optical design with zemax - uni-jena.de · 2012. 11. 28. · lecture 7: optimization i 2012-12-11...

27
www.iap.uni-jena.de Optical Design with Zemax Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012

Upload: others

Post on 02-Oct-2020

31 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

www.iap.uni-jena.de

Optical Design with Zemax

Lecture 7: Optimization I

2012-12-11

Herbert Gross

Winter term 2012

Page 2: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

2 7 Optimization I

Time schedule

1 16.10. Introduction

Introduction, Zemax interface, menues, file handling, preferences, Editors, updates, windows,

Coordinate systems and notations, System description, Component reversal, system insertion,

scaling, 3D geometry, aperture, field, wavelength

2 23.10. Properties of optical systems I Diameters, stop and pupil, vignetting, Layouts, Materials, Glass catalogs, Raytrace, Ray fans

and sampling, Footprints

3 30.10. Properties of optical systems II Types of surfaces, Aspheres, Gratings and diffractive surfaces, Gradient media, Cardinal

elements, Lens properties, Imaging, magnification, paraxial approximation and modelling

4 06.11. Aberrations I Representation of geometrical aberrations, Spot diagram, Transverse aberration diagrams,

Aberration expansions, Primary aberrations,

5 13.+27.11. Aberrations II Wave aberrations, Zernike polynomials, Point spread function, Optical transfer function

6 04.12. Advanced handling

Telecentricity, infinity object distance and afocal image, Local/global coordinates, Add fold

mirror, Vignetting, Diameter types, Ray aiming, Material index fit, Universal plot, Slider,IO of

data, Multiconfiguration, Macro language, Lens catalogs

7 11.12. Optimization I Principles of nonlinear optimization, Optimization in optical design, Global optimization

methods, Solves and pickups, variables, Sensitivity of variables in optical systems

8 18.12. Optimization II Systematic methods and optimization process, Starting points, Optimization in Zemax

9 08.01 Imaging Fundamentals of Fourier optics, Physical optical image formation, Imaging in Zemax

10 15.01. Illumination Introduction in illumination, Simple photometry of optical systems, Non-sequential raytrace,

Illumination in Zemax

11 22.01. Correction I

Symmetry principle, Lens bending, Correcting spherical aberration, Coma, stop position,

Astigmatism, Field flattening, Chromatical correction, Retrofocus and telephoto setup, Design

method

12 29.01. Correction II Field lenses, Stop position influence, Aspheres and higher orders, Principles of glass

selection, Sensitivity of a system correction, Microscopic objective lens, Zoom system

13 05.02. Physical optical modelling Gaussian beams, POP propagation, polarization raytrace, coatings

Page 3: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

1. Principles of nonlinear optimization

2. Optimization in optical design

3. Global optimization methods

4. Sensitivity of variables in optical systems

5. Systematic methods and optimization process

6. Optimization in Zemax

3 7 Optimization I

Contents

Page 4: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

7 Optimization I

Basic Idea of Optimization

iteration

path

topology of

meritfunction F

x1

x2

start

Topology of the merit function in 2 dimensions

Iterative down climbing in the topology

4

Page 5: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Mathematical description of the problem:

n variable parameters

m target values

Jacobi system matrix of derivatives,

Influence of a parameter change on the

various target values,

sensitivity function

Scalar merit function

Gradient vector of topology

Hesse matrix of 2nd derivatives

7 Optimization I

Nonlinear Optimization

x

)(xf

j

iji

x

fJ

2

1

)()(

m

i

ii xfywxF

j

jx

Fg

kj

kjxx

FH

2

5

Page 6: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

7 Optimization I

Optimization Principle for 2 Degrees of Freedom

Aberration depends on two parameters

Linearization of sensitivity, Jacobian matrix

Independent variation of parameters

Vectorial nature of changes:

Size and direction of change

Vectorial decomposition of an ideal

step of improvement,

linear interpolation

Due to non-linearity:

change of Jacobian matrix,

next iteration gives better result

f2

0

0

C

B

A

f2

initial

point

x1

=0.1

x1

=0.035

x2

=0.07

x2

=0.1

target point

6

Page 7: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Linearized environment around working point

Taylor expansion of the target function

Quadratical approximation of the merit

function

Solution by lineare Algebra

system matrix A

cases depending on the numbers

of n / m

Iterative numerical solution:

