p ⎞ ⎟ ⎟ ⎠ 2 dsfmorriso/cm310/2020examfinal... · 2020. 12. 7. · ver. 21 rsep r2011...

16
Equations Summary from Inside Cover of Morrison, 2013 Mechanical Energy Balance ȟ ߩ ȟ ۃ ݒ ۄ ߙʹ ȟ ݖ ܨ ௦ǡ௬ ௨ௗ ߙ ͲǤͷ ߙ௧௨௨௧ ൎͳ ܨͶ ܮ ܦ ܭǡ ௧௧௦ ۃ ݒ ۄʹ Fanning Friction Factor (pipe flow) ܨ ͳ ʹ ߩ ۃ ݒ ۄߨʹ ܮȟ ܦ ߩܮʹ ۃ ݒ ۄDrag Coefficient (sphere drop) ܥ ܨ ͳ ʹ ݒߩߨ Ͷܦ ߩௗ௬ ߩ ݒߩ͵Momentum balance on a CV (Reynolds transport theorem) ݐ ݒڄ ݒߩപ ൌ Macroscopic Momentum Balance on a CV ۾ ݐ ܣߩ ݏ ߠ ۃ ݒ ۄ ߚ ݒොቤ ௦௧௦ ୀଵ ܣ ௦௧௦ ୀଵ ܯ ߚ ͲǤͷ ߚ௧௨௨௧ ൎͳ Navier-Stokes equation (microscopic momentum balance, incompressible, Newtonian fluids) ߩ ݒμ ݐ ݒ ڄ ݒ൰ ൌ െ ߤ ݒߩ Continuity equation (microscopic mass balance, incompressible fluids) ݒڄപൌͲ Hydrostatic Pressure ௧௧ ߩ Hagen-Poiseuille Equation (steady, laminar tube flow, incompressible) ߨ ͺ ܮߤPrandtl Equation (steady, turbulent tube flow) ͳ ͶǤͲ ቆ ͶǤ ቇ ʹǤʹͺ Stokes-Einstein-Sutherland Equation (steady, slow flow around a sphere) ܨ ߨ ݒߤNote this is correct; there is an error on the inside cover 4 c 2011 Faith A. Morrison, all rights reserved. Total stress tensor ˜ Π = pI τ ˜ Π 11 ˜ Π 12 ˜ Π 13 ˜ Π 21 ˜ Π 22 ˜ Π 23 ˜ Π 31 ˜ Π 32 ˜ Π 33 123 = ˜ τ 11 p ˜ τ 12 ˜ τ 13 ˜ τ 21 ˜ τ 22 p ˜ τ 23 ˜ τ 31 ˜ τ 32 ˜ τ 33 p 123 Dynamic pressure P≡ p + ρgh Newtonian constitutive equation ˜ τ = μ v +(v ) T = μ 2 ∂v 1 ∂x 1 ∂v 2 ∂x 1 + ∂v 1 ∂x 2 ∂v 3 ∂x 1 + ∂v 1 ∂x 3 ∂v 2 ∂x 1 + ∂v 1 ∂x 2 2 ∂v 2 ∂x 2 ∂v 2 ∂x 3 + ∂v 3 ∂x 2 ∂v 3 ∂x 1 + ∂v 1 ∂x 3 ∂v 2 ∂x 3 + ∂v 3 ∂x 2 2 ∂v 3 ∂x 3 123 Total molecular fluid force on a finite surface S F = S ˆ n · ˜ Π at surface dS Stationary fluid ˆ n · ˜ Π = pˆ n Moving fluid ˆ n · ˜ Π = pˆ n n · ˜ τ Total fluid torque on a finite surface S T = S R × ˆ n · ˜ Π at surface dS Total flow rate out through a finite surface S Q = ˙ V = S n · v ] at surface dS Average velocity across a finite surface S v = Q S

Upload: others

Post on 30-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Equ

    atio

    ns S

    umm

    ary

    from

    Insi

    de C

    over

    of M

    orri

    son,

    201

    3

    Mec

    hani

    cal

    Ener

    gy B

    alan

    ce

    Fann

    ing

    Fric

    tion

    Fact

    or(p

    ipe

    flow

    )

    Dra

    g C

    oeff

    icie

    nt

    (sph

    ere

    drop

    )

    Mom

    entu

    m b

    alan

    ce o

    n a

    CV

    (R

    eyno

    lds t

    rans

    port

    theo

    rem

    )

    Mac

    rosc

    opic

    Mom

    entu

    m B

    alan

    ce o

    n a

    CV

    Nav

    ier-

    Stok

    es e

    quat

    ion

    (mic

    rosc

    opic

    mom

    entu

    m b

    alan

    ce,

    inco

    mpr

    essi

    ble,

    New

    toni

    an fl

    uids

    )

    Con

    tinui

    ty e

    quat

    ion

    (mic

    rosc

    opic

    mas

    s bal

    ance

    , in

    com

    pres

    sibl

    e flu

    ids)

    Hyd

    rost

    atic

    Pre

    ssur

    e

    Hag

    en-P

    oise

    uille

    Equ

    atio

    n (s

    tead

    y, la

    min

    ar tu

    be fl

    ow,

    inco

    mpr

    essi

    ble)

    Pran

    dtl E

    quat

    ion

    (ste

    ady,

    turb

    ulen

    t tub

    e flo

    w)

    Stok

    es-E

    inst

    ein-

    Suth

    erla

    nd E

    quat

    ion

    (ste

    ady,

    slow

    flow

    aro

    und

    a sp

    here

    )

    Notethisiscorrect;thereisan

    erroro

    ntheinside

    cover

    4c ©

    2011FaithA.Morrison,allrights

    reserved.

    Total

    stress

    tensor

    Π̃=

    −pI

    +τ̃

    ⎛ ⎝Π̃11

    Π̃12

    Π̃13

    Π̃21

    Π̃22

    Π̃23

    Π̃31

    Π̃32

    Π̃33

    ⎞ ⎠ 123

    =

    ⎛ ⎝τ̃11−

    pτ̃ 1

    2τ̃ 1

    3

    τ̃ 21

    τ̃ 22−p

    τ̃ 23

    τ̃ 31

    τ̃ 32

    τ̃ 33−p

    ⎞ ⎠ 123

    Dynam

    icpressure

    P≡

    p+ρgh

    New

    tonian

    constitutive

    equation

    τ̃=

    μ( ∇v

    +(∇

    v)T)

