opportunities and pathways to a green future for all sunshine... · 10 20 30 40 50 60 1980 1990...

36
Opportunities and Pathways to a Green Future for All (based on a Chinese Academy of Sciences report of the same title) Choon Fong Shih University Professor and Advisor National University of Singapore University of Chinese Academy of Sciences “Opportunities and Challenges for Methanol as a Global Liquid Energy Carrier” Stanford University, July 31 st – August 1 st 2017

Upload: others

Post on 10-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Opportunities and Pathways to a Green Future for All(based on a Chinese Academy of Sciences report of the same title)

Choon Fong ShihUniversity Professor and AdvisorNational University of Singapore

University of Chinese Academy of Sciences“Opportunities and Challenges for Methanol as a Global Liquid Energy Carrier”

Stanford University, July 31st – August 1st 2017

Page 2: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

2

TWO FUTURESBusiness as

Usual

Fossilized Sunshine Liquid SunshineImage credit: Foreign Policy, the Global Magazine of News and Ideas, May 31st 2017

Page 3: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

 ‐

 10

 20

 30

 40

 50

 60

1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

GigaTon

nes C

O2/year

OECD Non‐OECD Business as Usual Liquid Sunshine

3

Business as Usual or Green Future?Common man solution for our common destiny

Sources: Data from ‘BP Statistical Review 2016’ for data up to 2015. 

Today

CO2 emissions abatement by OECD countries alone make 

little difference

Optimistic target based on abating about 2.5 trillion tons of CO2 over the next 80 years, vis‐à‐vis Business as Usual.

Non‐OECD

OECD2050 2100

Annual CO2Emissions from Energy Use

100

95GT/year by 2100

95GT/year by 2100

CO2 emissions abatement by Non‐OECD countries is key to our Green Future

CO2 emissions abatement by Non‐OECD countries is key to our Green Future

Page 4: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

4

Pathways to Sustainable Green Future

Fossilized Sunshine

Fossil Methanol

Hybrid Systems

Clean Methanol

Liquid Sunshine

Green Methanol

Today

HybridSystems

First Deployment

MassDeployment

LiquidSunshine

FirstDeployment

MassDeployment 

2020 2050 2070

++

H2

‐‐

2040

1G – 2G 3G – 4G 5G & beyond

Page 5: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

“Inexhaustible Sunshine”

“Inexhaustible Sunshine”

Environment degradation Depleting fossil fuels

5

1720 1870 2020 2200

CoalCoalWoodWood

OilOil

RenewablesRenewables

150 more years100 more years

World Pop. 0.6 B 1.3 B 7.6 B

Three Existential Threats

??

“Fossilized Sunshine”“Fossilized Sunshine”

2050

>9 B

Energy is Humankind’s Biggest Challenge!Three Existential Threats

2 3Climate change1

Page 6: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

6

44.144.1

PM2.5μg/m3

15.215.2

PM2.5μg/m3

Local Environment Degradation

1 :  3

OECD Countries Non‐OECD Countries

Rising Pollution & PopulationPlummeting Resources

Page 7: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

7

Saudi Arabia

Oil Gas

Plentiful Sunshine!

Can Saudi Arabia export sunshine to every corner of the World?   HOW?

Page 8: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Sunshine is Vast Inexhaustible Resource

8

Challenge: Turning Sunshine into an energy commodity distributable worldwide

1 hour of Sunshine > 1 year of global energy needs1 hour of Sunshine > 1 year of global energy needs

Page 9: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Common Man Solution for Our Common Destiny

Environmental Impact?

What can we learn from nature?

Transport & Distribute?

Convert& Store?

HarvestSunshine?