Strategy: optimization of

- direction of improvement step

- size of improvement step

7 Optimization I

Nonlinear Optimization

xJff

0

xHxxJxFxF

2

1)()( 0

)determinedover(

)determinedunder(1

1

1

nmifAAA

nmifAAA

nmifA

ATT

TT

7

Page 8: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Derivative vector in merit function topology:

Necessary for gradient-based methods

Numerical calculation by finite differences

Possibilities and accuracy

7 Optimization I

Calculation of Derivatives

)()(

xfx

xfg jx

k

j

jk k

k

j

right

j

jkx

ffg

fj(x

k)

xk

exact

forward

backward

central

xk

xk x

k

xk-x

k xk+x

k

fj-1

fj

fj+1

fj(x

k)

right

left

8

Page 9: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Effect of constraints

7 Optimization I

Effect of Constraints on Optimization

initial

point

global

minimum

local

minimum

x2

x1

constraint

x1

< 0

0

path without

constraint

path with

constraint

9

Page 10: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Types of constraints

1. Equation, rigid coupling, pick up

2. One-sided limitation, inequality

3. Double-sided limitation, interval

Numerical realizations :

1. Lagrange multiplier

2. Penalty function

3. Barriere function

4. Regular variable, soft-constraint

7 Optimization I

Boundary Conditions and Constraints

x

F(x)

permitted domain

F0(x) p

small

penalty

function

P(x)

p large

xmaxx

min

x

F(x)

permitted domain

F0(x)

barrier

function

B(x)

p large

p small

10

Page 11: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Local working optimization algorithms

7 Optimization I

Optimization Algorithms in Optical Design

methods without

derivatives

simplexconjugate

directions

derivative based

methods

nonlinear optimization methods

single merit

function

steepest

descents

descent

methods

variable

metric

Davidon

Fletcher

conjugate

gradient

no single merit

function

adaptive

optimization

nonlinear

inequalities

least squares

undamped

line searchadditive

damping

damped

multiplicative

damping

orthonorm

alization

second

derivative

11

Page 12: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Gauss-Newton method

Normal equations

System matrix

Damped least squares method (DLS)

Daming reduces step size, better convergence

without oscillations

ACM method according to E.Glatzel

Special algorithm with reduced error vector

Conjugate gradient method

Reduction of oscillations

7 Optimization I

Local Optimization Algorithms

fJJJxTT

1

i

T

ijijij

T

ijj fJIJJx 12

i

T

ijij

T

ijj fJJJx 1

TTJJJA

1

12

Page 13: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Principle of searching the local minimum

7 Optimization I

Optimization Minimum Search

x2

x1

topology of the

merit function

Gauss-Newton

method

method with

compromise

steepest

descent

nearly ideal iteration path

quadratic

approximation

around the starting

point

starting

point

13

Page 14: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Adaptation of direction and length of

steps:

rate of convergence

Gradient method:

slow due to zig-zag

7 Optimization I

Optimization: Convergence

0 10 20 30 40 50 60-12

-10

-8

-6

-4

-2

0

2

Log F

iteration

steepest

descent

conjugate

gradient

Davidon-

Fletcher-

Powell

14

Page 15: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

p1

p2

A

A'

B'

B

C'

D'

7 Optimization I

Optimization and Starting Point

The initial starting point

determines the final result

Only the next located solution

without hill-climbing is found

15

Page 16: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Simulated Annealing:

temporarily added term to

overcome local minimum

Optimization and adaptation

of annealing parameters

7 Optimization I

Global Optimization: Simulated Annealing

merit

function

F(x)

x

F

global

minimum xglo

local

minimum xloc

conventional

path

merit

function with

additive term

F(x)+Fesc

Fesc 2

0)(

0)(FxF

esc eFxF

= 1 . 0

= 0 .5

= 0 . 01

16

Page 17: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Goal of optimization:

Find the system layout which meets the required performance targets according of the

specification

Formulation of performance criteria must be done for:

- Apertur rays

- Field points

- Wavelengths

- Optional several zoom or scan positions

Selection of performance criteria depends on the application:

- Ray aberrations

- Spot diameter

- Wavefornt description by Zernike coefficients, rms value

- Strehl ratio, Point spread function

- Contrast values for selected spatial frequencies

- Uniformity of illumination

Usual scenario:

Number of requirements and targets quite larger than degrees od freedom,

Therefore only solution with compromize possible

7 Optimization I

Optimization Merit Function in Optical Design

17

Page 18: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Merit function:

Weighted sum of deviations from target values

Formulation of target values:

1. fixed numbers

2. one-sided interval (e.g. maximum value)

3. interval

Problems:

1. linear dependence of variables

2. internal contradiction of requirements

3. initail value far off from final solution

Types of constraints:

1. exact condition (hard requirements)

2. soft constraints: weighted target

Finding initial system setup:

1. modification of similar known solution

2. Literature and patents

3. Intuition and experience

7 Optimization I

Optimization in Optical Design

g f fj j

ist

j

soll

j m

2

1,

18

Page 19: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Characterization and description of the system delivers free variable parameters

of the system:

- Radii

- Thickness of lenses, air distances

- Tilt and decenter

- Free diameter of components

- Material parameter, refractive indices and dispersion

- Aspherical coefficients

- Parameter of diffractive components

- Coefficients of gradient media

General experience:

- Radii as parameter very effective

- Benefit of thickness and distances only weak

- Material parameter can only be changes discrete

7 Optimization I

Parameter of Optical Systems

19

Page 20: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Constraints in the optimization of optical systems:

1. Discrete standardized radii (tools, metrology)

2. Total track

3. Discrete choice of glasses

4. Edge thickness of lenses (handling)

5. Center thickness of lenses(stability)

6. Coupling of distances (zoom systems, forced symmetry,...)

7. Focal length, magnification, workling distance

8. Image location, pupil location

9. Avoiding ghost images (no concentric surfaces)

10. Use of given components (vendor catalog, availability, costs)

7 Optimization I

Constraints in Optical Systems

20

Page 21: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Illustration of not usefull results due to

non-sufficient constraints

7 Optimization I

Lack of Constraints in Optimization

negative edge

thickness

negative air

distance

lens thickness to largelens stability

to small

air space

to small

21

Page 22: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Typical in optics:

Twisted valleys in the topology

Selection of local minima

7 Optimization I

Optimization in Optics

LM1 LM2

LM3

LM4

LM5

22

Page 23: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Typical merit function of an achromate

Three solutions, only two are useful

7 Optimization I

Optimization Landscape of an Achromate

aperture

reduced

good

solution

1

2

3

r1

r2

23

Page 24: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

No unique solution

Contraints not sufficient

fixed:

unwanted lens shapes

Many local minima with

nearly the same

performance

7 Optimization I

Global Optimization

reference design : F = 0.00195

solution 1 : F = 0.000102

solution 2 : F = 0.000160

solution 3 : F = 0.000210

solution 4 : F = 0.000216

solution 5 : F = 0.000266

solution 10 : F = 0.000384

solution 6 : F = 0.000273

solution 7 : F = 0.000296

solution 8 : F = 0.000312

solution 9 : F = 0.000362

solution 11 : F = 0.000470

solution 12 : F = 0.000510

solution 13 : F = 0.000513

solution 14 : F = 0.000519

solution 15 : F = 0.000602

solution 16 : F = 0.000737

24

Page 25: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Saddel points in the merit function topology

Systematic search of adjacend local minima is possible

Exploration of the complete network of local minima via saddelpoints

7 Optimization I

Saddel Point Method

S

M1

M2

Fo

Page 26: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Example Double Gauss lens of system network with saddelpoints

7 Optimization I

Saddel Point Method

Page 27: Optical Design with Zemax - uni-jena.de · 2012. 11. 28. · Lecture 7: Optimization I 2012-12-11 Herbert Gross Winter term 2012 . 7 Optimization I 2 ... 5 13.+27.11. Aberrations

Special problem in glass optimization:

finite area of definition with

discrete parameters n, n

Restricted permitted area as

one possible contraint

Model glass with continuous

values of n, n in a pre-phase

of glass selection,

freezing to the next adjacend

glass

7 Optimization I

Optimization: Discrete Materials

area of permitted

glasses in

optimization

n

1.4

1.5

1.6

1.7

1.8

1.9

2

100 90 80 70 60 50 40 30 20n

area of available

glasses

27