optimization lecture 2

Upload: katie-cook

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 optimization Lecture 2

    1/36

    Lecture 2 Simplex methodsbasic idea of the is to confine the

    search to corner oints of the feasible re ion

    o which

    The simplex method

    ) in a most intelligent wthere are only finitely many ay.

    see corner points;

    simplex algorithe can be used to solve anthe must be converted into a problem where all the

    thm ,

    Before LPLP

    constraints are and all variables are nonnegatiequati veons .

    in this f standardorm is said formto be in a .

    An LP

  • 8/10/2019 optimization Lecture 2

    2/36

    Standard FoConvert the rmto theLP LP

    not in standard form isTheLP

    in isstandard formTheLP

    1 2

    Subject to

    1 2

    Subject to

    .

    .

    1 2x x 40

    2x

    x 60

    .

    .

    11 2x x 40

    2x x 60

    s

    s

    ,1 2 x x , , ,1 21 20 x x 0s s

    u y, vit to an constraint by adding a slack variable to the thequality

    ,

    i is .

  • 8/10/2019 optimization Lecture 2

    3/36

    an has both and constraints apply the previous ,If LP

    an below:

    .Consider LP

    standarNon d form

    Standard form

    1 2ax

    Sub ect to

    z x x

    1 2x xax

    Sub ect to

    1 x 1 1100 x 100 s

    2

    1 2

    50x 35x 6000

    2

    1 2

    2

    3

    x

    50x 35x 6000

    s

    s

    1 2 20x 15x 2000

    -1 2 420x e15x 2000

    ,1 2 , , , , ,1 2 1 2 3 4

  • 8/10/2019 optimization Lecture 2

    4/36

    2. Preview of the Simplex Algorithm

    an with m constraints and n variableshas been converted into the standard form

    .

    Suppose LP

    from of such an is:The LPor 1 1 2 2 n nc xax n

    Sub ec

    c x c x

    t

    o

    11 1 12 2 1n n 1 a x a x a x a x a x a x b

    m m mn

    , .,

    n m

    i x 0, i = 1 n

  • 8/10/2019 optimization Lecture 2

    5/36

    we define

    If

    11 12 1n 1 1a a a x b

    ,, ,

    21 22 2n 2 2a a a x bA x b

    m1 m2 mn n ma a a x b

    . Ax b

    a basic solution to is obtained by settingvariables equal to and solving for the remaining

    ,Ifn m Ax bn m 0

    var a es

    assumes that setting the variables equal to

    .

    This

    m

    n 0myields a value for the remaining variables orequivalently the columns for the remaining variables

    unique ,,

    mm

    are near y n epen ent.

  • 8/10/2019 optimization Lecture 2

    6/36

    find a basic solution to we choose a set ofvariables and set each of ,

    the ornonbasic variablesTo A

    Nx b n m

    BV

    these variables equal to

    we solve for the values of the ( ) variabl

    .

    Then

    0

    n m mn es

    nonbasic variables basic solutions

    ( ) that satisfy

    lead to different

    the , or .

    .

    basic variables

    Different

    Ax bBV

    basic sothe to the following equations:lutionConsider

    1 2 xx 3

    number of nonbasic variables .The

    2 3 - x x -13 2 1-

    for example { } then { }

    can obtain the values for th basic variableese b settis n

    , , , , .Setting

    e

    3 1 2xNB x xVV B

    ,3x 0 that is

    .1 2x x 3

    - x -0 1

    basic solutionand is a, , .Thus 1 2 3x 2 x 1 x 0

  • 8/10/2019 optimization Lecture 2

    7/36

    { }and { } the becomesbasic solution, ,If 1 2 3NBV BVx x x

    basic solutionan

    { }and { } the becomes , .

    , ,If

    1 2 3

    2 1 3NBx x xx x xBVV

    and

    set

    , .

    Some

    1 2 3x 3 x 0 x -1

    s of variables do not ield a basic solution .m

    the following linear system:Consider

    1 2 3

    1 2 3 2x x x4

    .3

    sol

    would satisfut on yi

    , ,3 1 2

    1 2x 2x 1

    t

    .