    ⎛ ⎜ ⎜ ⎝2∂v1

    ∂x1

    ∂v2

    ∂x1+

    ∂v1

    ∂x2

    ∂v3

    ∂x1+

    ∂v1

    ∂x3

    ∂v2

    ∂x1+

    ∂v1

    ∂x2

    2∂v2

    ∂x2

    ∂v2

    ∂x3+

    ∂v3

    ∂x2

    ∂v3

    ∂x1+

    ∂v1

    ∂x3

    ∂v2

    ∂x3+

    ∂v3

    ∂x2

    2∂v3

    ∂x3

    ⎞ ⎟ ⎟ ⎠ 123

    Total

    molecularfluid

    force

    onafinitesurfaceS

    F=

    ∫∫ S[ n̂·

    Π̃] ats

    urface

    dS

    Station

    aryfluid

    [ n̂·Π̃] =

    −pn̂

    Movingfluid

    [ n̂·Π̃] =

    −pn̂

    +n̂·τ̃

    Total

    fluid

    torque

    onafinitesurfaceS

    T=

    ∫∫ S[ R ×

    ( n̂·Π̃)] at

    surface

    dS

    Total

    flow

    rate

    out

    through

    afinitesurfaceS

    Q=

    V̇=

    ∫∫ S[n̂

    ·v] atsu

    rface

    dS

    Average

    velocity

    across

    afinitesurfaceS

    〈v〉=

    Q S

  • c ©2011FaithA.Morrison,allrights

    reserved.

    5

    Coordinatesystem

    surfacedifferential

    dS

    Cartesian

    (top

    ,n̂=

    ê z)

    dS=

    dxdy

    Cartesian

    (sidea,

    n̂=

    ê y)

    dS=

    dxdz

    Cartesian

    (sideb,n̂=

    ê x)

    dS=

    dydz

    cylindrical(top

    ,n̂=

    ê z)

    dS=

    rdrdθ

    cylindrical(side,

    n̂=

    ê r)

    dS=

    Rdθdz

    spherical,(n̂

    =ê r)

    dS=

    R2sinθdθdφ

    Coordinatesystem

    volumedifferential

    dV

    Cartesian

    dV

    =dxdydz

    cylindrical

    dV

    =rdrdθdz

    spherical

    dV

    =r2

    sinθdrdθdφ

    Coordinatesystem

    coordinates

    basisvectors

    spherical

    x=

    rsinθcosφ

    ê r=

    (sinθcosφê x)+(sinθsinφê y)+cosθê

    z

    y=

    rsinθsinφ

    ê θ=

    (cos

    θcosφ)ê

    x+(cos

    θsinφ)ê

    y+(−

    sinθ)ê z

    z=

    rcosθ

    ê φ=

    (−sinφ)ê

    x+cosφê y

    cylindrical

    x=

    rcosθ

    ê r=

    cosθê

    x+sinθê

    y

    y=

    rsinθ

    ê θ=

    (−sinθ)ê x

    +cosθê

    y

    z=

    zê z

    =ê z

    Divergence

    Theorem

    ∫∫ Sn̂·F

    dS

    =

    ∫∫∫V∇

    ·FdV

    StokesTheorem

    ∮ Ct̂·F

    dl

    =

    ∫∫ Sn̂·(∇

    ×F)dS

    Vectoridentities:

    ∇·∇

    ×F

    =0

    (Divergence

    ofcurl=

    0)

    ∇×

    ∇f

    =0

    (Curlof

    grad

    ient=

    0)

    ∇(fg)

    =f∇g+g∇f

    F·∇F

    =1 2∇

    ( F2) −

    F×(∇

    ×F)

    ∇·(fF)

    =f∇

    ·F+F·∇f

    ∇×

    ∇×

    F=

    ∇(∇

    ·F)−∇

    2F

    ∇·(F

    ×G)

    =G

    ·(∇

    ×F)−F·(∇

    ×G)

    Theeq

    uatio

    nsinF.A.

    Morrison

    ,AnIntrod

    uctio

    nto

    FluidMecha

    nics

    (Cam

    bridge,2013)

    assumethefollowingde

    finition

    softhe

    cylindrical

    andsphe

    ricalcoordinate

    system

    s .

    Cylin

    dricalCo

    ordina

    teSystem

    :Notethat

    the

    coordinate

    swings

    arou

    ndthe

    axis

    Sphe

    ricalCo

    ordina

    teSystem

    :Notethat

    the

    coordinate

    swings

    downfrom

    the

    axis;

    thisisdiffe

    rent

    from

    itsde

    finition

    inthecylindricalsystem

    above.

  • Ver.21

    Sep20

    11

    FACT

    ORS

    FORUNITCO

    NVER

    SIONS

    Qua

    ntity

    Equivalent

    Value

    s

    Mass

    1kg

    =10

    00g=0.00

    1metricton=2.20

    462lb

    m=35

    .273

    92oz

    1lb

    m=16

    oz=5x10

    4ton=45

    3.59

    3g=0.45

    3593

    kg

    Length

    1m

    =10

    0cm

    =10

    00mm

    =10

    6microns

    (μm)=

    1010angstrom

    s(Å)

    =39

    .37in=3.28

    08ft=1.09

    36yd

    =0.00

    0621

    4mile

    1ft=12

    in.=

    1/3yd

    =0.30

    48m

    =30

    .48cm

    Volume

    1m

    3=10

    00liters=10

    6cm

    3=10

    6ml

    =35

    .314

    5ft3=22

    0.83

    impe

    rialgallons

    =26

    4.17

    gal

    =10

    56.68qt

    1ft3=17

    28in

    3=7.48

    05gal=

    0.02

    8317

    m3=28

    .317

    liters

    =28

    317cm

    3

    Force

    1N=1kg

    . m/s

    2=10

    5dyne

    s=10

    5g.cm

    /s2=0.22

    481lb

    f

    1lb

    f=32

    .174

    lbm. ft/s

    2=4.44

    82N=4.44

    82x10

    5dyne

    s

    Pressure

    1atm

    =1.01

    325x10

    5N/m

    2(Pa)=10

    1.32

    5kPa=1.01

    325bars

    =1.01

    325x10

    6dyne

    s/cm

    2

    =76

    0mm

    Hgat

    0C(torr)=10

    .333

    mH2O

    at4

    C=14

    .696

    lbf/in

    2(psi)=

    33.9ftH2O

    at4C

    100kPa=1bar

    Energy

    1J=

    1N. m

    =10

    7ergs

    =10

    7dyne

    . cm

    =2.77

    8x10

    7kW

    . h=0.23

    901cal

    =0.73

    76ft. lb

    f=9.47

    817x10

    4Btu

    Power

    1W

    =1J/s=0.23

    885cal/s=0.73

    76ft. lb

    f/s=9.47

    817x10

    4Btu/s=3.41

    21Btu/h

    =1.34

    1x10

    3hp

    (horsepo

    wer)

