operational space dynamics-15 - stanford university · i iml m d 22 mm 1 1 x y m1 m2 ... ddd

16
1 Operational Space Framework! .. motion in contact Whole-body Compliance! Joint Space Control Joint Space Control Joint Space Control F ( ) Goal Vx F ( ) Goal Vx T F J Task-Oriented Control

Upload: nguyenminh

Post on 01-Dec-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

1

OperationalSpaceFramework! .. motion in contact

Whole-body Compliance!

Joint Space Control Joint Space Control

Joint Space Control

F

( )GoalV xF

( )GoalV x

T FJ

Task-Oriented Control

2

F

dynamics( )F F

x

x Fp

Task-Oriented Dynamics Unified Motion & Force Control

motion contactF F F contactF

motionF

Equations of Motion

d L LF

dt x x

with ( , ) ( , ) ( )L x x T x x V x

End-Effector Control

( )TJ q F F

1

2

T

goal p g gV k x x x x

( )GoalV xF

1

2

T

goal p g gU k x x x x

System T Vd T

Fdt x x

ˆgoalF V V

X

Passive Systems

0

goalT Vd T

dt x x

StableConservative Forces

Asymptotic Stability

is asymptotically stable if

0 ; 0TsF x for x

0s v vF k x k

ˆp g vF k x x k x p Control

s

goalT Vd T

dt x xF

a system

sFx

3

Artificial Potential Field

( ) ( , ) ( )x x x x p x F

Operational Space Dynamics

End-Effector Centrifugal and Coriolis forces

( , ) :x x

( ) :p x End-Effector Gravity forces:F End-Effector Generalized forces

( ) : x End-Effector Kinetic Energy Matrix

:x End-Effector Position andOrientation

Example2-d.o.f arm

ˆ ( )p g vF k x x k x p x

( ) ( , ) ( )x x x x p x F 1q1l

2q2l

Closed loop behavior

111*

1( ) v p gm q x k x k mx yx

122*

2( ) v p gm q y k y k my xy

* 2 *1 2 1 112 p g vm c m x m y k x x k x

* 2 *1 2 1 212 p g vm c m y m x k y y k y

( ) ( , ) ( )A q q b q q g q

Joint Space Dynamics

Centrifugal and Coriolis forces( , ) :b q q( ) :g q Gravity forces: Generalized forces

( ) :A q Kinetic Energy Matrix

:q Joint Coordinates

Lagrange Equations

( )d L L

dt q q

( ) ( , ) ( )A q q b q q g q

(( )) ,A b q qq 1

2( ): TA q qAqT

4

Equations of Motionvcii

Pci

Link i

TTotal Kinetic Energy:

1

2Lin i

T

kAqT T q

Equations of Motion

1( )

2 i i

T T Ci i C C i i iT mv v I

1

n

ii

T T

vcii

Pci

Link i

Explicit Form

Total Kinetic Energy

Equations of Motion

Generalized Coordinates q

Kinetic EnergyQuadratic Form of

Generalized Velocities

1

1(

1

2)

2 i i

nT T C

i C C i iT

ii

m v vq A q I

q

1

2Tq qT A

vcii

Pci

Link i

Explicit Form

Generalized Velocities

Equations of Motion

i ivC Jv q

1

1( )

2 i i i i

T Tv v

nT T C

i ii

m q q qJ J J JI q

Explicit Formvcii

Pci

Link i

iiC J q

1

1(

1

2)

2 i i

nT T C

i C C i iT

ii

m v vq A q I

Equations of Motionvcii

Pci

Link i

Explicit Form

1

2Tq qA

1

( )1

2 i i i i

nT T

i vi

T Cv imq J J I J qJ

1

( )i i i i

nT T C

i v v ii

A m J J J I J

( )

11 12 1

21 22 2

1 2

( )n n

n

n

n n nn

a a a

a a aA q

a a a

5

Christoffel Symbols1

( )2ijk ijk ikj jkib a a a

ij

k

a

q

2( , ) ( ) ( )b q q C q q B q qq

B

b b b

b b b

b b b

q q

q q

q qn

n n n n

n n

n n

n n n n n n n

( ) [ ]

(

( )) (

( ))

, , ,(

, , ,(

, , ,( (

q qq

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

1

2

1

21

2 2 2

2 2 2

2 2 2

1 12 1 13 1 1)

2 12 2 13 2 1)

12 13 1)

1 2

1 3

1)

C

b b b

b b b

b b b

q

q

qn n n

nn

nn

n n n nn n

( )[ ]

( ) ( )

, , ,

, , ,

, , ,

q q

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP2

1 11 1 22 1

2 11 2 22 2

11 22

12

22

2

1

Gravity Vector

m2g

c2

m1g

c1

mng

cnm3g

c3

1 21 2( ( ) ( ) ( ))n

T T Tv v v ng J m g J m g J m g

Effector Equations of Motion

Non-Redundant Manipulator ; 0n m

01 2

T

mx x x x

1 2 T

nq q q q x G q

0R1nR

10n

Domain

1

,n

q i ii

D q q

x1Cq

2Cq

G

x qD G D

x qD G D

In form a complete set of configuration parameters for the manipulator.01 2, , , x mD x x x

