other components canals and diversions andrea castelletti politecnico di milano nrml13

32
Other components canals and diversions Andrea Castelletti Politecnico di Mi NRM NRM L13 L13

Upload: samuel-ingram

Post on 26-Mar-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

Other componentscanals and diversions

Andrea CastellettiPolitecnico di Milano

NRMNRML13L13

Page 2: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

2

Adriatic Sea

Fucino

VILLA VOMANO

PIAGANINI

PROVVIDENZA

CAMPOTOSTO

MONTORIO (M)

SAN GIACOMO (SG)

Irrigation District(CBN)

S. LUCIA (SL)

PROVVIDENZA (P)

Page 3: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

3

Canal

• the peak’s propagation velocity w is greater than the average velocity v;

• the difference (w-v) increases with the depth H of the stream.

space

inst

anta

neou

s flo

w

Page 4: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

4

• The peak time increases with the distance;

• The peak flow decreases with the distance;

• Hydrographs are a-symmetrical and widen;

Canal: storing effectsec. 1

sec. 2

sec. 3

control sections

elementary unit

time

inst

anta

neou

s flo

wsto

ring ef

fect

(flow buffe

ring)

storin

g effec

t

(flow buffe

ring)

Page 5: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

5

Example: the Po river

l1

l2

l3

l4

l5

tSEP OCT NOV

Hydrometric plots for 5 stations (li)

h

Page 6: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

6

Canal: causal network

qt+1v

q

t+?m

q

t+?m

at+1

qt+1v

at+1

Page 7: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

7

Canal: mechanistic model

qt+1v

q

t+1v =qt−τ +1

m + at+1

Travel time

x

t=qt

m qt−1m ... qt−τ +1

m Tstate

xt+1 =

01M0

00M0

..

..

..

..

..

..

00M1

00M0

xt +

10M0

qt+1m

q

t+1v = 0 0 ... 0 1 xt + at+1

internal representation

plug-flow

at+1

q

t+?m

Page 8: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

8

Canal: the delay τ

qt+1v

q

t−τ +1m

q

t+1v =qt−τ +1

m + at+1

If τ = 0 the system is a non-dynamic one: the state does not exist.

To reduce the computing time in solving the design problem, the more convenient solution would be to fix in a way that τ be equal to zero.

But how to determine τ ? ....

plug-flow

at+1

Page 9: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

9

Canal: how to determine τIf one is able to observe a flood wave ..

… but if this is not possible?

use the cross-correlogram

τ

τ

t

t

qtm

qtv

t

t qt

v

qtm

upstream

downstream

τ

computed using whitened series

Page 10: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

10

correlation ρcorrelation ρ ρxy is a statistics of x and y measuring

the strenghtness of the link between x

and y

if x = α y → |ρxy| = 1

Correlation

−1< xy <1if x = α y + εwhite → |ρxy| < 1

if x = εwhite → ρxy = 0

provides an estimate of

rxy=

(xt −μx)∑ (yt −μy)

(xt −μx)∑⎡⎣ ⎤⎦2

(yt −μy)∑⎡⎣ ⎤⎦2 xy

Page 11: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

11

yt yt+τ

τ( )

τ

(Self)correlogram

It measures the correlation of the pair

1

… separated by different time intervals …… separated by different time intervals …

ττ

Pairs of variablesPairs of variables

( yt , yt+τ ) as a function of τ :( yt , yt+τ ) as a function of τ :

… of which we are interested in the strenghtness of the link.

… of which we are interested in the strenghtness of the link.

Page 12: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

12

1ta 1ta

Canal: leakage

qt+1v

q

t−τ +1m

q

t+1v =qt−τ +1

m + at+1

If the leakage does not change with the time

q

t+1v =qt−τ +1

m −at+1

q

t+1v =(1−α) qt−τ +1

m

If the leakage changes with the time

In this way is never negative even for very small value of the entring flow.

qt+1v

plug-flow

−αqt−τ +1

m

Page 13: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

13

Detention areas

Structural interventions that create a storage upstream where part of the inflow is retained when the flow rate is partuclarly high. They can be of 3 types::

• detention areas

Produce a narrowing of the riverbed

Produce an increase in the canal section when the flow is above a given value

They can be modeled as the aggregation of two components:

a reservoir and a canal

• detention basin

• dry dams

ht+1c

hts

at+1 h

Page 14: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

14

Detention areas

qt+1m

qt+1v

canal at+1

reservoir

st

qt+1v =qt+1

m −a qt+1m ,q,st( )

st+1 =st + a qt+1m ,q,st( )

If travel times can be neglected

Recession phase

ht+1c ht

s

at+1 h

Concentration phase

ht+1c

hts

at+1 h

Page 15: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

15

Detention areas

qt+1m

qt+1v

canal at+1

reservoir

st

By assuming that:

• stage-discharge curve of the canal is linear

, vale a dire ; qt+1

m > q

• the reservoir is cylindirc, i.e. ; st

=βhts

• The stage-discharge curve between the canal and the reservois is linear in the difference of the levels

qt+1v =qt+1

m + a qt+1m ,q,st( )

st+1 =st −a qt+1m ,q,st( )

at+1 =a qt+1

m ,q,st( ) =

0 if st=0 e q

t+1

m≤q

γq

t+1

m−q

α−

st

β

⎛⎝⎜

⎞⎠⎟ otherwise

⎨⎪

⎩⎪

Page 16: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

16

The model of a planned canal

If the canal is going to be planned its model should include up.