    Viscosity

    1Pa

    . s=1N. s/m

    2=1kg/m

    . s=10

    poise=10

    dyne

    s. s/cm

    2=10

    g/cm

    . s=10

    3cp

    (cen

    tipoise)

    =0.67

    197lb

    m/ft. s

    =24

    19.088

    lbm/ft. h

    Den

    sity

    1kg/m

    3=10

    3g/cm

    3

    =0.06

    243lb

    m/ft3

    103kg/m

    3=1g/cm

    3=62

    .428

    lbm/ft3

    VolumetricFlow

    1m

    3 /s=

    35.314

    5ft3 /s=15

    ,850

    .2gal/min(gpm

    )1gpm

    =6.30

    907x10

    5m

    3 /s=2.22

    802x10

    3ft3 /s=3.78

    54liter/m

    in1liter/m

    in=0.264

    17gpm

    Prof.Faith

    A.M

    orrison

    Dep

    artm

    ento

    fChe

    micalEn

    gine

    ering

    Ver.21

    Sep20

    11

    Tempe

    rature

    5 9(

    )(

    )32

    oo

    TC

    TF

    9 5(

    )(

    )32

    1.8

    ()

    32o

    oo

    TF

    TC

    TC

    AbsoluteTempe

    rature

    T(K)

    =T(

    C)+27

    3.15

    T(R)

    =T(

    F)+45

    9.67

    Tempe

    rature

    Interval(T)

    1C

    =1K=1.8F

    =1.8R

    1F=1R

    =(5/9)C

    =(5/9)K

    USEFU

    LQUANTITIES

    SG=

    (20C)/

    water(4

    C)

    water(4

    C)=1000

    kg/m

    3=62

    .43lb

    m/ft3

    =1.00

    0g/cm

    3

    water(25C)

    =997.08

    kg/m

    3=62.25lb

    m/ft3=0.99709g/cm

    3

    g=9.8066

    m/s

    2=98

    0.66

    cm/s

    2=32

    .174

    ft/s

    2

    μ water(25C)

    =8.937x10

    4Pa

    . s=8.93

    7x10

    4kg/m

    . s=0.8937

    cp=0.8937x10

    2g/cm

    . s=6.005x10

    4lb

    m/ft. s

    Compo

    sitio

    nof

    air:

    N2

    78.03%

    O2

    20.99%

    Ar

    0.94

    %CO

    20.03

    %H2,He,Ne,Kr,Xe

    0.01

    %100.00%

    Mair

    =29

    g/mol=29

    kg/kmol=29

    lbm/lbm

    ole

    p,water(25C)

    =4.182kJ/kgK=0.99

    89cal/gC=0.9997

    Btu/lb

    mF

    R=8.314m

    3 .Pa/m

    ol. K=0.08314liter

    . bar/m

    ol. K=0.08206liter

    . atm

    /mol

    . K=62

    .36liter

    . mm

    Hg/mol

    . K=0.7302

    ft3 .atm/lbm

    ole.R

    =10

    .73ft3 .psia/lbm

    ole.R

    =8.314J/mol

    . K=1.987cal/mol

    . K=1.987Btu/lbmole.R

  • 1CM

    3110

    Morrison

    Mich

    igan

    Tech

    2020

    FluidFrictionDa

    taCo

    rrelations

    forE

    xaminations

    CM31

    10TransportP

    heno

    men

    aI

    Mich

    igan

    Techno

    logicalU

    niversity

    ProfessorF

    aith

    A.Morrison

    1De

    cembe

    r202

    0

    I. DataCorrelationsforFlow

    throughSm

    oothPipes

    A. AllReynoldsnumbers:Morrison

    Thecorrelationfro

    mMorrison

    (201

    3)fitsthe

    smoo

    thpipe

    data

    fora

    llRe

    ynolds

    numbe

    rs;b

    eyon

    dRe

    4000thiscorrelationfollowsthe

    Prandtlequ

    ation(see

    Figure

    1;Morrison

    ,equ

    ation7.15

    8).This

    correlationisexplicitin

    ;whe

    nflo

    wrate

    isknow

    n,may

    befoun

    ddirectly;w

    hen

    isknow

    n,or

    mustb

    esolved

    foriterativ

    ely.

    Morrison

    (201

    3)0.0076

    3170 Re.

    13170 Re.

    16 Re(1)

    B.

    ,RRe

    :Prandtl

    ThePrandtlcorrelatio

    nfor

    Reinturbu

    lent

    flowisno

    texplicitinfrictionfactor

    andmay

    besolved

    iterativ

    elyexcept

    whe

    nisknow

    n(M

    orrison

    ,equ

    ation7.15

    6).Whe

    nvelocityisno

    tkno

    wn,

    Re may

    stillbe

    calcu

    lated,yielding

    .ThePrandtlcorrelatio

    nisgood

    onlyforRe

    4,000.Prandtl

    orVo

    nKarman

    Nikuradse

    (Den

    n,19

    80)

    1 4.0logR

    e0.40

    (2)

    C.

    ,Re

    :Asimplified

    Correlation

    Forthe

    turbulen

    tregim

    e,an

    approxim

    atecorrelationthat

    ismuchsim

    pler

    toworkwith

    (with

    acalcu

    latoro

    nan

    exam

    ,for

    exam

    ple)

    isgivenhe

    reandshow

    ninFigure

    2(M

    orrison

    ,equ

    ation7.15

    7).

    Thisisgood

    onlyforRe

    4,000.Simplified

    Turbulen

    t(W

    hite,197

    4)1.02 4lo

    gRe.

    (3)

    2CM

    3110

    Morrison

    Mich

    igan

    Tech

    2020

    Figure

    1:Eq

    uatio

    n3captures

    smoo

    thpipe

    frictionfactor

    asafunctio

    nof

    Reynolds

    numbe

    roverthe

    entireRe

    ynolds

    numbe

    rrange

    (Morrison

    ,201

    3)andisrecommen

    dedforspreadshe

    etuse.Also

    show

    nareNikuradse'se

    xperim

    entaldataforflowinsm

    ooth

    pipe

    s(Nikuradse,19

    33).Us

    ebe

    yond

    Re10

    isno

    trecom

    men

    ded;

    forR

    e>40

    00eq

    uatio

    n3followsthe

    Prandtlequ

    ation.(M

    orrison

    ,201

    3,p5

    32)

    Figure

    2:Forturbu

    lent

    flow,the

    simplified

    (equ

    ation3)

    orPrandtl(eq

    uatio

    n2)

    correlations

    may

    beused

    .Forw

    orkwith

    acalcu

    lator,thesim

    plified

    correlationispe

    rhapsthe

    easie

    stto

    workwith

    .(Morrison

    ,20

    13,p53

    1)

    0.00

    1

    0.010.