    Since

    1 2 2x 4x 3

    basihis c sos stem h lutionas no solution, there is no

    corresponding to { }, .1 2xB xV

  • 8/10/2019 optimization Lecture 2

    8/36

    Preview of the Simplex Algorithm

    basic solution in which all variables are

    is called abasic feasible soluti

    nonnegativ

    o

    e

    n

    or .

    Any

    b s

    the basic solutions in the previous exa empl , ,For 1x 2,2x x an are as c eas e

    solutions the basic solution fails

    , ,

    , , ,but3 1 2 3

    1 2 3

    x x x

    x 3 x 0 x -1

    to e a basic feasiblfollowin show that a e

    ecause .two tThe heorems

    3s x

    is ofsolution great importance in .LP

  • 8/10/2019 optimization Lecture 2

    9/36

    :Theorem 1

    eas e reg on or any near programm ng pro emis a convex set

    .

    an as an , t ere must e an

    extreme point

    o

    of

    pt m

    the

    a so ut on

    feasible region optimalthat is

    ,

    .

    so

    Theoremuni ue extremean there is a oint of the

    : , s

    For L PP L

    2

    each basic feasibfeasible region corresponding to solutionle .

    point in the fe

    ,

    asible region.

  • 8/10/2019 optimization Lecture 2

    10/36

    relationship between andextreme points basic feasibleThe

    so u ons ou ne n s seen n( ) is:in the standard form

    , . with slack variabl esThe

    xamp eLP

    eorem

    X2

    60 D

    1 2Maximiz z 4x 3xe

    50

    Labor Constraint

    .11 2x x 40s

    3

    4

    0

    Feasible Region

    B

    .

    , , ,2

    1

    1

    2

    2

    1 2

    s

    x x s 0

    20

    ELeather Constraintinequalities show the

    .

    Two shaded

    area

    10extrem of the

    feasible region are

    e points

    , , ,

    The

    B C E .FX110 20 30 40 50F

  • 8/10/2019 optimization Lecture 2

    11/36

    Table 1

    , , , ( )

    1 2 1 21 2 1 2s s s sx x 0 x x 20 E z 140

    , , , , ( )1 2 2 11 2 2 1x x x 0 x 30 10 C z 120s s s s

    , , ,1 22 1 11 2x x xs s s x -

    -

    ,

    , , , , (

    2 2s s

    s s s s s

    s

    b sx x x 0 x 60 20 0

    no

    no

    , , , , ( )2 1 1 22 1 1 2s s s s x x x 0 x 40 20 B z 120

    , , , , ( )1 2 1 21 2 1 2 s s x x x x 0 40 60 F z 0s s

    to the and the extreme points of the feasible region .LP

    in a natural fashion to the ex

    sLP treme points.

  • 8/10/2019 optimization Lecture 2

    12/36

    The Simplex Algorithm For MaxLPs

    standathe to rd form

    Convert LPStep 1

    Deter

    Step 3 whether the current is optimalmine bfst e current s not opt ma eterm ne w c

    should be comnonbasic variable basice a andvariable ,step

    to find a with a better objective function value

    .

    '

    bfs

    with a better objective function value b

    . Go

    ack to .Step 3

    :s s mp ex a gor m e s n e orm

    ,n o ec ve unc no

    1 1 2 2 n n

    z c x c x c x 0.

    .call this format the row version of the objective functionWe 0

  • 8/10/2019 optimization Lecture 2

    13/36

    : 1 2 360x 30x 20xExamp maximizele 2

    1 2 3

    1 2 3

    x x x4x 2x 1.5x 20

    su ec o

    1 2 3 2x 1.5x 0.

    x

    5 8

    2x 5 , ,

    Standar form1 2 3 x x x 0.

    1 2 3maximi z 60x 30x 20x 8x 6x

    zesub ect t

    o

    x 48s

    1 2 23 4x 2x 1.5x 20s

    1 2 3

    2

    3 . .

    x

    4 5s

    , , , , , ,1 2 3 1 2 3 4

    x x x s s s .s

  • 8/10/2019 optimization Lecture 2

    14/36

    Solution

    -

    Example 2 - con

    yields the equations and basic variables

    .