Excluding Singularitiesand such that G is one-to-one

:qD

system of generalizedcoordinates

01 , , : mx x

Kinetic Energy

1, ( )

2TT x x x x x

Kinetic Energy Matrix0 0

( ) :m m x

6

1( , ) ( )

2T

xT x x x x x

Identity( , ) ( , )x qT x x T q q

1 1( ) ( )

2 2T Tx X x q A q q

x Jq 1( ) ( ) ( ) ( )Tx J q A q J q

( ) ( )Tp x J g q

1

2TT

x x xx x

d Tx x

dt x

1

2 i

Tx

i

Tx x

x

System T Ud T

Fdt x x

1

0

1

2,

1

2 m

Tx

x

x x

x x x

x x

( , ) ( , )x x x m x x 11

;2 i

T Ti xm x x J A J

( , )

( , ) ( , )

T T

T T

x J Aq h q q J Aq

m x x J l q q J Aq

where h Jq1

2

i

Ti ql q A q

1 1

1 2

1( , )

21 1

( , ) | | 2 | |2 21

( , ) | |2

( ) . | |

1| | ( , )

2

( , ) ( , )

i

i i

i

i i

i

Ti x

T T T Tx x

T Tx

T Tnx q

i i i

T Tx

T T

m x x x x

m x x x J A J x x J A J x

m x x q A q J A q

q q qq A q q A q

x x x

q A q J l q q

m x x J l q q J A q

( , ) ( , )TJ Aq l q q h q q

( ) ( , ) ( , )TJ q b q q h q q

where h Jq1

2

i

Ti ql q A q

7

Joint Space/Operational SpaceRelationships

( , ) ( , ) x qT x x T q q

1 1( ) ( )

2 2T Tx X x q A q q

1 1

2 2T TTq qJ J Aq q

Using ( )x J q q

where ( , ) ( )h q q J q q

1( ) ( ) ( ) ( )Tx J q A q J q

( , ) ( ) ( , ) ( ) ( , )Tx x J q b q q q h q q

( ) ( ) ( )Tp x J q g q

Joint Space/Operational SpaceRelationships

, , and are all expressed in terms ofjoint coordinates P

x qD G D

The domain can be extended toxD

:qD domain excluding singularitiesqD

Example

2

2

1

1

d cx

d s

20

2

1 1

1 1

d s cJ

d c s

2 2q d

g

l1y

CI1

CI2

m1

m2

d2

x

20

2

1 1

1 1

d s cJ

d c s

21 1 0 1;

1 0

dJ

11 21

2 22

0 1 0 0 1

1 0 0 1 0

m d

d m

0

2

0 11 1

01 1

c sJ

ds c

1 J

21

2 2

0

0

m

m m

2221 222 1 1

2 22

I I m l

md

2 2m m

1x1y

1m

2m

2m

8

20

2

01 1 1 1

1 1 1 10

mc s c s

s c s cm

2 2 2m m m

20 2 2 2

22 2 2

1 1

1 1

m m s m sc

m sc m m c

2m2 2m m

20 2 2 2

22 2 2

1 1

1 1

m m s m sc

m sc m m c

Nonlinear Dynamic Decoupling

with TJ F

( ) ( , ) ( )x x x x p x F Model

*( ) ( ,ˆ ˆ) ( )ˆF px x x xF Control Structure

*I x FDecoupled System

Dynamic Decoupling

( ) ( , ) ( )x x x x p x F

*ˆ ˆ ˆ( , ) ( )F F x x p x

0

1 * 1 1ˆ ˆˆ mI X F P P

( )G x ( , )x x ( )P x

0

*( ) ( , ) ( )mI x G x F x x d t

1 ˆ( )G x I

1( , )x x P

( ) :d t unmodeled disturbances

Perfect Estimates

0

*mI x F

input of decoupled end-effector*F

Goal Position Control

*v p gF k x k x x

Closed Loop

0m v p p gI x k x k x k x

9

Closed Loop0m v p p gI x k x k x k x

t

x

max

2gx

1gx

PD Control

*v p gF k x k x x

Velocity-Like Control

* pv g

v

kF k x x x

k

dx

pd g

v

kx x x

k

dx

* pv g

v

kF k x x x

k

* v dF k x x

withmax

d

Vsat

x

1

0 1 max

dx

1

( ) 1

x if xsat x

sign x if x

Trajectory TrackingTrajectory: , , d d dx x x

0

* ( ) ( ) m d v d p dF I x k x x k x x

( ) ( ) ( ) d v d p dx x k x x k x x

with

or

X dx x

0 X v X p Xk k

In joint space

0 q v q p qk k

with q dq q

10

Compliant MotionControl Compliant Manipulation Primitives

Advanced Manipulation Capabilities

Multi-contact Manipulation

11

Unified Motion/Force Control

motion contactF F F contactF

motionF

Unified Motion/Force Control

0 0 0( ) , ( ) contactox x p x F F

•Generalized Selection Matrix

•Dynamic Model (Homogeneity)