    11 1.E+

    021.

    E+03

    1.E+

    041.

    E+05

    1.E+

    061.

    E+07

    Nik

    urad

    se (d

    ata)

    Lam

    inar

    flow

    Pran

    dtl (

    Re>

    4,00

    0)

    Sim

    plifi

    ed (R

    e>4,

    000)

    Lam

    inar

    flow

    Turb

    ulen

    t flo

    w

    f

    Re

    102

    103

    104

    105

    106

    107

    Smoo

    th p

    ipe

    Pran

    dtl C

    orre

    latio

    n 40.0Re

    log

    0.41

    ff

    Re16f

    Simplified

    Correlation:

  • 3CM

    3110

    Morrison

    Mich

    igan

    Tech

    2020

    II.

    DataCorrelationsforFlow

    Around

    aSphere

    A. AllReynoldsNum

    bers:M

    orrison

    Thecorrelationfro

    mMorrison

    (201

    3)fitsthe

    flowarou

    ndasphe

    refora

    llRe

    ynolds

    numbe

    rs(Figure3;

    Morrison

    equatio

    n8.83

    );be

    yond

    10thisc

    orrelatio

    nfollowsthe

    curveshow

    ninFigure

    3.

    Morrison

    (201

    3)24 Re

    2.6Re 5.0 1Re 5.0.

    0.411Re 263,00

    0.1

    Re 263,000.

    0.25Re 10 1Re 10

    (4)

    Simplified

    Correlations

    Thecorrelations

    below(M

    orrison

    ,201

    3;eq

    uatio

    n8.82

    )are

    simpler

    relatio

    nships

    moresuita

    bleto

    calcu

    lator/exam

    work.

    Re224 Re

    (5)

    0.1Re1,0

    0024 Re1

    0.14Re.

    (6)

    1,000Re2

    .6100.445

    (7)

    2.810R

    e10log Re 10

    4.43logRe

    27.3(8)

    4CM

    3110

    Morrison

    Mich

    igan

    Tech

    2020

    References

    M.D

    enn,ProcessF

    luidMechanics

    (Prentice

    Hall,En

    glew

    oodCliffs,NJ,198

    0)F.A.

    Morrison

    ,AnIntrod

    uctio

    nto

    FluidMecha

    nics

    (Cam

    bridge

    UniversityPress,Ne

    wYo

    rk,201

    3).

    F.M.W

    hite,V

    iscou

    sFluidFlow

    (McG

    raw

    Hill,Inc.:N

    ewYo

    rk,197

    4).

    Figure

    3:Eq

    uatio

    n4captures

    flowarou

    ndasphe

    reas

    afunctio

    nof

    Reynolds

    numbe

    roverthe

    entire

    Reynolds

    numbe

    rrange

    (Morrison

    ,201

    3)andisrecommen

    dedforspreadshe

    etuse.Also

    show

    nare

    expe

    rimen

    taldatafro

    mWhite

    (197

    4).U

    sebe

    yond

    10 isno

    trecom

    men

    ded.(M

    orrison

    ,201

    3,p6

    25)

  • TheEquation

    ofContinuityand

    theEquation

    ofM

    otion

    inCartesian,

    cylindrical,and

    sphericalcoordinates

    CM

    3110Fall

    2011Faith

    A.M

    orrison

    ContinuityEquation,Cartesian

    coordinates

    ∂ρ

    ∂t+

    ( v x∂ρ

    ∂x+vy∂ρ

    ∂y+

    vz∂ρ

    ∂z

    ) +ρ

    ( ∂vx

    ∂x

    +∂vy

    ∂y

    +∂vz

    ∂z

    )=

    0

    ContinuityEquation,cylindricalcoordinates

    ∂ρ

    ∂t+

    1 r

    ∂(ρrvr)

    ∂r

    +1 r

    ∂(ρvθ)

    ∂θ

    +∂(ρvz)

    ∂z

    =0

    ContinuityEquation,spherical

    coordinates

    ∂ρ

    ∂t+

    1 r2∂(ρr2vr)

    ∂r

    +1

    rsinθ

    ∂(ρvθsinθ)

    ∂θ

    +1

    rsinθ

    ∂(ρvφ)

    ∂φ

    =0

    Equation

    ofM

    otionforan

    incompressible

    fluid,3compon

    ents

    inCartesian

    coordinates

    ρ

    ( ∂vx

    ∂t

    +vx∂vx

    ∂x

    +vy∂vx

    ∂y

    +vz∂vx

    ∂z

    )=

    −∂P

    ∂x

    +

    ( ∂τ̃xx

    ∂x

    +∂τ̃ y

    x

    ∂y

    +∂τ̃ z

    x

    ∂z

    ) +ρgx

    ρ

    ( ∂vy

    ∂t+

    vx∂vy

    ∂x

    +vy∂vy

    ∂y

    +vz∂vy

    ∂z

    )=

    −∂P ∂y+

    ( ∂τ̃xy

    ∂x

    +∂τ̃ y

    y

    ∂y

    +∂τ̃ z

    y

    ∂z

    ) +ρgy

    ρ

    ( ∂vz

    ∂t+

    vx∂vz

    ∂x

    +vy∂vz

    ∂y

    +vz∂vz

    ∂z

    )=

    −∂P ∂z+

    ( ∂τ̃xz

    ∂x

    +∂τ̃ y

    z

    ∂y

    +∂τ̃ z

    z

    ∂z

    ) +ρgz

    Equation

    ofM

    otionforan

    incompressible

    fluid,3compon

    ents

    incylindricalcoordinates

    ρ

    ( ∂vr

    ∂t+

    vr∂vr

    ∂r

    +vθ r

    ∂vr

    ∂θ

    −v2 θ r+

    vz∂vr

    ∂z

    )=

    −∂P ∂r+

    ( 1 r∂(rτ̃ r

    r)

    ∂r

    +1 r

    ∂τ̃ θ

    r

    ∂θ

    −τ̃ θ

    θ r+

    ∂τ̃ z

    r

    ∂z

    ) +ρgr

    ρ

    ( ∂vθ

    ∂t+

    vr∂vθ

    ∂r

    +vθ r

    ∂vθ

    ∂θ

    +vθvr

    r+

    vz∂vθ

    ∂z

    )=

    −1 r

    ∂P ∂θ+

    ( 1 r2∂(r

    2τ̃ r

    θ)

    ∂r

    +1 r

    ∂τ̃ θ

    θ

    ∂θ

    +∂τ̃ z

    θ

    ∂z

    +τ̃ θ

    r−

    τ̃ rθ

    r

    ) +ρgθ

    ρ

    ( ∂vz

    ∂t+

    vr∂vz

    ∂r

    +vθ r

    ∂vz

    ∂θ

    +vz∂vz

    ∂z

    )=

    −∂P ∂z+

    ( 1 r∂(rτ̃ r

    z)