    1 2 3 z 60x 30x 20x 0 z 0

    Row 0

    1 2 3

    1 2 3

    1 1

    2

    x x xow s s

    Ro 4x 2x 1.5xw 2 s

    2s20 20

    3 3

    4

    1

    4

    2 3

    2

    ow s sRow

    x . x . xx 54 s 5s

    we setIf 1 2 3x = x = x we can solve for the values

    { }and { }

    , , , , .

    , , , , , , .Thus

    1 2 3 4

    1 2 3 1 2 34

    =

    BV

    0

    =

    s s s s

    s s s NB = x x xVseach constraint is then in canonical form ( s have a coefficient

    in one row and zeros in

    Since = 1BV

    right - hand side) r) with a nonnegative ( hsall other rows ,

    .

  • 8/10/2019 optimization Lecture 2

    15/36

    Solution -Example 2 - con Step 2

    perform the simplex algorithm we need a basic ( , although .To

    a n a as c eas e o u on

    ) variable for

    a ears in w

    not necessarily nonnegative .

    Since

    row 0

    row 0z ith a coefficient of and does,1 znot appear in any other we use as thebasic variable, .row z

    initial canonical form has:

    = = ,

    this initial

    , , , , , .

    , , , , , ,For 1 2 3 4z = 0 = 48 = 20 = 8 = 5bfs s s ss

    this example indicates a can be used as aslack variable

    .

    ,As

    1 2 3

    .

  • 8/10/2019 optimization Lecture 2

    16/36

    we have obtained a we need to determine whether it is optimal:

    , .Oncebfs

    bfsDetermine if the Current is OptimalStep 3

    do this we try to determine if there is any way can be increasedby inc ,To z

    nonbasic variablereasing some from its current value of zeronon as c var aw e o ng a o er a e r curr es en va ues o

    zero.

    non

    eachFor

    1 2 3

    basic variablenonbasic variab

    we can use the equation above to determineif increasin a le

    ,but hold nonbasicin all other

    nonbasic) will increase

    any of the wvaria i lble lvari to .a l

    b es

    Increasing0 z

    cause an increase in .z

    increasing causes the greatest rate of increase in

    increases from its current value of it will have to become a

    .

    ,

    However

    If

    1

    1 zero

    x

    xas c var a

    this reason is

    e.

    ,For 1x called the entering variable.

    as e mos nega ve coe c en n .serve 1 rowx

  • 8/10/2019 optimization Lecture 2

    17/36

    :Step 4

    choose the ( ) to thewith the most negative coefficient

    entering variableinnonbasic variable

    in a max problemWerow 0.

    ,current basi 1

    c variables ( ) will change value, , , .1 2 3 4s s s s

    ., 1

    RATIO

    we have

    , . ,

    , . ,In Since

    1 1

    2

    1 1

    1 2 1

    row 2 s s

    -

    = 20 - 4x 0 x 20 4 = 5

    , . ,

    ,In

    3 31 1 -

    row 4

    we have any will always be . , .For 414 5= xs s 0

    means o eep a e as c var a es nonnega ve e argeswe can make is { } ,

    , , .s

    1 6 5 4 4m nx i

  • 8/10/2019 optimization Lecture 2

    18/36

    The Ratio TeSolution - stExample 2 - con

    entering a variable into the basis, compute the ratio:

    of of enterin variable in row

    When

    rhs row coe icient

    every constraint in which the enteringFor variable has a

    constraint with the smallest ratio is called the winner

    .

    The

    smallest ration is the large enterinst value of the g

    .

    The

    nonnegative.

    e en er ng var a e a as c var a e nsince this ( ) was the winner of the ratio test

    constraint

    a e 1x rowrow

    .

  • 8/10/2019 optimization Lecture 2

    19/36

    Solu Theti Ratio Teston -Example 2 - con

    ma e a n we use e emen aryrow operations ( ) to make have a coefficient of

    as c va er a ,s

    o 11 1

    rowxxero

    row r

    procedure is called pivoting on ; and

    .

    This

    ows

    row 3 row 3s ca e e

    final result is that replaces as the basic variable

    .