What are the ways to …

The WORLD’s fossil fuels are depleting fast …

9

Page 10: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Designing Energy Carrier & System Inspired by NatureEcologically Balanced Cycle

10

Harvest

Conversion & Storage

Distribution

Utilization

Recycle

stable chemical form liquid‐

based systems

*CO2 and H2O are nature’s energy transport agents that bind and store the sun’s energy in chemical form; they are recycled to the environment when the chemical energy is utilized

EnergyPathway

Plentiful   Sunshine

CO2

H2OCO2

H2OEnergy Transporter

CO2 + H2O*

example

Page 11: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Fossil Fuel-based Energy SystemExtracting fossil fuels and dumping CO2 and pollutants into atmosphere

11

Conversion & Storage

Distribution

Utilization

Depleting Fossil Fuel Reservoir

Atmospheric Dump

CO2 & Pollutants

Organic & Inorganic Matter

Fossil Fuels

From the bowels of the Earth

Page 12: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Battery-based Energy SystemExtracting lithium, etc., and dumping battery waste into landfills

12

Conversion & Storage

Distribution

Utilization

Depleting Mineral Mines

Battery Factory

Harvest

Battery Dump

MaterialPathway

Plentiful   Sunshine

Energy TransporterBatteries

From the bowels of the Earth

To the land of the Living 

Earth

Page 13: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Good BadBad/Poor

Comparing Carriers of Green EnergyLiquids are Optimal Medium to Store and Transport Energy

* Long distance transportation/shipping > 5,000km^ Includes pollution from production, use, and disposal†  Electricity must be used as it is generated or converted immediately into storable forms,e.g. electrochemical energy stored by batteries

Observations• Liquids are optimal for storing and transporting energy

• E.g. Natural gas is turned into LNG for shipping globally

• Alcohols are stable energy‐dense medium for storing electricity and hydrogen at ambient conditions

Energy Physical State Solid Liquid Gaseous Electro‐

chemical†

Energy Carrier Biomass Alcohols Hydrogen Battery/Electricity

Energy Density

Storage Costs

Transport Costs*

Environmental Impact^

13

Page 14: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

14

Reservoirs Enable Man to Control and Manage Nature’s Intermittent Resources

Rain

Sunshine& Wind

Beyond humankind’s 

controlOnce stored in reservoirs, resource can be distributed and drawn on demand within the control of humankind

Catchment

RainwaterReservoir

EnergyReservoir

Page 15: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

15

Energy Carriers – Sweet-Spot

Relative Energy Density by Volume

Relativ

e En

ergy Den

sity by Weigh

t Sweet-SpotUncompressed   Gas*

Highly Compressed Gas*

Batteries

Liquid†

SolidDirectional target of preferred 

energy carriers

*Excluding weight of heavy gas tanks

†Liquids occupy the energy density sweet spot; they are also stable, easy to store, transport, distribute. Methanol has, on a volume basis, 40% more H2 than liquid hydrogen at ‐253oC, and 140% more H2  thancompressed hydrogen at 700 bars.

high energy density by weight & volume

Li‐ionRedox flow

Page 16: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Battery, Hydrogen & Alcohol Energy ReservoirsReservoir size for 3 hours storage of global energy needs in 2050

5.6x Height of Mt. 

Everest

Li‐ionBatteries

Compressed Hydrogenat 700 bars

Compressed Hydrogenat 200 bars

AlcoholFuels

How Large?Stacked on top of a 7,140 m2

football field

How Heavy?Weight in 

thousands of Airbus A380s

Li‐ionBatteries

Compressed Hydrogenat 700 bars

Compressed Hydrogenat 200 bars

AlcoholFuels

~30x

~1.5x

~10x

60

Li‐ion batteries:       12 mil tonnes of Lithium (86% of world’s reserves) required upfront, 10‐15% add‐on per year; massive hazardous wasteCompressed H2:       Very small molecule and prone to leakage; large‐scale storage of compressed hydrogen could pose serious safety risksAlcohol fuels: Alcohol fuels such as methanol and ethanol have high energy density by weight and by volume

16

1.7x 

3x 

0.3x 

Page 17: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Battery, Hydrogen and Methanol Estimated cost of distribution infrastructure