    ∂r

    +1 r

    ∂τ̃ θ

    z

    ∂θ

    +∂τ̃ z

    z

    ∂z

    ) +ρgz

    Equation

    ofM

    otionforan

    incompressible

    fluid,3compon

    ents

    inspherical

    coordinates

    ρ

    ( ∂vr

    ∂t+

    vr∂vr

    ∂r

    +vθ r

    ∂vr

    ∂θ

    +vφ

    rsinθ

    ∂vr

    ∂φ

    −v2 θ+v2 φ

    r

    )

    =−∂P ∂r+

    ( 1 r2∂(r

    2τ̃ r

    r)

    ∂r

    +1

    rsinθ

    ∂(τ̃

    θrsinθ)

    ∂θ

    +1

    rsinθ

    ∂τ̃ φ

    r

    ∂φ

    −τ̃ θ

    θ+

    τ̃ φφ

    r

    ) +ρgr

    ρ

    ( ∂vθ

    ∂t+

    vr∂vθ

    ∂r

    +vθ r

    ∂vθ

    ∂θ

    +vφ

    rsinθ

    ∂vθ

    ∂φ

    +vrvθ

    r−

    v2 φcotθ

    r

    )

    =−1 r

    ∂P ∂θ+

    ( 1 r3∂(r

    3τ̃ r

    θ)

    ∂r

    +1

    rsinθ

    ∂(τ̃

    θθsinθ)

    ∂θ

    +1

    rsinθ

    ∂τ̃ φ

    θ

    ∂φ

    +τ̃ θ

    r−

    τ̃ rθ

    r−

    τ̃ φφcotθ

    r

    ) +ρgθ

    ρ

    ( ∂vφ

    ∂t

    +vr∂vφ

    ∂r

    +vθ r

    ∂vφ

    ∂θ

    +vφ

    rsinθ

    ∂vφ

    ∂φ

    +vrvφ

    r+

    vφvθcotθ

    r

    )

    =−

    1

    rsinθ

    ∂P

    ∂φ

    +

    ( 1 r3∂(r

    3τ̃ r

    φ)

    ∂r

    +1

    rsinθ

    ∂(τ̃

    θφsinθ)

    ∂θ

    +1

    rsinθ

    ∂τ̃ φ

    φ

    ∂φ

    +τ̃ φ

    r−

    τ̃ rφ

    r+

    τ̃ φθcotθ

    r

    ) +ρgφ

    EquationofM

    otionforincompressible,New

    tonianfluid

    (Navier-Stokesequation)3compon

    ents

    inCartesian

    coordinates

    ρ

    ( ∂vx

    ∂t

    +vx∂vx

    ∂x

    +vy∂vx

    ∂y

    +vz∂vx

    ∂z

    )=

    −∂P

    ∂x

    ( ∂2vx

    ∂x2+

    ∂2vx

    ∂y2+

    ∂2vx

    ∂z2

    ) +ρgx

    ρ

    ( ∂vy

    ∂t+

    vx∂vy

    ∂x

    +vy∂vy

    ∂y

    +vz∂vy

    ∂z

    )=

    −∂P ∂y+

    μ

    ( ∂2vy

    ∂x2+

    ∂2vy

    ∂y2+

    ∂2vy

    ∂z2

    ) +ρgy

    ρ

    ( ∂vz

    ∂t+

    vx∂vz

    ∂x

    +vy∂vz

    ∂y

    +vz∂vz

    ∂z

    )=

    −∂P ∂z+

    μ

    ( ∂2vz

    ∂x2+

    ∂2vz

    ∂y2+

    ∂2vz

    ∂z2

    ) +ρgz

    Equation

    ofM

    otion

    forincompressible,New

    tonianfluid

    (Navier-Stokesequation),

    3compon

    ents

    incylin-

    dricalcoordinates

    ρ

    ( ∂vr

    ∂t+

    vr∂vr

    ∂r

    +vθ r

    ∂vr

    ∂θ

    −v2 θ r+

    vz∂vr

    ∂z

    )=

    −∂P ∂r+

    μ

    ( ∂ ∂r

    ( 1 r∂(rvr)

    ∂r

    ) +1 r2∂2vr

    ∂θ2−

    2 r2∂vθ

    ∂θ

    +∂2vr

    ∂z2

    ) +ρgr

    ρ

    ( ∂vθ

    ∂t+

    vr∂vθ

    ∂r

    +vθ r

    ∂vθ

    ∂θ

    +vrvθ

    r+

    vz∂vθ

    ∂z

    )=

    −1 r

    ∂P ∂θ+

    μ

    ( ∂ ∂r

    ( 1 r∂(rvθ)

    ∂r

    ) +1 r2∂2vθ

    ∂θ2+

    2 r2∂vr

    ∂θ

    +∂2vθ

    ∂z2

    ) +ρgθ

    ρ

    ( ∂vz

    ∂t+

    vr∂vz

    ∂r

    +vθ r

    ∂vz

    ∂θ

    +vz∂vz

    ∂z

    )=

    −∂P ∂z+

    μ

    ( 1 r∂ ∂r

    ( r∂vz

    ∂r

    ) +1 r2∂2vz

    ∂θ2+

    ∂2vz

    ∂z2

    ) +ρgz

    EquationofM

    otionforincompressible,New

    tonianfluid

    (Navier-Stokesequation),3compon

    ents

    inspherical

    coordinates ρ

    ( ∂vr

    ∂t+

    vr∂vr

    ∂r

    +vθ r

    ∂vr

    ∂θ

    +vφ

    rsinθ

    ∂vr

    ∂φ

    −v2 θ+

    v2 φ

    r

    )

    =−∂P ∂r+

    μ

    ( ∂ ∂r

    ( 1 r2∂ ∂r

    ( r2vr

    ))+

    1

    r2sinθ

    ∂ ∂θ

    ( sinθ∂vr

    ∂θ

    ) +1

    r2sin2θ

    ∂2vr

    ∂φ2

    −2

    r2sinθ

    ∂ ∂θ(v

    θsinθ)−

    2

    r2sinθ

    ∂vφ

    ∂φ

    ) +ρgr

    ρ

    ( ∂vθ

    ∂t+

    vr∂vθ

    ∂r

    +vθ r

    ∂vθ

    ∂θ

    +vφ

    rsinθ

    ∂vθ

    ∂φ

    +vrvθ

    r−

    v2 φcotθ

    r

    )