    The 31

    p vot row

    sx

    forterm in the that involves th

    . The

    row 3pivot row e entering basic

    variable is called the .pivot term

  • 8/10/2019 optimization Lecture 2

    20/36

    Gauss - Jordan method using and: sThe ero simplexStep 5

    ero 1 z x1 x2 x3 s1 s2 s3 s4 rhs ero

    0 1 -60 -30 -20

    1 8 6 1 1 48

    2 4 2 1.5 1 20

    3 1 0.75 0.25 0.5 4 row 3 divided by 1/2

    4 1 1 5ero z x x x s s s s r s

    0 1 15 -5 30 240 60 times row 3 added to row 0

    1 8 6 1 1 48

    2 4 2 1.5 1 20

    3 1 0.75 0.25 0.5 4

    4 1 1 5

    ero 3 z x1 x2 x3 s1 s2 s3 s4 rhs

    -

    1 -1 1 -4 16 - 8 times row 3 added to row 1

    2 4 2 1.5 1 20

    3 1 0.75 0.25 0.5 4

    ero 4 z x1 x2 x3 s1 s2 s3 s4 rhs

    0 1 15 -5 30 240

    1 -1 1 -4 16

    2 -1 0.5 1 -2 4 - 4 times row 3 added to row 2

    3 1 0.75 0.25 0.5 44 1 1 5

  • 8/10/2019 optimization Lecture 2

    21/36

    The ResultExample 2 - con

    32 3

    z 15x 5x 30 240 z 240Row 0 s

    ow 1 3 1

    2 3 2

    3

    2 3

    x

    x 0.5x 2 4 4

    s s

    Row 2 s s s

    1 2 33 1 x 0.75x 0.25x 0.5 4 x 4

    Row 3 s

    Row 4 x

    2 4 45s s 5

    { , , , , }and { }, , , .In 1 21 32 4 3BV NBVCanonical Form x x x1 s s s s

    , , , ,

    .1 2

    3

    1

    2 3

    4

    x

    0xs

    called an iteration ( ) of the simplex algorithm

    or sometime pivot .

  • 8/10/2019 optimization Lecture 2

    22/36

    Example 2 - con.

    is optimal

    ,.

    2 3 3

    z 240 15x 5

    sx 30 current i os nThe bfs optimal because increasing to

    ( ) will increaset

    while holding the other tononbasic variable3

    1x0

    the value ofeither or basic will caused the value of

    . Making 2 3x zsto

    - Reca

    decre

    ll

    a

    th

    se.

    Ste 4 e rule for determinin the enterin variable is the coefficient with the greatest negative value

    is the onl variable with a coefficientne ative

    .

    Sincex x

    row 0

    should be entered into eth basis.

  • 8/10/2019 optimization Lecture 2

    23/36

    iteration ivotBe in 2

    Example 2 - con.

    the ratio test using as the entering variablePerforming 3x

    for all vaules of

    ,From31

    row 1 0 xs since1 3

    s = 16 x

    ,

    ,

    From if

    From if

    2 3row 2 s

    row 3

    0 x 4 0.5 = 8

    x 0 x 4 0.25 = 16

    for all vaules of, .From since34 4row 4 s 0 x 5=s

    means o eep a e as c var a es nonnega ve el

    ,sargest we can make is { } , .3x 8 16 =min 8

    pivotbecomes the

    use to make a basic variable in

    , .

    - s, .

    So

    Now 3

    row 2 ro

    er

    w

    Step 5 rx ow 2o

  • 8/10/2019 optimization Lecture 2

    24/36

    use to make a basic variable in- s, .Now 3eroStep 5 row 2x

    ero 1 z x1 x2 x3 s1 s2 s3 s4 rhs

    0 1 15 -5 30 240

    1 -1 1 -4 16

    2 -2 1 2 -4 8 multiplied row 2 by 2

    3 1 0.75 0.25 0.5 4

    4 1 1 5

    ero 2 z x1 x2 x3 s1 s2 s3 s4 rhs

    0 1 5 10 10 280 add 5 times row 2 to row 0

    1 -1 1 -4 16

    2 -2 1 2 -4 8

    . . .