Battery

Hydrogen

Methanol^

$10‐15 billion

300x

100x

Retrofit trucks, tanks and pumps

CFRP Tanks for transport, 

storage 

Grid upgrades, new charging 

stations

* Estimated upfront infrastructure costs, assuming 200 cars per 1000 people, for China, in the next decade^ Methanol is the simplest and easiest target of green liquid fuels

Distribution: Wholesale to End-Users

17

Infrastructure Costs*

Still Waiting…

Page 18: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

18

Energy Carriers/Sources – Key PollutantsResource Structure and Constituents CO2

Major Pollutants(NOX, SOX, PM)

Storage, Shipping,  

Distribution

Coal

Complex mixture of organic and inorganic compounds, heavymetals. Various coal grades have differing nitrogen & sulfur content.

100 SemiGlobal

Crude Oil

Complex mixture of compounds, consisting primarily of C5 to C70hydrocarbons. Sulfur content varies greatly.

76 Global

Natural Gas Predominantly CH4. Some C2H6 and other light hydrocarbons. 40 Regional

Methanol*(C1 Alcohol) Simplest alcohol fuel, CH4O 45 Global

HydrogenHydrogen is gaseous above ‐253OC. It is liquefied or pressurized to 700 bars for storage purposes.

0 HighlyRestricted

*These data would also apply to ethanol, a C2 primary alcohol. Methanol and Ethanol occupy the sweet spot of being both clean and easy to store, ship and distribute.

Fossilized Sunshine

InorganicGas

100100100

34

69

70

93100

60

NOXSOX

PM

NOXSOXPM

NOXSOXPM

NOXSOXPM

NOXSOXPM

2

0

0

3

0

0

Estimated data based on (i) empirical results for power generation per unit output and (ii) emissions standards for boilers

Page 19: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Fossil-based Electricity and OilShaped today’s world, but not much longer

Industrial Residential Commercial

Lighting & Heating

Appliances & Gadgets

Electricity & Oil together meet all 

energy needs of today’s society

Materials & Chemicals Transportation

19

Looming threats of fossil‐based energy: Environmental Impact, Depleting Resources

Clean at point of useInstant, on‐demand power

Versatile with many applications

High energy densityFeedstock for materialsStable, storable and transportable

Page 20: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Regenerate ElectricityRegenerate Electricity

20

Light / ACLight / AC AppliancesAppliances Mobile gadgetsMobile gadgets TransportationTransportation MaterialsMaterials

Liquid storage

MachineryMachinery

instant multipurpose power & no emissions at point of use

versatile, easy to store & ship with global reach

Grid storage

Electricity Liquids

GreenSynergistic Dual Energy System

Surplus PowerSurplus Power

Green Electricity and Green Liquids

Can leverage existing extensive energy infrastructure

Page 21: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

21

Life Cycle Approach

Energy Extraction, 

Conversion & Distribution

Energy Extraction, 

Conversion & Distribution

Well‐to‐Tank Tank‐to‐Wheels

Vehicle ProductionVehicle Production

DisposalDisposal

Point of Use (POU)Point of Use (POU)

Cradle-to-Grave

Before POUBefore POUWell-to-Wheels

UtilizationUtilization

Efficiency entails both POU and before POU

Energy and Material Pathways

Page 22: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

22

Battery Cars Are Clean

“No Emissions”