    =−1 r

    ∂P ∂θ+μ

    ( 1 r2∂ ∂r

    ( r2∂vθ

    ∂r

    ) +1 r2

    ∂ ∂θ

    (1

    sinθ

    ∂ ∂θ(v

    θsinθ)) +

    1

    r2sin2θ

    ∂2vθ

    ∂φ2

    +2 r2∂vr

    ∂θ

    −2cotθ

    r2sinθ

    ∂vφ

    ∂φ

    ) +ρgθ

    ρ

    ( ∂vφ

    ∂t

    +vr∂vφ

    ∂r

    +vθ r

    ∂vφ

    ∂θ

    +vφ

    rsinθ

    ∂vφ

    ∂φ

    +vrvφ

    r+

    vφvθcotθ

    r

    )

    =−

    1

    rsinθ

    ∂P

    ∂φ

    ( 1 r2∂ ∂r

    ( r2∂vφ

    ∂r

    ) +1 r2

    ∂ ∂θ

    (1

    sinθ

    ∂ ∂θ(v

    φsinθ)) +

    1

    r2sin2θ

    ∂2vφ

    ∂φ2

    +2

    r2sinθ

    ∂vr

    ∂φ

    +2cotθ

    r2sinθ

    ∂vθ

    ∂φ

    ) +ρgφ

    Note:

    ther-com

    pon

    entof

    theNavier-Stokesequationin

    spherical

    coordinates

    may

    besimplified

    byad

    ding0=

    2 r∇

    ·vto

    thecompon

    entshow

    nab

    ove.

    Thisterm

    iszero

    dueto

    thecontinuityequation(m

    assconservation).

    See

    Birdet.al.

    Referen

    ces:

    1.R.B.Bird,W

    .E.Stewart,

    andE.N.Lightfoot,Transport

    Phenomena,2n

    ded

    ition,W

    iley:NY,2002.

    2.R.B.Bird,R.C.Arm

    strong,

    andO.Hassager,

    DynamicsofPolymericFluids:

    Volume1Fluid

    Mechanics,

    Wiley:NY,1987.

  •     16 April 2014 

    The Newtonian Constitutive Equation in Cartesian, Cylindrical, and Spherical coordinates 

    Prof. Faith A. Morrison, Michigan Technological University 

         

    Cartesian Coordinates 

    ̃ ̃ ̃̃ ̃ ̃̃ ̃

    2

    2

    2

     

    Cylindrical Coordinates 

    ̃ ̃ ̃̃ ̃ ̃̃ ̃

    2 11 2 1 1

    1 2

     

    Spherical Coordinates 

    ̃ ̃ ̃̃ ̃ ̃̃ ̃

    2 1 1sin1 2 1 sin sin

    1sin

    1sin

    sinsin

    1sin 2

    1sin

    cot

     

         

    These expressions are general and are applicable to three‐dimensional flows.  For unidirectional flows they reduce to Newton’s law of Viscosity.  Reference:  Faith A. Morrison, An Introduction to Fluid Mechanics (Cambridge University Press: New York, 2013) 

  • hydraulic diam

    eter general

    , 4

    PoRe

    1 4.0log

    Re Po duct 16

    0.40Ge

    ometry

    PoCircle

    16Equilateraltria

    ngle

    13.33

    Slit

    24Ellipse

    (a,b)

    32___________________________________________________________________________

    void fraction,

    empty bed

    volume

    total bed volum

    etotal pa

    rtical surface

    areaparticle

    volume

    superficial vel

    ocity,/

    hydraulic diam

    eter for packed

    bed, 4 1

    Reynolds num

    ber for packed

    bed /

    friction factor

    for packed be

    d2

    Mecha

    nism

    ,

    ,

    Cond

    ensin

    gsteam

    1000

    5000

    5700

    28,000

    Cond

    ensin

    gorganics

    200500

    1100

    2800

    Boiling

    liquids

    30050

    001700

    28,000

    Movingwater

    503000

    28017

    ,000

    Movinghydrocarbo

    ns10

    300

    551700

    Stillair

    0.54

    2.823

    Movingair

    210

    11.3

    55Re

    ference:

    C.J.Ge

    ankoplis,

    Mag

    nitude

    ofSomeHe

    atTran

    sfer

    Coefficients,pa

    ge24

    1

    TableA.316

    Geankoplis,

    2003

  • 1

    TheEq

    uatio

    nof

    Energy

    inCartesian,cylindrical,and

    sphe

    ricalcoordinatesfor

    New

    tonian

    fluidso

    fcon

    stantd

    ensity,with

    source

    term

    .Source

    couldbe

    electricalen

    ergy

    dueto

    curren

    tflow,che

    micalen

    ergy,etc.Tw

    ocasesa

    represen

    ted:

    thegene

    ralcasewhe

    rethermal

    cond

    uctiv

    itymay

    beafunctio

    nof

    tempe

    rature

    (vectorflux

    appe

    ars intheeq

    uatio

    ns);andthe

    moreusualcase,whe

    rethermalcond

    uctiv

    ityisconstant.

    Fall20

    13Faith

    A.Morrison

    ,MichiganTechno

    logicalU

    niversity

    Microscop

    icen

    ergy

    balance,interm

    sofflux;Gibb

    snotation

    Microscop

    icen

    ergy

    balance,interm

    sofflux;Ca

    rtesiancoordinates

    Microscop

    icen

    ergy

    balance,interm

    sofflux;cylindricalcoordinates

    Microscop

    icen

    ergy

    balance,interm

    sofflux;sphe

    ricalcoordinates

    Fourier’s

    lawof

    heat

    cond

    uctio

    n,Gibb

    snotation:

    Fourier’s

    lawof

    heat

    cond

    uctio

    n,Ca

    rtesiancoordinates:

    Fourier’s

    lawof

    heat

    cond

    uctio

    n,cylindricalcoordinates:

    Fourier’s

    lawof

    heat

    cond

    uctio

    n,sphe

    ricalcoordinates:

    2

    TheEq

    uatio

    nof

    Energy

    forsystemsw

    ithconstant

    Microscop

    icen

    ergy

    balance,constant

    thermalcond

    uctiv

    ity;G

    ibbs

    notatio

    n

    Microscop

    icen

    ergy

    balance,constant

    thermalcond

    uctiv

    ity;C

    artesia

    ncoordinates

    Microscop

    icen

    ergy

    balance,constant

    thermalcond

    uctiv

    ity;cylindricalcoordinates

    Microscop

    icen

    ergy

    balance,constant

    thermalcond

    uctiv

    ity;sph

    ericalcoordinates

    Reference:

    F.A.

