ = 0, 1, 2 , 3

= {

5๐‘— , ๐‘Ÿ = 0 โˆ’5๐‘— , ๐‘Ÿ = 1 2 โˆ’ 5๐‘— , ๐‘Ÿ = 2 10 + 5๐‘— , ๐‘Ÿ = 3

7.

๐‘”(๐‘Ÿ) =1

๐ฟโˆ‘๐บ(๐‘›)๐‘’

2๐œ‹๐‘—๐‘›๐‘Ÿ๐ฟ

๐ฟโˆ’1

๐‘›=0

, ๐‘Ÿ = 0, 1,โ€ฆ , ๐ฟ โˆ’ 1

๐‘”(๐‘Ÿ) =1

4โˆ‘๐บ(๐‘›)๐‘’

๐œ‹๐‘—๐‘›๐‘Ÿ2

3

๐‘›=0

, ๐‘Ÿ = 0, 1, 2,3

Page 117: On Z-transform and Its Applications

118

= {

3 , ๐‘Ÿ = 0 2 , ๐‘Ÿ = 1 โˆ’2 , ๐‘Ÿ = 2 โˆ’3 + 5๐‘— , ๐‘Ÿ = 3

8.

๐‘‹(๐‘˜) = ๐‘”(๐‘˜) [1

2โˆ™ ๐‘’

โˆ’๐œ‹๐‘—2 ]

(๐‘˜2 2โ„ )

, ๐‘˜ = 0, 1, 2

= {

3 , ๐‘˜ = 0 1 โˆ’ ๐‘— , ๐‘˜ = 1 1

2 , ๐‘˜ = 2

Page 118: On Z-transform and Its Applications

119

Appendix C

A Table of Properties of Z-transform

Property Sequence Z-transform ROC

Linearity ๐›ผ๐‘ฅ(๐‘›) + ๐›ฝ๐‘ฆ(๐‘›) ๐›ผ ๐‘‹(๐‘ง) + ๐›ฝ ๐‘Œ(๐‘ง) ๐‘Ÿ < |๐‘ง| < ๐‘…

Shifting ๐‘ฅ(๐‘› + ๐‘˜) ๐‘ง๐‘˜ ๐‘‹(๐‘ง) ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ

Multiplication

by Exponential ๐›ผ๐‘›๐‘ฅ(๐‘›) ๐‘‹(๐›ผโˆ’1๐‘ง)

|๐›ผ|๐‘Ÿ๐‘ฅ < |๐‘ง|< |๐›ผ|๐‘…๐‘ฅ

Time Reversal ๐‘ฅ(โˆ’๐‘›) ๐‘‹(๐‘งโˆ’1) 1

๐‘…๐‘ฅ< |๐‘ง| <

1

๐‘Ÿ๐‘ฅ

Conjugation ๐‘ฅโˆ—(๐‘›) ๐‘‹โˆ—(๐‘งโˆ—) ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ

Multiplication

by n ๐‘› ๐‘ฅ(๐‘›) โˆ’๐‘ง

๐‘‘๐‘‹(๐‘ง)

๐‘‘๐‘ง ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ

Convolution of

Two Sequences ๐‘ฅ(๐‘›) โˆ— ๐‘ฆ(๐‘›) ๐‘‹(๐‘ง)๐‘Œ(๐‘ง)

at least, ๐‘…๐‘‚๐ถ of

๐‘‹(๐‘ง) โˆฉ ๐‘…๐‘‚๐ถ of

๐‘Œ(๐‘ง)

Correlation of

Two Sequences ๐‘Ÿ๐‘ฅ๐‘ฆ(๐‘™) ๐‘‹(๐‘ง)๐‘Œ(๐‘งโˆ’1)

at least, ๐‘…๐‘‚๐ถ of

๐‘‹(๐‘ง) โˆฉ ๐‘…๐‘‚๐ถ of

๐‘Œ(๐‘งโˆ’1)

Multiplication

of Two

Sequences ๐‘ฅ(๐‘›)๐‘ฆ(๐‘›)

1

2๐œ‹๐‘—โˆฎ ๐‘‹(๐‘ฃ)๐‘Œ (

๐‘ง

๐‘ฃ)1

๐‘ฃ๐‘‘๐‘ฃ

๐ถ

๐‘Ÿ๐‘ฅ๐‘Ÿ๐‘ฆ < |๐‘ง|

< ๐‘…๐‘ฅ๐‘…๐‘ฆ

Note: ๐‘‹(๐‘ง) is the Z-transform of ๐‘ฅ(๐‘›) with ๐‘…๐‘‚๐ถ ๐‘Ÿ๐‘ฅ < |๐‘ง| < ๐‘…๐‘ฅ and ๐‘Œ(๐‘ง) is the Z-

transform of ๐‘ฆ(๐‘›) with ๐ถ ๐‘Ÿ๐‘ฆ < |๐‘ง| < ๐‘…๐‘ฆ, ๐‘Ÿ = max(๐‘Ÿ๐‘ฅ, ๐‘Ÿ๐‘ฆ) and ๐‘… = min(๐‘…๐‘ฅ, ๐‘…๐‘ฆ).

Page 119: On Z-transform and Its Applications

111

Appendix D

A Table of Common Z-transform Pair.

Sequence Z-transform ROC

๐›ฟ(๐‘›) 1 all ๐‘ง

๐‘ข(๐‘›) ๐‘ง

๐‘ง โˆ’ 1 |๐‘ง| > 1

๐‘› ๐‘ข(๐‘›) ๐‘ง

(๐‘ง โˆ’ 1)2 |๐‘ง| > 1

๐‘›2 ๐‘ข(๐‘›) ๐‘ง(๐‘ง + 1)

(๐‘ง โˆ’ 1 )3 |๐‘ง| > 1

๐›ผ๐‘› ๐‘ข(๐‘›) ๐‘ง

๐‘ง โˆ’ ๐›ผ |๐‘ง| > |๐›ผ|

๐‘›๐›ผ๐‘› ๐‘ข(๐‘›) ๐›ผ๐‘ง

(๐‘ง โˆ’ ๐›ผ )2 |๐‘ง| > |๐›ผ|

โˆ’๐‘Ž๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1) ๐‘ง

๐‘ง โˆ’ ๐‘Ž |๐‘ง| < |๐‘Ž|

โˆ’๐‘› ๐‘Ž๐‘› ๐‘ข(โˆ’ ๐‘› โˆ’ 1) ๐›ผ๐‘ง

(๐‘ง โˆ’ ๐›ผ )2 |๐‘ง| < |๐‘Ž|

๐‘๐‘œ๐‘ (๐‘›๐›ผ)๐‘ข(๐‘›) ๐‘ง2 โˆ’ ๐‘ง๐‘๐‘œ๐‘ (๐›ผ)

๐‘ง2 โˆ’ 2๐‘ง๐‘๐‘œ๐‘ (๐›ผ) + 1 |๐‘ง| > 1

๐‘ ๐‘–๐‘›(๐‘›๐›ผ)๐‘ข(๐‘›) ๐‘ง๐‘ ๐‘–๐‘›(๐›ผ)

๐‘ง2 โˆ’ 2๐‘ง๐‘๐‘œ๐‘ (๐‘ค) + 1 |๐‘ง| > 1

Page 120: On Z-transform and Its Applications

5102

Page 121: On Z-transform and Its Applications

ุจ