Each value of up correspond to a different alternative.

Typical situation: the canal has to be sized

In that case up is the maximum flow conveyable into the canal

q

t+1v =min qt+1

m ,up{ }

up = 0 is the business as usual alternative: do not do nothing

!

Page 17: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

17

Step-indicator of a canal

A step indicator is often associated to the canal

g

t+1 =gt qt+1m( )

For example:

• the damage produced by floods along the canal shores

• the environmental cost due to low flow rates

Page 18: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

18

Diversion (dam): structure

A branch point is usually an artificial work called diversion dam.

back-flow profile

spillway crest

bank of the water course bank of the

water course

inlet

dam

Page 19: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

19

qmax

Diversion (dam)

Features:

• entirely or partly channels the flow into a diversion canal

• can be equipped with mobile parts (usually sluice gates) for regulating the channelled flow.

riverbed

canal

• the diversion canal flow rate (qmax) is limited thorugh a crest spillways.

A branch point is usually an artificial work called diversion dam.

Page 20: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

20

Diversion (dam): causal network

qt+1

m

qt+1d

ut

qt+1v

qt+1v

qt+1m

ut qt+1d

1mtq

1dtq

1vtq

Page 21: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

21

Diversion (dam): mechanistic model

Non-regulated diversion

Regulated diversion:

qt+1d =min ut ,qt+1

m ,qmax⎡⎣ ⎤⎦

qt+1v =qt+1

m −qt+1d

⎧⎨⎪

⎩⎪

qt+1d =min qt+1

m ,qmax⎡⎣ ⎤⎦

qt+1v =qt+1

m −qt+1d

⎧⎨⎪

⎩⎪

q

t+1d =min ut ,(qt+1

m −qtMEF )+ ,qmax

⎡⎣ ⎤⎦

… diversion with a MEF:

q

max

qt+1m

qt+1d

qt+1m

qt+1d

q

max

ut

qt+1d ≠0 ut > 0 and

(qt+1m −qt

MEF ) > 0

only if:

−qt

DMV( )+

Page 22: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

22

Adriatic Sea

Fucino

VILLA VOMANO

PIAGANINI

PROVVIDENZA

CAMPOTOSTO

MONTORIO (M)

SAN GIACOMO (SG)

Irrigation district(CBN)

S. LUCIA (SL)

PROVVIDENZA (P)

Page 23: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

23

Features of the reservoirs

4.954950 000Piaganini

5.5851 690 000Provvidenza

975.461.8217 000 000Campotosto

Ts [hours]

qmax [m3/sec]Vactive [m3]

T

s=

Vactive

qmaxtime for

emptying

3.530380 000V. Vomano

Page 24: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

24

Piaganini

Page 25: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

25

Adriatic Sea

Fucino

VILLA VOMANO

PIAGANINI

PROVVIDENZA

CAMPOTOSTO

MONTORIO (M)

SAN GIACOMO (SG)

Irrigation district(CBN)

S. LUCIA (SL)

PROVVIDENZA (P)

Page 26: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

26Adriatic Sea

VILLA VOMANO

PROVVIDENZA

(M)

(P)

(SG)

Irrigation district(SL)

PIAGANINI

CAMPOTOSTO

Page 27: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

27Adriatic Sea

VILLA VOMANO

PROVVIDENZA

(M)

(P)

(SG)

Irrigationdistrict(SL)

PIAGANINI

CAMPOTOSTO

Ppumping

SGpumping

Problems:

• only ENEL is interested in the internal water cycling;

• a daily modelling time step is too large to accurately describe the phenomenon.

Problems:

• only ENEL is interested in the internal water cycling;

• a daily modelling time step is too large to accurately describe the phenomenon.

Page 28: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

28

P

SG

M

SL

DMV Fucino

MEF Vomano

PIAGANINI

CAMPOTOSTO PROVVIDENZA

VILLA VOMANODistretto irriguo(CBN)

P_pomp

SG+P_pomp

Acquedotto del Ruzzo

DMV Montorio

Schema logico corretto

Advantages:

• only the minimun value of release and pumping are decided, while ENEL is let free to increase these value to cope with the availability/demand of the national grid.

Advantages:

• only the minimun value of release and pumping are decided, while ENEL is let free to increase these value to cope with the availability/demand of the national grid.

Page 29: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

29

Pumping:

u2 ≤pMAX

SG

u1 +u2 ≤pMAX

Pr

Hydroelectric constraints

P

SG

M

SL

MEF2 Fucino

MEF1 Vomano

Irrigation district(CBN)

P_pump

SG+P_pump

Ruzzo Water Works

MEF Montorio

u2

u1

Page 30: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

30

Confluence point

The model of a confluence point is a simple algebraic expression.

q

t+1v = qt+1

m,i

i=1

n

qt+1m,1

qt+1m,2

qt+1m,3

qt+1v

Being i=1,...,n in coming canals, the model has the following form:

Page 31: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

31

P

SG

M

SL

MEF Fucino

MEF Vomano

PIAGANINI

CAMPOTOSTO PROVVIDENZA

VILLA VOMANOIrrigation district(CBN)

P_pump

SG+P_pump

Ruzzo water works

MEF Montorio

Page 32: Other components canals and diversions Andrea Castelletti Politecnico di Milano NRML13

32

Reading

IPWRM.Theory Ch. 5