    Morrison

    ,“Web

    Appe

    ndixto

    AnIntrod

    uctio

    nto

    FluidMecha

    nics,”Cambridge

    University

    Press,New

    York,201

    3.Ontheweb

    atwww.che

    m.m

    tu.edu

    /~fm

    orriso/IFM_W

    ebAp

    pend

    ixCD

    2013

    .pdf

  • A.2-11

    ('C)

    0

    15.6

    26.7

    37.8

    65.6

    93.3

    121.l

    148.9

    204.4

    260.0

    315.6

    A.2-11

    T ("F)

    32

    60

    80

    100

    150

    200

    250

    300

    400

    500

    600

    Heat-Transfer Properties of Liquid Water, SI Units

    µ. X JO3 (gf3p'Iµ.') T p er (Pa•s, or k /3 X JO' X J0-

    8

    (K) (kglm3) (kl/kg· K) kglm · s) (Wlm •K) N,, (1/K) (I/[(. m')

    273.2 999.6 4.229 1.786 0.5694 13.3 -0.630

    288.8 998.0 4.187 1.131 0.5884 8.07 1.44 10.93

    299.9 996.4 4.183 0.860 0.6109 5.89 2.34 30.70

    311.0 994.7 4.183 0.682 0.6283 4.51 3.24 68.0

    338.8 981.9 4.187 0.432 0.6629 2.72 5.04 256.2

    366.5 962.7 4.229 0.3066 0.6802 1.91 6.66 642

    394.3 943.5 4.271 0.2381 0.6836 1.49 8.46 1300

    422.l 917.9 4.312 0.1935 0.6836 1.22 10.08 2231

    477.6 858.6 4.522 0.1384 0.6611 0.950 14.04 5308

    533.2 784.9 4.982 0.1042 0.6040 0.859 19.8 11030

    588.8 679.2 6.322 0.0862 0.5071 1.07 31.5 19 260

    Heat-Transfer Properties of Liquid Water, English Units

    p Cp µ. X JO3 k (gf3p'Iµ.')

    (lb"') ( btu ) (�) ( btu ) /3 X JO' X 10-6

    ft' lb111 • °F ft·S h•ft•'F N,, (ll'R) (1/'R. Ji')

    62.4 1.01 1.20 0.329 13.3 -0.350

    62.3 1.00 0.760 0.340 8.07 0.800 17.2

    62.2 0.999 0.578 0.353 5.89 1.30 48.3

    62.1 0.999 0.458 0.363 4.51 1.80 107

    61.3 1.00 0.290 0.383 2.72 2.80 403

    60.1 1.01 0.206 0.393 1.91 3.70 1010

    58.9 1.02 0.160 0.395 1.49 4.70 2045

    57.3 1.03 0.130 0.395 1.22 5.60 3510

    53.6 1.08 0.0930 0.382 0.950 7.80 8350

    49.0 1.19 0.0700 0.349 0.859 11.0 17 350

    42.4 1.51 0.0579 0.293 1.07 17.5 30 300

  • A.3-3 Physical Properties ol' Air at 101.325 kPa (1 Atm Abs), SI Units

    µ. X JO5 T p c,, (Pa·s.or k /3 X JO' gf3p"Iµ."

    ("C) (/() (kglnr1 ) (/cJ!kg · K) kg/111 · s) (W/m·K) Nr, (//K) (//K · 1113)

    -17.8 255.4 1.379 1.0048 1.62 0.02250 0.720 3.92 2.79 X 108

    0 273.2 1.293 1.0048 1.72 0.02423 0.715 3.65 2.04 X 108

    10.0 283.2 1.246 1.0048 1.78 0.02492 0.713 3.53 1.72 X 108

    37.8 311.0 1.137 1.0048 1.90 0.02700 0.705 3.22 1.12 X 108

    65.6 338.8 1.043 1.0090 2.03 0.02925 0.702 2.95 0.775 X 108

    93.3 366.5 0.964 1.0090 2.15 0.03115 0.694 2.74 0.534 X 108

    121.1 394.3 0.895 1.0132 2.27 0.03323 0.692 2.54 0.386 X 108

    148.9 422.l 0.838 1.0174 2.37 0.03531 0.689 2.38 0.289 X 108

    176.7 449.9 0.785 1.0216 2.50 0.0372 l 0.687 2.21 0.214 X 108

    204.4 477.6 0.740 1.0258 2.60 0.03894 0.686 2.09 0.168 X 108

    232.2 505.4 0.700 l.0300 2.71 0.04084 0.684 1.98 0.130 X 108

    260.0 533.2 0.662 1.0341 2.80 0.04258 0.680 1.87 0.104 X 108

    A.3-3 Physical Properties of Air at 101.325 kPa (1 Atm Abs), English Units

    p c,, k T

    Cb

    ''.') ( bw ) µ. (

    btu ) /3 X JO' g{3p'Iµ.

    '("F) ft·' lb111 • °F ( centipoise) h·ft·"F N,, (ll"R) (I!"R ·fr')

    0 0.0861 0.240 0.0162 0.0130 0.720 2.18 4.39 X 106

    32 0.0807 0.240 0.0172 0.0140 0.715 2.03 3.21 X 106

    50 0.0778 0.240 0.0178_ 0.0144 0.713 1.96 2.70 X 106

    100 0.0710 0.240 0.0190 0.0156 0.705 1.79 1.76 X 106

    150 0.0651 0.241 0.0203 0.0169 0.702 1.64 1.22 X 106

    200 0.0602 0.241 0.0215 0.0180 0.694 1.52 0.840 X 106

    250 0.0559 0.242 0.0227 0.0192 0.692 1.41 0.607 X 106

    300 0.0523 0.243 0.0237 0.0204 0.689 1.32 0.454 X 106

    350 0.0490 0.244 0.0250 0.0215 0.687 1.23 0.336 X 106

    400 0.0462 0.245 0.0260 0.0225 0.686 1.16 0.264 X 106

    450 0.0437 0.246 0.0271 0.0236 0.674 1.10 0.204 X 106

    500 0.0413 0.247 0.0280 0.0246 0.680 1.04 0.163 X 106

    Source: National Bureau of Stand,1rds, Circufnr 461C, 1947; 564, 1955: NBS-NACA. Ta hies of Thermnl Properries of Gnses, 1949; F. G. Keyes. Tmns. A.S.I\I. £., 73,590.597 { !95 l ): 74, !J03 { !952); D. D. Wngmnn, Selected Values of Chemical Thermody11amic Properties. Washington, D.C.: National Bureau of Stnndards, ! 953.