Marketing vs. RealityMarketing vs. RealityGasoline Cars 

Are Dirty

Pollutantsmg/km

CO2g/km

390

300310

135

80

135

210245

Coal to BEV*

LNG to Gas to BEV*

*BEV = Battery‐electric vehicle^Battery disposal not included

Production& Disposal

Before Point of use

Emissions

Point of use

POUPoint of Use

POUPoint of Use

Vehicle Production and Disposal^

Vehicle Production and Disposal^

Before Point of UseBefore Point of Use

Page 23: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

23

Batteries are also CostlyBreakeven economics and end-of-life recycling costs

$470

$350

$290

$250

$125$115

$55

Adapted from: Covert, Thomas, Michael Greenstone, and Christopher R. Knittel. “Will We Ever Stop Using Fossil Fuels?” Journal of Economic Perspectives 30, no. 1 (February 2016): 117–138.  Recycling assumption: Net cost of battery recycling assumed to be $150/kWh in 10 years

plus recycling cost

10‐kWh Tesla Powerwall

Current cost of batteries

2020 Target cost of batteries$64

Page 24: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

24

Hydrogen Distribution is Very CostlyConversion costs from gasoline/diesel refueling systems

Hydrogen*USD 1.5 – 2 million

Methanol†(simplest alcohol fuel)

USD 25k Hydrogen pump plus array of storage tanks

for ~15 cars

† Includes retrofitting of nozzle, pump and storage tanks* New hydrogen storage equipment requires large amount of space

Storage at 700+ bars

Page 25: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

25

Applying 3E Criteria to current and alternative energy solutions

Optimally‐balanced Non‐optimal

Efficiency

Economics

Environment

There is no perfect energy solution,only optimally‐balanced energy solutions

Page 26: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

3E Assessment Across The Life CycleLight vehicles (comparing technologies)

Pollutants^Emittedmg/km

26

Gasoline ICEV Coal to BEV NG to BEV Methanol 

ICEVMethanol 

FCEV

Gasoline ICEV Conventional Gasoline Car

Coal to BEV* Battery Electric Vehicle powered by Coal‐power

NG to BEV* Natural gas (NG) imported as LNG to produce power for Battery Electric Vehicle

Methanol ICEV Natural gas converted to Methanol, Combustion engine

Methanol FCEV Methanol fuel cell electric vehicle

CNG ICEV Compressed Natural Gas‐powered car

Cost₵/km

Well‐to‐wheel 

efficiency %

CO2 Emittedg/km

Vehicle Production& Disposal

Well‐to‐wheels

*Battery disposal not included           ^Pollutants include SOX, NOX, VOCs and PM

17%

290

380

16.4

26%390

310

24.828%

300

135

24.8

24%

160

80

14.5

29%

155

80

16.6

CNG ICEV

19%

180

80

17.1

2 1 3

Page 27: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

27

Methanol Fuel is Cost-CompetitiveResource 

cost

Values in $/MMBtu

Conversion cost

G D

Crude Oil$8.50 – 10.50b

Refining$2.50 – 3.50

Shipping cost

$0.30

Location‐specific distribution costa

$2 – 4

End usercost

$13 – 18c

Gasoline / Diesel

a) Distribution costs can vary widely from country to country and locations within each countryb) Corresponds approximately to crude oil price of $50 – 60 per barrelc) Before tax on gasoline / diesel. In the US, tax is around $3.50‐4.00/MMBtuSource: Internal analysis, US data points from EIA website as at April 6, 2017

Natural Gas$2.50 – 3.50

Liquefaction + Shipping + Regasification$5 – 12

Piped to users$5 – 8 $12 – 22

LNG

Natural Gas$2.50 – 3.50

Methanol Production$4 – 5 $0.50 $4 – 7 $11 – 16

GasolineDiesel

Natural Gas

Methanol C1

Methanol

Page 28: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

28

Natural Gas

Gas‐Heated ReformerGas‐Heated Reformer

Auto‐Thermal Reformer

Auto‐Thermal Reformer

syngas Methanol SynthesisMethanol Synthesis

Methanolheat

AirSeparation

AirSeparation

Gas Compression

Gas Compression

O2 

Electricity Electricity

syngas‐NG mix

3G-Gas: Methanol SynthesisUltra-Low Emissions (ULE) – Natural Gas based

0.14 tons CO2per ton methanol

Advanced reformer utilizes CO2 from combustion in the synthesis

EfficientEconomic

Environment‐friendly

C1

* Comparable CO2 emissions for 1G‐Coal and 2G‐Gas are 3.33 and 0.56 tons respectively 

