optical fibers for future telecommunications and … · v. matĚjec, m. frank 2, m. jelÍnek , v....

38
V. MATĚJEC , M. FRANK 2 , M. JELÍNEK 2 , V. KUBEČEK 2 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57, 182 51 Prague 8-Kobylisy, Czech Republic 2 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Břehová 7, 115 19 Prague 1, Czech Republic OPTICAL FIBERS FOR FUTURE OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND ENERGY TELECOMMUNICATIONS AND ENERGY TRANSFER TRANSFER

Upload: others

Post on 10-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. MATĚJEC , M. FRANK2 , M. JELÍNEK 2, V. KUBEČEK 2

1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57, 182 51 Prague 8-Kobylisy, Czech Republic

2 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University,Břehová 7, 115 19 Prague 1, Czech Republic

OPTICAL FIBERS FOR FUTURE OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND ENERGY TELECOMMUNICATIONS AND ENERGY

TRANSFERTRANSFER

Page 2: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

• Limits of standard optical fibers• Photonic band-gap fibers – structure,

principle • Microstructure fibers – structure, principle• Preparation of photonic band-gap fibers,

microstructure fibers, examples of real structures, their use for sensing

• Bragg fibers for energy transfer

V. Matějec , ITC Zacatepec, Mexico, April 2013

OUTLINE

Page 3: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

• Losses: 0.2 dB/km→ amplifiers every 50-100 km further decrease limited by Rayleigh scattering, can’ t be used in MIR

• Nonlinearities: effect after ~ 100 km, cause dispersion, power limits; they can’ t be made very large for nonlinear devices

• Radical modification to dispersion and polarization effects

Solution - photonic crystal fibers where light is confined in an air core

V. Matějec , ITC Zacatepec, Mexico, April 2013

LIMITS OF SILICA

Page 4: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

HOLLOW-CORE BAND GAP FIBER (HCBGF)

1D Photonic crystal –Bragg fiber

2D Photonic crystal –Photonic Crystal Fiber

1000 times lower losses and nonlinearities than silica fibers

Air hole

Air core

Silica

Air core

Silica

Doped silica

Page 5: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

DECREASE OF FIBER LOSSES

Mod

e lo

sses

/SM

fibe

r los

ses

Page 6: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

DECREASE OF FIBER NONLINEARITY

Mod

e no

nlin

earit

y/S

M fi

ber n

onlin

earit

y

Page 7: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

WHY LIGHT IS GUIDED IN AIR CORES OF HCBGF?

No total reflection of light on the core/grid boundary nco < ngrid

Bragg reflection from regular grid in the fiber cladding

n1

n2

Interference R

n3

Layer dv

θ

Reflection on a layer (1D grid)

Page 8: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

WHY FIBER PIPES CAN GUIDE LIGHT?

Modulations of R due to light interference

R =1 photonic bandgap, at some values of θ,λ - light guiding

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.2

0.4

0.6

0.8

1.0

Ref

lect

ivity

R

Wavelength [μm]

θ=10 deg θ=80 deg θ=85 deg θ=89.5 deg

n1=1, n2=1.48,n3=1.46t=4 μ m

Page 9: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

MULTILAYER STACK

Increased number of layers and nH – nL → light is more confined in the air core β≤<ωc

High-indexLayer nh

Low index Layer nL

Air Core

Page 10: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

PHOTONIC CRYSTAL FIBERS

Page 11: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

• Bragg fibers with silica cores – light is guided due to photonic band gap

• PCF = Microstructure fibers (MSFs) – light is guided due to total reflection, because air holes in silica cladding decrease its refractive index below that of silica

V. Matějec , ITC Zacatepec, Mexico, April 2013

BAND GAP FIBERS WITH SOLID CORES

Silica core

( ) PPnn silicaclad +−= 122

P – porosity, ↑ with a number and dimensions of air holes

Page 12: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

BRAGG FIBERS WITH AIR CORES

Silica fiber (IPE) Chalcogenide/polymer fiber (MIT USA)

Page 13: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

REAL AIR-CORE BGF

R. F. Cregan et al., Science 285, 1537 (1999)

Page 14: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

REAL AIR CORE BGF

Air core

Losses 1, 7 dB/km at 1570 nmMangan et al., Conference OFC 2004, paper PDP24

Losses 0.28 dB/km at 1550 nm Tajima, ECOC 2003

Page 15: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

LOSSES OF AIR CORE BGF

Small air core Large air core

13 dB/km -1500 nm 1.7 dB/km – 1570 nmSmith, et al., Nature 424, 657 (2003) Mangan, et al., OFC 2004, PDP24

Page 16: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec April 2013,

REAL MSFs

Page 17: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

Treshold ~ 220 mW, Slope efficiency ~ 6%, L ~ 0.38 m, Direct pump 805 nm, Emission 1060 nm

