optimization of multistatic passive radar geometry

31
Dottorato di ricerca in Telerilevamento – XXIV ciclo DIPARTIMENTO DIET - Roma, 26 Ottobre 2010 Valeria Anastasio Tutor: Pierfrancesco Lombardo Optimization of Multistatic Passive Radar Geometry Optimization of Multistatic Passive Radar Geometry Valeria Anastasio Tutor: Prof. Pierfrancesco Lombaardo

Upload: others

Post on 03-Feb-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optimization of Multistatic Passive Radar Geometry

Dottorato di ricerca in Telerilevamento – XXIV ciclo

DIPARTIMENTO DIET - Roma, 26 Ottobre 2010

Valeria Anastasio

Tutor: Pierfrancesco Lombardo

Optimization of Multistatic Passive Radar GeometryOptimization of Multistatic Passive Radar Geometry

Valeria Anastasio

Tutor: Prof. Pierfrancesco Lombaardo

Page 2: Optimization of Multistatic Passive Radar Geometry

Passive Bistatic Radar (PBR)

Passive Bistatic Radar exploits existing transmitters as illuminators of opportunity to perform target detection and localization.

Advantages:

fraction of direct signal received by SL/BL of the SURV antennastrong clutter/multipath echoes, and echoes from other strong targets at short ranges.

- continuous wave and low power levels long integration time- high sidelobes of the ambiguity function with a time-varying structure

The transmitted waveform is not under control of the radar designer:Drawbacks:

Target echoes can be masked

by:

- low cost - covert operation, low

vulnerability - reduced impact on the

environment

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

2

Page 3: Optimization of Multistatic Passive Radar Geometry

Objective of the work

PBR performance can be largely improved through multistatic operation

However, its performance largely depend on the geometric configuration

We aim at optimizing the geometric configuration based on:

CRLB for Passive Multistatic Radar SystemAccount for Pd<1 , i.e. with uncertain observationGeometrical constraints for PBR receiver placement

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

3

Page 4: Optimization of Multistatic Passive Radar Geometry

Case Study

Sub-Case APd=1 σε=2000m

Sub-Case BPd=1 σε=f(SNR)

Sub-Case C:Pd=f(SNR) σε=2000m

Sub-Case D:Pd=f(SNR) σε=f(SNR)

Optimize the geometric configuration of a multistatic passive radar composed of 2 TXs and 1 RX:

-selecting the best TXs couple among the available ones;-selecting the best receiver position

TX1

TX2

TX3

TX4TX5

TX6

TX7

TX8

TX9

TX10

TX11

TX12

TX13

TX14

TX15

TX16

TX17

AMB

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

4

Page 5: Optimization of Multistatic Passive Radar Geometry

Case Study - parameters

Considering the following parameters:

Transmitters power Pt=10 kW; Transmitter antenna gain: Gt=0 dB;Wavelength: λ=3 m; Receiver antenna gain: Gr=7 dB;Receiver bandwidth: B=200 kHz;Receiver equivalent noise: NF=30 dB;Time of integration τ=1 s;Radar Cross Section: RCS=1 m2; Propagation loss: L=10 dB;

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

5

Page 6: Optimization of Multistatic Passive Radar Geometry

The Signal to Noise Ratio can be evaluated in the following manner:

And the measurements accuracy is:

Considering a Swerling I target model, the Detection Probability is:

with

nFrts

nrttn LNRRkT

GGPSNR

nn

nn

223

2

)4( πτσλ

=

nn SNR2B

c=εσ

nSNR11

fand PP += 4fa 10P −=

with n=1,..,N N is the # of bistatic couples

Signal to Noise Ratio & Pd

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

6

Page 7: Optimization of Multistatic Passive Radar Geometry

CRLB for a Multistatic Passive Radar

Considering N bistatic couples each one performing K range measurements having a Gaussian probability density function:

with expected value:

and variance:

Assuming that all the observation are statistically independent, the joint probability of the NxK measurements:

Where

kn,kn,kBn, ε)y,x(RR += with n=1..N and k=1..K

.