    4 1 1 5ero 3 z x1 x2 x3 s1 s2 s3 s4 rhs

    0 1 5 10 10 280

    1 -2 1 2 -8 24 add row 2 to row 1

    2 -2 1 2 -4 8

    3 1 0.75 0.25 0.5 4

    4 1 1 5

    ero 4 z x1 x2 x3 s1 s2 s3 s4 rhs

    0 1 5 10 10 280

    1 -2 1 2 -8 24

    - -

    3 1 1.25 -0.5 1.5 2 add -1/4 times row 2 to row 3

    4 1 1 5

  • 8/10/2019 optimization Lecture 2

    25/36

    The Result inExample 2 Canonical Form 2- con

    Canonical Form 2z 5x 10 10 280 z 280

    Basic VariableRow 0 s s

    Row 1 1 2 3 12 2x 2 8 24 24s s s s

    22 3 3

    1

    3

    22 13

    x 1.25x 0.5 1.5 2 x 2

    Row 3 s s

    ow

    ,In4 42

    x s s

    Canonical Form 2

    { , , , , }and { }

    the and

    , , .

    Yieldin

    1 4 3 23 21= z xBV NBV

    b s

    x = x

    28

    s s s s

    s s0 24 x 8 x 2 5 .2 23s s x 0

  • 8/10/2019 optimization Lecture 2

    26/36

    Example 2 - con.

    for in yields:Solving z

    row 0 z 280 5x 10 10

    s

    can see that increasing ( , , or while holding theWe 2 2 3s sx

    solution at the end of is therefore optimal

    .

    .The iteration 2

    following rule can be appliecanonical form d to determine whether aoptimals is : The bfs

    optimalis ( for a max proAcanonical form ) if each

    nonbasic variable has a nonnegative coefficient in the

    blem

    canonical form s . row 0

  • 8/10/2019 optimization Lecture 2

    27/36

    The Big M Meth do

    problems have found starting by using

    .

    Previous bfss ac var a ae as our

    an have or constra

    s c var a s

    nts

    e

    i

    es .

    ,If LP

    however a starting,may no e rea y apparen

    such a case the method may be used to solve

    .

    ,In

    s

    Big M

    t e 1 2

    minimize z 2x 3x

    .1 20.5x 0.25x 4subject to

    ..

    2

    1 2

    x x 10

    .,1 2 x x

  • 8/10/2019 optimization Lecture 2

    28/36

    LP standard formThe in

    = 1 2 z 2x 3x 0.5x 0.25x 4MinimizeSub ect to

    s

    21 2 x 3x 20e

    1 2

    0, , , 1 21 2 x x s e

    order to use the simplex method a is needed , . In sbf

    variables will be labeled accord

    ing t

    , .

    The

    o the row in which they

    .

  • 8/10/2019 optimization Lecture 2

    29/36

    Example 3 - con. rtificial Variables

    1 2

    Row 0 z 2x 3x 0

    1 2ow s . x . x

    2

    1

    21 2

    x 3x 20Row 2 e a

    31 2 x x 10Row a3

    b

    e set equal to zero.

    to the objective functio artificial variablesn for each, ,

    .i

    ia

    function , i-

    for each .ia

    represents some very arge num er.

  • 8/10/2019 optimization Lecture 2

    30/36

    Example 3 - con.

    modified in standard form then becomes

    The1 2 2 3Row 0

    LP z 2x 3x 0

    - M - M a a

    11 2Row 0.5x 0.25x 41 s

    Row 2

    e x 3x 20a

    2 31Row x x3 1a 0

    e o ec ve unc on s way ma esextremely costly for an a y

    to be positivertificial variab sle .

    optimal solution should force .The 2 3a a 0

  • 8/10/2019 optimization Lecture 2

    31/36

    Initial TableauExample 3 - con.

    Row z x1 x2 s1 e2 a2 a3 rhs

    . - . - . - - .

    1 0.50 0.25 1.00 4.00

    . . . . .

    3 1.00 1.00 1.00 10.00

    2 3 in Row 0,To make = =0a a

    Row 0+ M*(Row 2)+M*(Row 3)

  • 8/10/2019 optimization Lecture 2

    32/36

    Pivot 1 z x1 x2 s1 e2 a2 a3 rhs ratio ero0 1.00 2M - 2 4M -3 -M 30M Row 0 + M(Row 2) + M(Row 3)

    1 0.50 0.25 1.00 4.00 16

    2 1.00 3 -1.00 1.00 20.00 6.67

    3 1.00 1.00 1.00 10.00 10

    ero 1 z x1 x2 s1 e2 a2 a3 rhs ero

    0 1.00 2M-2 4M -3 -M 30M . . . .