P. Glas et al. , Opt. Expr. 10(6), 286-290 (2002)

Nd-doped core, Al oxide in silica

18 μm

dhole ~ 9 μmΛ ~ 12 μm

V. Matějec , ITC Zacatepec April 2013,

MSFs WITH DOPED CORES

Page 18: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

• Usually “Stack and Draw” techniqueAn input stack is set from a central silica rod (tube) and surrounded by silica tubesThe stack is inserted into a silica tubeand fiber is drawn

• Sol-Gel technique (USA)

V. Matějec , ITC Zacatepec April 2013,

FABRICATION OF MSFs AND HCBGFs

Page 19: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec April 2013,

PRINCIPLE OF STACK AND DRAW METHOD

InputStack

The input stack inserted into a silica tube and fiber drawn

Page 20: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

2 mm

Doped core

V. Matějec , ITC Zacatepec April 2013,

MSF FOR LASERS - INPUT STACK IPE

Rod of silica doped with Er and phosphorous pentoxideused in the stack center instead of capillary

Page 21: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

MSFs for fiber lasers Flower MSFs

V. Matějec , ITC Zacatepec April 2013,

MSFs IPE

Page 22: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

Centrifugation

Vacuumdeaeration

Addition of ester

Fumed silica 50 m2/g; 46% Water TMAH Lubricant Polymer

pH~11

V. Matějec , ITC Zacatepec April 2013,

SOL-GEL PROCESS (USA - BELL LAB)

Page 23: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

R.T. Bise, et al., http://www.specialtyphotonics.com/pdf/knowledge_base/white_papers/microstructure/bise_ofc_2005.pdf

multiple mandrel elements

a) Endlessly SM design

b) Highly non-linear fibers

c) Dual-core fibers

d) Circular-core fibers

V. Matějec , ITC Zacatepec April 2013,

MSF VIA SOL-GEL METHOD

Page 24: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

• Optical communications (HCBGFs)Broad single-mode range (400-1700 nm)

(T.A. Birks et al., Opt. Lett. 22 961-963 1997)Unique dispersion characteristics (λ0D<1000 nm)

(J.K. Ranka et al., Opt. Lett. 25 796-798 2000)Unique nonlinear optical properties (a broadband continuum)

(J.K. Ranka et al. , Opt. Lett. 25 25-27 2000)MSFs with doped cores can be used for fiber lasers, gratings(W.J. Wadsworth et al., Electr. Lett. 36 1452-1454 2000)

• Evanescent-wave sensors (MSFs) – analytes filled into air holes

V. Matějec , ITC Zacatepec April 2013,

WHY TO EMPLOY PCFs AND MSFs

Page 25: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

Toluene vapor in large cladding air holes, Core diameter 1 μm, toluene spectrum measured

Review on MSF-based sensors R.V. Nair, Progress in Quantum Electronics 34, 89–134, 2010M. Skorobogatiy, J. Sensors Vol. 2009, Article ID 524237, 20 pages

1350 1400 1450 1500 1550 1600 1650 1700 1750 18000,0

0,2

0,4

0,6

0,8

1,0

1,2

Atte

nuat

ion

[dB

]

Wavelength [nm]

0,20 mol% 0,27 mol% 0,39 mol% 0,83 mol% N2

Toluene (g)

IPE MSFs FOR TOLUENE DETECTION

Air hole

V. Matějec , ITC Zacatepec April 2013,

Page 26: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

500 μm

V. Matějec et al., Mater Sci Eng, C28 (2008) 876-881

MSFs FOR OXYGEN DETECTION

Two types of detection membranes applied onto walls of air holes, hydrophobic – MTES, hydrophilic-TEOS, RU complex in membranes, fluorescence intensity quenching by oxygen

V. Matějec , ITC Zacatepec April 2013,

Oxygen (g)

Page 27: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec April 2013,

PREPARATION OF BRAGG FIBERS - IPE

MCVD method - application of glass layers - high-index layers - silica doped with

germanium dioxide (>10mol.%)- low-index layers (core) - silica slightly

doped with phosphorous pentoxidePreform: Tube with the applied layersCollapsed to rod – Bragg fiber with solid

coreUn-collapsed – Bragg fiber with air coreThe rod or the tube drawn into Bragg fiber

Page 28: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec April 2013,

BRAGG FIBER CROSS SECTIONS

50 μmA

Silica core, Φc ~26 μm Air core Φc ~70 μm

Outer fiber diameter of 170 μm, protective jacket of UV curable acrylate

Page 29: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec April 2013,

SPECTRAL LOSSES – CUT BACK METHOD

600 800 1000 1200 1400 1600 1800

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 silica core air core

Opt

ial l

osse

s [d

B/m

]

Wavelength [nm]