( )( )

( )∑∑

= = =

−−

= =∏∏

N

1n

K

1k2

k,n

2k,nk,Bn RR

21

N

1n

K

1kk,n

B e2

1Rp εσ

εσπ

{ }KkNnRR knBB ,..1 ;,..1 ,, ===

{ } )y,x(RRE kn,kBn, =

{ }( ){ } 2n

2kBn,kBn, RERE εσ=−

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

7

Page 8: Optimization of Multistatic Passive Radar Geometry

Defining the estimation parameters set:

The element (j,h ) Fisher Information Matrix can be written as follows:

The element (j,h) of the FIM can be written as follows:

The variance of the estimation error of the parameter Θj is:

( ){ } { }jj122

jj Jˆ Ej

−Θ =σ=Θ−Θ

CRLB for a Multistatic Passive Radar

]y,x[=Θ

( )( ) ( )( )

Θ∂∂

Θ∂∂

=h

B

j

Bh,j

RplnRplnEJ

( )( ) ( )

∑ ∑= =

Θ∂∂⋅

Θ∂∂

=N

1n

K

1k h

k,n

j

k,n2

nh,j

RR1Jεσ

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

8

Page 9: Optimization of Multistatic Passive Radar Geometry

Defining a binary variable dn,k as follows:

with k=1..K and n=1..N

The n-th couple can form 2K possible detection/miss sequences and the m-th sequence will be:

with a number of detections and a number of misses

With a probability of occurrence:

CRLB with Uncertain Observations

= k n k n

time at target the missessensor the if 0, time at target the detectssensor the if,1

d k,n

)(K,n

)(2,n

)(1,n

)(K,n ,...d,d d:S mmmm with m=1,..2K

∑=

=∆K

1k

)(k,n,K,n d m

m mm ,K,n,K,n K ∆−=∆

{ } ( ) llm ,K,n

n

,K,n

n dd)(K,n P1PSPr ∆∆ −⋅=

∆∆

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

9

Page 10: Optimization of Multistatic Passive Radar Geometry

=

1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1

S

CRLB with Uncertain Observations

Sensor #1Pd1

RB1=RTX1+RRX

Sensor #2Pd2

RB2=RTX2+RRX

Considering N bistatic couples and K range measurements eachwe will have L=(2K)N possible sequences

lS

with

With K=2 and N=2:

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

10

Page 11: Optimization of Multistatic Passive Radar Geometry

{ }( )∑ ∑= = =ε

∑Θ∂

∂Θ∂

∂σ

=NK2

1l

N

1n

K

1k

)l(k,n

h

Bn

j

Bn2n

)l(h,j dRR1SPrJ

The CRLB is then the average over the scenario dependent values. The weighted mean of all the possible covariance matrix. The weight will be the probability of occurrence of the particular detection/miss sequence

Assuming the target movement is negligible, the element (j,h) of the Fisher Information Matrix is:

target detected or missed

Sum over the total number of measurements for each sensor: K=2

Sum over all the possible detection/miss sequences

CRLB with Uncertain Observations

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

11

Page 12: Optimization of Multistatic Passive Radar Geometry

2D Localization Accuracy

The expression of the 2D accuracy:

Best receiver position

the one that minimizes the maximum estimation error of the target positions on the whole trajectory.

{ } { }221

1112

y2xH JJ −− +=+= σσσ

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

12

Page 13: Optimization of Multistatic Passive Radar Geometry

A. Pd=1, σε=2000m B. Pd=1, σε=f(SNR)

C. Pd=f(SNR), σε=2000m D. Pd=f(SNR), σε=f(SNR)

Results TX3-TX5

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

13

Page 14: Optimization of Multistatic Passive Radar Geometry

A. Pd=1, σε=2000m B. Pd=1, σε=f(SNR)

C. Pd=f(SNR), σε=2000m D. Pd=f(SNR), σε=f(SNR)

Results TX12-TX17

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

14

Page 15: Optimization of Multistatic Passive Radar Geometry

Results

Couple Estimation ErrorPd=1,

σε= 2000m

Estimation ErrorPd=f(SNR), σε= f(SNR)