Task Description Task Specification

motion forceF F F

1 0 0

0 1 0 ;

0 0 0

I

Selection matrix

Generalized Selection Matrix

fR

fRSelection in0( ) ( )fR f Rf R f

fRf

0RSelection in

f

Tf RR f

0RTf fR R f

0 0

0 0 ;

0 0

x

y

z

F

F F

F

3F FI

Generalized Selection Matrix

0 0

0 0 ;

0 0

x

y

z

M

M M

M

3M MI

12

0

0

TF F F

TM M M

R R

R R

0

0

TF F F

TM M M

R R

R R

Generalized Selection Matrix Basic Dynamic Model

( )x J q q

Operational force

?

Forces &Moments

( )TJ q F

Linear & AngularVelocities

0 ( )v

J q q

0( )x J E Jq qx

0 ˆf

Fm

TfE F

m

0 )(T TTJ JF FE

vx E

Forces & Moments

ˆv

Basic Dynamic Model

0TE E

( , ) ( )x x x p x F

0 0 0 0( , ) ( )x p x F

TE

ˆv

with

r rx E

Orientation Representation

rx

rdxr r rdx x x

r rx E

Instantaneous Angular Error

r rx E

r rx E

r rE x

Instantaneous Angular Error

13

p pdd

r rd

x xx x

x x

r rx E

r rx E

( )r r r d rx x x E

( )r r r dE x x

Control – Position Errors

p pdx x

ErrorVector

Goal Position pdd

rd

xx

x

*p p pd v pf k x x k x

*p vm k k

with r r r rdE x x x

Closed loop

. 0p v p p p pdI x k x k x x 0v pI k k

Direction Cosines

1

2T

r rE E

1 2 3

TT T Trx r r r

1 2 3

TT T Trd d d dx r r r

The angular rotation error

1 1 2 2 3 3

1ˆ ˆ ˆ

2 d d dr r r r r r

Euler ParametersThe end-effector orientation

0 1 2 3

T

rx

The desired orientation 0 1 2 3

T

d d d d d

The angular rotation error

1 0 3 2

2 3 0 1

3 2 1 0

2RE

( )R dE

Motion Tracking , ,pd pd pdx x x

*pd p p pd v p pdF x k x x k x x

Closed loop

. 0x v x p xI k k

px p pdx x with

Angular Acceleration

r rEx

r r rEx E

rr r rxE E E

14

Acceleration Direction Cosines

The orientation is described by

1 2 3

TT T Trx r r r

1 ( 1) 2 ( 1) 3 ( 1); ; ;n n nr x r y r z

0R1nR

10n

The second time derivatives

2

( 1)( 1) ( 1)2

nn n

d

dt

x

x x

2

( 1)( 1) ( 1)2

nn n

d

dt

y

y y

2

( 1)( 1) ( 1)2

nn n

d

dt

z

z z

However T T u v w u v w v w u

( ) , ) ( )( Tr r r rE R x x x x

This yields

where

1 3

2 3

3 3

, )(

T

Tr

T

r I

r I

r I

R

x

1 1, )

2 2(T T

d rd r rdE x R xx

Acceleration Direction Cosines

Euler ParametersThe acceleration associated with

Euler parameters

1 1( )

4 2T

since 0T

1 2 3

0 3 2

3 0 1

2 1 0

The angular acceleration vector

4T

The desired angular acceleration

4T

d d d

Euler Parameters

15

Motion Tracking , ,pd pd pdx x x

*pd p p pd v p pdF x k x x k x x

Closed loop

. 0x v x p xI k k

px p pdx x with

*d p v dm k k

with r r rdE x x

d r rd rdE x x

d r rd rd r rd rd dE x x E x E x and

Motion Tracking , ,pd pd pdx x x

*pd p p pd v p pdf x k x x k x x

Closed loop

0p pd v p pd p p pdx x k x x k x x

0d v d pk k

A Mass Spring SystemSystem

smz k z f

s sf k z

1s s

s

m f f fk

Control

fs f s d v sf f m k f f k f

s compf f m f

Control-loop System

0fs s v s s f s df k k f k k f f

Static Equilibrium

s df f

1s s

s

m f f fk

System End-Effector/Sensor System

0 0 0 0( , ) ( ) contactFx p x F

0 motion forceF F F

Unified Control

*0 0 0

ˆ ˆˆmotionmotion F PF

*0

ˆforceforc sensore F FF

16

End-Effector/Sensor System

0 0 0 0( , ) ( ) contactFx p x F

0 motion forceF F F

Unified Control

*0 0 0

ˆ ˆˆmotionmotion F PF

*0

ˆforf ce desorce iredF FF

Unified Motion & Force Control

Two decoupled Subsystems

*motionF *forceF

Unified Motion & Force Control

Two decoupled Subsystems

*motionF *forceF