Fiber length 10 m, reference fiber 2 m, focal spot ~50 μm

Page 30: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

DELIVERY OF HIGH LASER ENERGIES

Nd:YAG laser 1064 nm, Pulse duration 9 ns, Emax 1mJ, repetition rate 10 Hz

Nd:YAG: active laser crystal, LD: Pumping laser diode, HR: High reflective mirror (R = 100 % at 1.06 mm, r = - 1 m), OC: Output coupler (R = 60 % at 1.06 mm), SA: Cr:YAG saturable absorber, M: High reflective mirror,

L1: Focusing lens (f = 5 cm). – focal spot Φ∼34 μm

M. Jelínek, V. Kubeček, Laser Phys. Lett. 8 (2011) 657-660

V. Matějec , ITC Zacatepec April 2013,

Page 31: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

CHARACTERIZATION by Nd:YAG laser

Parameters

Lower energies 1-180 μJ

Transmission: fiber segment l =1 m (energy from fiber/laser energy)

Attenuation: cut back method fiber length 10 or 50 m, reference length 1 m

Spatial profiles of output beams: CCD camera placed 0.5-1 cm from the fiber face

Bending loss: fiber segment l=1 m, coiled on mandrels Φ 5-50mm

High energies >200 μJ

Damage threshold: plasma formation, fiber melting

V. Matějec , ITC Zacatepec April 2013,

Page 32: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

RESULTS OF DELIVERY OF LASER ENERGY

Silica core Large air core Core diameter [μm] 26 72 Transmittance, fiber 1 m long 83% 52% Attenuation [dB/m] 0.171 ± 0.005 (50m) 0.070 ± 0.006 (10m) Bending loss, 1 turn, mandrel D=50 mm [dB] 0.305 ± 0.026 0 Bending loss, 1 turn, mandrel D=13 mm [dB] 2.851 ± 0.585 0.151 ± 0.007 Damage threshold energy, 9 ns pulse [ μJ] 685 800 Damage threshold intensity [GW/cm2] 25 29

Output beam profile

Multimode with central maximum

Highly multimode

V. Matějec , ITC Zacatepec April 2013,

Page 33: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec et al., SPIE Optics Optoelectronics, 15.4.2013, hotel Clarion, Praha

POTENTIAL APPLICATIONSolar systemslighting, heating, electricity, medicine similar to that below

A bundle of PMMA fibers – length 3 m

C. Kandilli et al., Energy and Buildings 40 (2008) 1505-1512

Page 34: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec et al., SPIE Optics Optoelectronics, 15.4.2013, hotel Clarion, Praha

CONCLUSIONS

• HC BGF offer novel means with lower losses and nonlinearities for future telecommunications

• MSFs create new performance for advanced fiber lasers and amplifiers, fiber-optic sensors

•Bragg fibers and HCBGFs can be used for delivery of high energies of lasers or solar radiation on long distances. They can be employed in medicine, in systems for lighting, heating, electricity production.

Page 35: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec et al., SPIE Optics Optoelectronics, 15.4.2013, hotel Clarion, Praha

GENERAL CONCLUSIONS

• Currently, optical fibers represent rapidly developing subject in research, development, and applications. Advanced telecommunications can be hardly imagined without optical fibers.

•Optical fibers can be employed for development of advanced laser sources and sensors applicable for environment protection, in medicine, in safety systems.

• One can expect that new nanomaterials and metamaterialswill stimulate research and development of novel types of optical fibers for transmitting high energies by solitary waves and thus they contribute to improve energy management over the world

Page 36: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

IPE - OPTICAL FIBER TECHNOLOGY TEAM

Head: Ivan Kasik Ondrej Podrazky Jan MrazekMCVD Fiber Drawing Sol-Gel

Jana Probostova Jan Aubrecht Jitka Pedlikova Ivo Barton Measurement Measurement Technician PhD student

Page 37: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec , ITC Zacatepec, Mexico, April 2013

IPE – FIBER-OPTIC PHYSICS

Pavel Honzatko Jiri CtyrokyFiber lasers, telecommunications Modeling of fiber sensors

Pavel Peterka Filip TodorovFiber lasers and amplifiers LPG gratings

Page 38: OPTICAL FIBERS FOR FUTURE TELECOMMUNICATIONS AND … · V. MATĚJEC, M. FRANK 2, M. JELÍNEK , V. KUBEČEK 1 Institute of Photonics and Electronics AS ČR, v.v.i., Chaberská 57,

V. Matějec et al., SPIE Optics Optoelectronics, 15.4.2013, hotel Clarion, Praha

FINANCIAL SUPPORT

• Czech Science Foundation – Research projects (last one 102/12/2361 deals with optical fibers for delivery of high energies)

•Academy of Sciences of the Czech Republic – Institutional financing

•European Community - research projects on fiber-optic sensors

THANK YOU FOR ATTENTION