1-4 1442,2 m 46.1 m

3-5 1450,5 m 65.5 m

1-3 (1-5) 1739,0 m 69.0 m

2-5 (3-6) 1396,2 m 79.8 m

2-4 (4-6) 1475,5 m 82.7 m

3-4 (4-5) 2452,0 m 86.8 m

4-7 (4-9) 1316,1 m 99.6 m

4-15 (4-17) 1308,2 m 186.4 m

12-15 (12-17) 1308,2 m 257.9 m

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

15

Page 16: Optimization of Multistatic Passive Radar Geometry

Antenna Beam Pattern and geometrical constraints

In order to localize a target on a specific trajectory:The whole trajectory shall be within the receiver main beamThe TX direct signal shall arrive in the back lobe of the RX antenna.The target Doppler frequency shall not be equal to zero.

α: -3dB beamwidth

γ: low level back-lobes angular region

β: two intermediate angular regions

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

16

Page 17: Optimization of Multistatic Passive Radar Geometry

Main beam steeringAdmissible region: outside the two circles passing for points A and B, and with centre O and O’, such that angles AOB and AO’B are equal to 2α.

Direct signal attenuationAdmissible region: inside the two circles with Centres in Q and Q’, passing for both target (TGT) and transmitter (TX) locations, such that angles TGT-Q-TX=2β and TGT-Q’-TX=2β.

Zero DopplerAdmissible region: (i) the angle between TX-target line and velocity vector has to differ from the angle between RX-target line and velocity vector. (ii) The receiver cannot be placed on the TX-Target line.

Geometrical Constraints

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

17

Page 18: Optimization of Multistatic Passive Radar Geometry

Geometrical constraints: results

Antenna Beam pattern:-3dB beamwidth: α=90°Low level back-lobes angular region: γ=180°Two intermediate angular regions: β=45°

Transmitters couples that do not allow the receiver placement:1-4; 1-12 (4-8); 4-16; 8-12; 12-16; 4-7 (4-9); 4-15 (4-17).

TX12-TX17 TX3-TX5

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

18

Page 19: Optimization of Multistatic Passive Radar Geometry

m116H =σ

Localization Accuracy with constraints

TX12-TX17

TX3-TX5

m258H =σ

m512H =σ

m66H =σ

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

19

Page 20: Optimization of Multistatic Passive Radar Geometry

Real Geography :11°-14°E ; 41°-43°N

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

20

Page 21: Optimization of Multistatic Passive Radar Geometry

Selected Transmitters

Trasmettitore Latitudine Longitudine

1 Ausonia 41°21’49” 13°13’13”

2 Campocatino 41°49’55” 13°20’9”

3 Formia 41°16’52” 13°40’57”

4 Gaeta 41°12’26” 13°34’39”

5 Guadagnolo 41°54’43” 12°55’48”

6 Monte Cavo 41°45’15” 12°42’36”

7 Monte Favone 41°36’1” 13°37’56”

8 Monte Pilucco 41°19’36” 13°17’20”

9 Roma Monte Mario 41°55’6” 12°26’44”

10 Segni 41°41’47” 13°1’23”

11 Settefrati 42°40’20” 13°51’10”

12 Sezze 41°29’30” 13°4’46”

13 Terminillo 41°27’24” 12°57’35”

14 Velletri 41°41’46” 12°43’9”

15 Città Del Vaticano 41°54’13” 12°27’0”

16 Civitavecchia 42°5’1” 11°47’1”

17 Monte Argentario 42°23’60” 11°10’0”

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

21

Page 22: Optimization of Multistatic Passive Radar Geometry

Real Geography :11°-14°E ; 41°-43°N

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

22

Page 23: Optimization of Multistatic Passive Radar Geometry

Coast profile

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

23

Page 24: Optimization of Multistatic Passive Radar Geometry

A. Pd=1, σε=2000m: TXs :5.Guadagnolo–17.Monte Argentario

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

24

Best Receiver Position:

42° 24’ 51.5” N – 12° 22’ 0.3”E

m5.1339H =σ

Best Receiver Position in Line of Sight:

42° 24’ 24” N – 12° 12’ 10”E

m6.1385H =σ

Page 25: Optimization of Multistatic Passive Radar Geometry

D. Pd=f(SNR), σε=f(SNR) TXs : 15. Città del Vaticano – 16. Civitavecchia

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

25

Best Receiver Position:

41° 56’ 01.3”N – 12°11’42”E

m7.74H =σ

Best Receiver Position in Line of Sight:

42° 09’ 16” N – 11° 54’ 31”Em1315H =σ

Page 26: Optimization of Multistatic Passive Radar Geometry

Area di interesse

-1 -0.5 0 0.5 1

x 105

-8

-6

-4

-2

0

2

4

6

8

10

12

x 104

Area Of Interest:Radius 40kmTarget flying at 8000 m of altitude3D localization

Among the available 136 TXs couples, only 14 couples fulfill the constraints

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

26

Surveillance of an Area Of Interest

Page 27: Optimization of Multistatic Passive Radar Geometry

The whole Area of Interest shall be withinthe receiver main beam

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

27

Geometrical Constraints

Admissible receiver positions:

d(RX,C)>d

The TXs direct signals shall arrive in the back lobe of the RX antenna:

Admissible receiver positions:

β>45°& β’>45°

Page 28: Optimization of Multistatic Passive Radar Geometry

z

x

τU

Transmitter

τu= 85°τ i= 0°

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

28

Geometrical Constraints

z

x

ε

δ

Receiver

δ = 1°ε= 86°

TXs elevation beam pattern

RXs elevation beam pattern

Page 29: Optimization of Multistatic Passive Radar Geometry

TX8 - TX13

x (m)

y (

m)

-1 -0.5 0 0.5 1

x 105

-8

-6

-4

-2

0

2

4

6

8

10

12

x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000TX13 - TX17

x (m)

y (

m)

-1 -0.5 0 0.5 1

x 105

-8

-6

-4

-2

0

2

4

6

8

10

12

x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Monte Pilucco-Terminillo Terminillo-Monte Argentario

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

29

Results: best TXs couples

α=90°γ=180°β: 45°

Page 30: Optimization of Multistatic Passive Radar Geometry

Conclusions

We derived a version of the CRLB for the localization of a target by amultistatic passive radar for uncertain observationsAn effective procedure has been devised to optimize the geometricconfiguration of a multistatic passive radar, that accounts for

Varying SNR with bistatic range Uncertain observations;Constraints to be fulfilled for proper operation of the PBR receivers

The procedure allows to jointly select the couples of TXs to be used and the optimal receiver position.

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

30

Future worksTarget tracking accuracy thanking into account the uncertainty of the measurementsAnalysis and design of multi receiver systemDesign of a net of Passive Radar Systems in order to monitor and localize the targets flying in the airspace

Page 31: Optimization of Multistatic Passive Radar Geometry

Essential Biography

A. Farina, B. Ristic, L. Timmoneri, “Cramér–Rao Bound for Nonlinear Filtering With Pd<1 and Its Application To Target Tracking” – IEEE Transaction on Signal Processing, Vol 50, No 8, pp 1916-24, Aug. 2002.M. Hernandez, B. Ristic, A. Farina, L. Timmoneri, “A Comparison of Two Cramér–Rao Bounds for Nonlinear Filtering with Pd<1” – IEEE Transaction On Signal Processing, Vol 52, No 9, pp 2361-70, Sept. 2004.A. Farina, A. Di Lallo, L. Timmoneri, T. Volpi, B. Ristic, “CRLB and ML for parametric estimate new results” – Jan. 2005

PublicationsOptimization of Multistatic Passive Radar Geometry Based on CRLB with Uncertain ObservationsV. Anastasio, F. Colone, A. Di Lallo, A. Farina, F. Gumiero, P. Lombardo– EuRAD 2010

26/10/2010 Valeria Anastasio – Dottorato di Ricerca in Telerilevamento (XXIV ciclo)Multistatic Passive Radar

31

Multistatic Passive Radar Geometry Optimization for Target 3D Positioning AccuracyF.Gumiero, C.Nucciarone, V. Anastasio, F. Colone, P. Lombardo - EuRAD 2010