Page 29: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

29

34.0Iran

32.3

Russia

24.5

Qatar

17.5

Turkmenistan

10.4US

31.6 China

22.7

Argentina

20.0

Algeria17.6

16.2

Canada

8.3Saudi Arabia

6.1UAE

5.6Venezuela

6.9

5.2

5.1

Mozambique

Nigeria

15.4

Mexico

17.5

Australia

11.0

South Africa

8.1

Brazil

5.8

4.7 Madagascar

4.5

4.7

Conventional Gas

Shale Gas

209.0TCM

1,334Bboe*

214.5TCM

1,368Bboe*

Shale Gas  increases Global Gas Reserves Massively

Source: BP Statistical Review 2016, USGS, U.S. EIA, Australian ERA

* Bboe = billion barrels of oil equivalent

ULE production supported by geographicallydiverse and abundant natural gas supply

(Reserves as of 2015)

4.8

Countries with over 4.5 Trillion Cubic Meters

Page 30: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Harvest

5G Energy System Inspired by Nature

Conversion to green methanol Utilization

RecycleCO2 & H2O

Direct CO2 ReductionHigh SelectivityLow P, Low TCatalyst

CO2

H2H2Generation

CO2Capture

Membrane Separation

RWGS Methanol Synthesis & Distillation

CH3OH

5G+ Artificial Photosynthesis Emulating Nature

Liquid Fuels

CO2 & H2O Catalytic Conversion

Distillation

Hybrid Approach Integrating Synthetic Biology

Page 31: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Methanol CH3OH has, on a volume basis, 40% more H2 than liquid hydrogen at‐253OC, and 140% more H2 than compressed hydrogen at 700 bars.

31

Methanol – Liquid Electricity & Liquid HydrogenStoring electricity & hydrogen as liquid at ambient conditions

Methanol for storing and distributing electricity and 

hydrogen

H2Generation

CO2Capture

Synthesis

EmissionsApplications for pure CO2

Other Applications

Reformer

Page 32: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

32

heat & power

petro‐chemicals

ground transport

marine

hydrogen applications Liquid 

Hydrogen

Clean Fuel Oil

Liquid Electricity

CleanCrude

Green Methanol

Methanol Applicationsversatile & multi-purpose resource

Easy to store and distribute

Page 33: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

Harnessing SunshineInspired by Nature vs. Business as Usual

33Recap of slides 10‐12, and 3E criteria ‐ Efficiency, Economics, Environment

Plentiful   Sunshine

Land Dump

Atmospheric Dump

Buried inthe ground

Utilization

Inspired by Nature

Business as Usual

3E must be applied from start to end

CO2 H2O

Page 34: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

34

Liquid Sunshine Methanol RoadmapPhase I

Fossil MethanolPhase II

Clean MethanolPhase III

Green Methanol

1G‐Coal 2G‐Gas 3G‐Gas/ULE 3G‐Coal 4G‐Biomass 5G & Beyond

Coal Gas RenewableBiomass

2020 2025 2030 2040

2050 2070

First* Deployment

* Commissioning of first commercial viable production facility^ Deployment meeting over 15% of total energy consumption

Mass^ Deployment

Nuclear Artificial Photosynthesis

Page 35: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

35

Liquid Sunshine EconomyClean Reliable Fuel for the Common Man

Blue SkyGood Jobs

HappyHealthy FamiliesIndividuals

Planet

Societies

Energy DiversityEnergy SecurityEconomic Growth

ProsperityGlobal Peace

Stewardship of the Living 

Earth

Stop Climate Change

Page 36: Opportunities and Pathways to a Green Future for All Sunshine... · 10 20 30 40 50 60 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 GigaTonnes CO 2 /year OECD Non‐OECD

36

Treat the earth well – it is borrowed from our children and our children's children. collective wisdom from the early centuries to the present