  • 1

    Heat

    Tran

    sfer

    Data

    Correlations

    forE

    xaminations

    CM31

    10TransportP

    heno

    men

    aI

    Mich

    igan

    Techno

    logicalU

    niversity

    ProfessorF

    aith

    A.Morrison

    1De

    cembe

    r202

    0

    I. Forced

    Conv

    ectio

    nTh

    roug

    hPipe

    s

    Inforced

    convectio

    n,wede

    term

    ined

    from

    dimen

    sionalanalysis

    that

    theNu

    sseltn

    umbe

    risa

    functio

    nof

    atmostR

    e,Pr,

    /,andviscosity

    ratio

    .

    Prandtlnum

    ber

    (fluidprop

    ertie

    s)Pr

    (1)

    Inpipe

    flowwith

    heat

    transfer

    taking

    place,theflu

    iden

    tersat

    bulkflu

    idtempe

    rature

    andexits

    at.

    isthetempe

    rature

    ofthewall.ForN

    udata

    correlations

    inforced

    convectio

    nthrough

    pipe

    s,allfluidmaterialprope

    rtiese

    xcep

    tareevaluatedat

    themeanbu

    lktempe

    rature.

    Themeanbu

    lktempe

    rature

    isgivenby

    Meanbu

    lktempe

    rature

    2(2)

    A. Laminar

    Flow

    inPipe

    s

    Sied

    erandTate’scorrelation(Geankop

    lis,p26

    0)forlam

    inar

    flowis

    Laminar

    flow

    Nu1.86R

    ePr.

    (3)

    (4)

    Arith

    meticmean

    drivingforce

    2(5)

    B. Tu

    rbulen

    tFlowinPipe

    s

    Sied

    erandTate’scorrelation(Geankop

    lis,p26

    1)forturbu

    lent

    flowis

    Turbulen

    tflow

    Nu0.027R

    e. Pr.

    (6)

    (7)

    2

    Logmeandriving

    force

    (8)

    II.

    Forced

    Convectio

    nArou

    ndtheOu

    tsideof

    aCylin

    der

    Inhe

    attransfer

    taking

    placebe

    tweenaflu

    idat

    bulktempe

    rature

    flowingpe

    rpen

    diculartoa

    cylinde

    rwith

    walltem

    perature

    ,the

    materialprope

    rtiesa

    reevaluatedat

    thefilm

    tempe

    rature.

    Film

    tempe

    rature

    2(9)

    Thedata

    correlationforN

    usseltnu

    mbe

    rinthiscase

    is

    Outsid

    eCylinde

    rNu

    RePr(10)

    Wallb

    ulkdriving

    force

    (11)

    Thevalues

    ofand

    depe

    ndon

    theRe

    ynolds

    numbe

    r(Ge

    ankoplis,

    Table4.61,p2

    72).These

    values

    arevalid

    forPr

    0.6.Re

    mC

    140.330

    0.989440

    0.3850.911

    404,000

    0.4660.683

    4,000410

    0.6180.193

    4102.51

    00.805

    0.0266

  • 3

    III.

    NaturalCon

    vectionfro

    mVa

    rious

    Geom

    etrie

    s

    Naturalcon

    vectionhe

    attransfer

    coefficientsfrom

    vario

    ussurfa

    cesh

    avebe

    enfoun

    dby

    dimen

    sional

    analysisandexpe

    rimen

    tally

    tocorrelateas

    follows:

    Naturalcon

    vection

    (various

    geom

    etrie

    s)Nu

    Gr Pr(12)

    Grasho

    fnum

    ber

    Gr(13)

    Thevalues

    for

    and

    depe

    ndon

    thegeom

    etry;value

    smay

    befoun

    dinGe

    ankoplisinTable4.71

    (p27

    8,show

    nbe

    low).Table4.72(p28

    0,ne

    xtpages)provides

    simplified

    versions

    ofthecorrelations

    specialized

    tocommon

    fluids(air,water,organicliquids).

    4

    Reference:

    C.J.Ge

    ankoplis,

    TransportP

    rocesses

    andSeparatio

    nProcessP

    rincip

    les,4t

    hEd

    ition

    ,Pren

    ticeHa

    ll,20

    03.

  • Table 1:  Emissivity 𝜺 of solids (300K)   Material  𝜺 

    Aluminum foil  0.04 Asbestos board  0.96 Polished brass  0.03 

    Cast iron, turned and heated  0.60‐0.70 Concrete  0.85 

    Ice, smooth  0.966 Ice, rough  0.985 Plaster  0.98 

    Roofing paper  0.91 Sand  0.76 

    Steel, Oxidized  0.79 Wrought Iron  0.94 

     

    Reference:  Engineering Toolbox, www.engineeringtoolbox.com/emissivity‐coefficients‐d_447.html  

     

     

     

     

     

     

     

     

     

     

     

    Reference:  Geankoplis, 4th Edition 

     

    𝜎 0.1712 10 𝐵𝑇𝑈ℎ 𝑓𝑡 𝑅

    𝜎 5.676 10 𝑊𝑚 𝐾

    2020ExamFinalHandouts final ver2020ExamFinalHandouts ver22020ExamFinalHandouts2019ExamFinalHandouts2019ExamFinalHandouts2016ExamFinalHandouts (5)2016ExamFinalHandoutsjunk2junk

    2019ExamFinalHandouts v22019ExamFinalHandouts2016ExamFinalHandouts (3)

    FluidFrictionCorrelationsforExaminations2Pgs2019ExamFinalHandouts2019ExamFinalHandouts2019ExamFinalHandouts v22019ExamFinalHandouts2016ExamFinalHandouts (3)2019Exam4Handouts (5)2019Exam4Handouts v32019Exam4Handouts v22019Exam4Handouts2019Exam3Handout2016Exam2and3Handouts (2)2016Exam2and3Handouts (2).pdfjunk5junk

    Exam4 extra page 2019 hyd dia packed beds h second page k1Pg2020ExamFinalHandouts2019ExamFinalHandouts2019ExamFinalHandouts2019ExamFinalHandouts v22019ExamFinalHandouts2016ExamFinalHandouts (3)

    2020Exam4Handout2019Exam4Handouts v32019Exam4Handouts v3.pdf2019Exam4Handouts v22019Exam4Handouts v2.pdf2016Exam4Handouts

    HeatTransfeCorrelationsforExaminations2Pg2020ExamFinalHandouts ver22020ExamFinalHandouts2019ExamFinalHandouts.pdf2019ExamFinalHandouts2019ExamFinalHandouts v22019ExamFinalHandouts2016ExamFinalHandouts (3)2016ExamFinalHandoutsjunk22015ExamFinalHandouts2014ExamFinalHandouts2014ExamFinalHandouts2013ExamFinalHandoutsExamFinalHandouts2013ExamFinalHandouts2013.pdfExamFinalHandouts2013ExamFinalHandouts3.pdfExamFinalHandouts2.pdfExamFinalHandoutsjunk

    Emissivity ε of solids and other properties v4b