    2 0.33 1 -0.33 0.33 6.67 Row 2 divided by 3

    3 1.00 1.00 1.00 10.00

    ero 2 z x1 x2 s1 e2 a2 a3 rhs ero

    0 1.00 (2M-3)/3 (M-3)/3 (3-4M)/3 (60+10M)/3 Row 0 - (4M-3)*(Row 2)

    1 0.50 0.25 1.00 4.00

    2 0.33 1 -0.33 0.33 6.673 1.00 1.00 1.00 10.00

    ero 3 z x1 x2 s1 e2 a2 a3 rhs ero

    0 . - - - +

    1 0.42 1.00 0.08 -0.08 2.33 Row 1 - 0.25*(Row 2)

    2 0.33 1 -0.33 0.33 6.67

    3 1.00 1.00 1.00 10.00

    0 1.00 (2M-3)/3 (M-3)/3 (3-4M)/3 (60+10M)/3

    1 0.42 1.00 0.08 -0.08 2.33

    2 0.33 1 -0.33 0.33 6.67

    3 0.67 0.33 -0.33 1.00 3.33 Row 3 - Row 2

  • 8/10/2019 optimization Lecture 2

    33/36

    The Solution - con

    Pivot 2 z x1 x2 s1 e2 a2 a3 rhs ratio

    0 1.00 (2M-3)/3 (M-3)/3 (3-4M)/3 (60+10M)/3

    1 0.42 1.00 0.08 -0.08 2.33 5.60

    2 0.33 1 -0.33 0.33 6.67 20.00

    3 0.67 0.33 -0.33 1.00 3.33 5.00

    ero 1 z x1 x2 s1 e2 a2 a3 rhs ero

    0 1.00 (2M-3)/3 (M-3)/3 (3-4M)/3 (60+10M)/3-. . . . .

    2 0.33 1 -0.33 0.33 6.67

    3 1.00 0.50 -0.50 1.50 5.00 (Row 3)*(3/2)

    ero 2 z x1 x2 s1 e2 a2 a3 rhs ero

    0 1.00 -0.50 (1-2M)/2 (3-2M)/2 25.00 Row 0 + (3-2M)*(Row 3)/3

    . . . - . .

    2 0.33 1.00 -0.33 0.33 6.67

    3 1.00 0.50 -0.50 1.50 5.00

    ero 3 z x1 x2 s1 e2 a2 a3 rhs ero

    0 1.00 -0.50 (1-2M)/2 (3-2M)/2 25.00

    . - . . - . . ow - ow

    2 0.33 1.00 -0.33 0.33 6.67

    3 1.00 0.50 -0.50 1.50 5.00

    ero 4 z x1 x2 s1 e2 a2 a3 rhs ero

    0 1.00 -0.50 (1-2M)/2 (3-2M)/2 25.00 O timal Solution1 1.00 -0.13 0.13 -0.63 0.252 1.00 -0.50 0.50 -0.50 5.00 Row 2 -(1/3)*Row 3

    3 1.00 0.50 -0.50 1.50 5.00

  • 8/10/2019 optimization Lecture 2

    34/36

    The summary for the optimal solution

    variable with the positive coefficient in rowshould enter the basis since this is a problem .

    Themin

    ratio test indicates that hould enter the sThe 2x

    basis in which means the artificial variable,row 2will leave the basis.

    2a

    ratio test indicates that

    .

    should enter theThe 1

    x

    ,

    the basis.3

    optimal solu is .tion ,The

    e esu t

    1 2z 25 x x 5

  • 8/10/2019 optimization Lecture 2

    35/36

    Tutorial

    the simplex method to solve the following Using LP

    1 2ax m ze z x x

    .

    .1

    x

    2x 12

    .1 2 3x 2x 18

    ,1 2 x x .

  • 8/10/2019 optimization Lecture 2

    36/36

    LPsThe Simplex Algorithm for Min

    the following :Consider LP

    1 2 n m ze x x

    .1 2 x x

    .

    ,1 2

    1 2

    x x 0.