open stopes and support empirical design

28
TA 4123 – Stability of Underground Excavations 06 OPEN STOPES AND SUPPORT EMPIRICAL DESIGN Ridho K. Wattimena

Upload: others

Post on 10-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

OPEN STOPES AND SUPPORT EMPIRICAL DESIGN

Ridho K. Wattimena

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

INTRODUCTION

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Introduction

❖ RMR and Q were developed from a database composed primarily of civil engineering tunnels.

❖ The recommendations derived from the systems often results in conservative designs for large temporary or non-entry mining excavations

❖ These limited access areas can be designed as temporary structures and in the case of non-entry stopes, can tolerate limited local fallout of small rock blocks provided that dilution is minimised and overall stability is maintained →A more economical design suitable for mining (Hutchinson and Diederichs, 1996).

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

MATHEW’S STABILITY GRAPH METHOD

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Introduction

❖ Mathews et al. (1980) proposed an empirical method for the dimensioning of open stopes based on Q’ and on three factors accounting for stress, structural orientation, and gravity effects.

❖ The method is used to dimension each face of the stopeseparately based on a combination of these three factors and on the hydraulic radius (surface area/perimeter) HRof the face.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Stability Number N

N = Q’ x A x B x C

Q’ = (RQD/Jn) x (Jr/Ja)

A is a measure of the ratio of intact rock strength to induced stress

B is a measure of the relative difference between the dips of the stope surface and the critical joint sets.

C reflects the fact that the orientation of the stopeinfluences its stability.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Mathews et al., 1980)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Mathews et al., 1980)

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

MODIFIED STABILITY GRAPH METHOD

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Introduction

❖ Potvin (1988) modified Mathew’s approach and calibrated it using 175 case histories and Nickson (1992)added case histories and further investigated Potvin’ssupport design guidelines.

❖ Case histories: hanging walls, foot walls, ends, and backs from a wide variety of mining environments.

❖ Other case histories can be found throughout literature (Bawden, 1993; Bawden et al., 1989, Greer, 1989).

❖ The method has been expanded by Hutchinson and Diederichs (1996) to provide improved support guidelines.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Modified Stability Number, N’

❖ The classification of the rock mass and of the excavation problem is accomplished in the Modified Stability Graph through the use of the Modified Stability Number, N’(Potvin, 1988; Potvin and Milne, 1992; Bawden, 1993).

❖ N’ is similar to N proposed by Mathews at al. (1981) but has different factor weightings.

❖ Canadian mines use N’ and Australian mines use N (Hutchinson and Diederichs, 1996).

❖ This method has been referred to as the Potvin Method, the Mathews/Potvin Method, the Modified Stability Graph Method, and the Stability Graph Method.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Modified Stability Number, N’

N’ = Q’ x A x B x C

Q’ = (RQD/Jn) x (Jr/Ja)

A is a measure of the ratio of intact rock strength to induced stress

B is a measure of the relative orientation of dominant jointing with respect to the excavation surface.

C is a measure of the influence of gravity on the stability of the face being considered.

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Rock Stress Factor A

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Joint Orientation Factor B

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Joint Orientation Factor B

Simplified approach(special case)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Gravity Adjustment Factor C

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Stope and SupportDesign Zones

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Cableboltdensity to control local unravelling

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Cableboltspacing and density for overall stopeface stability

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

Five design zones for cable support of open stopes(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Hutchinson and Diederichs, 1996)

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Hutchinson and Diederichs, 1996)

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

EXTENDED MATHEW’S STABILITY GRAPH METHOD

@RKW

TA

412

3–

Sta

bil

ity

of

Un

der

gro

un

d E

xcav

atio

ns

06

(Mawdesley et al., 2001)

THANK YOU