p channel mosfet:

Upload: krishna4130

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 P Channel MOSFET:

    1/18

    P-channel MOSFET:

    Threshold voltage Vt is negative

  • 8/3/2019 P Channel MOSFET:

    2/18

    Circuit Symbol for P-channel MOSFET:

    a) Circuit symbol for the p-channel

    enhancement-type MOSFET

    (b) Modified symbol with an

    arrowhead on the source lead.

    (c) Simplified circuit symbol for the

    case where the source is connected tothe body.

    (d)

    (d) PMOS symbol used in digital

    circuits.

  • 8/3/2019 P Channel MOSFET:

    3/18

    vGSvGS-Vt (linear or triode region)

    vDSvGS-Vt (saturation)

  • 8/3/2019 P Channel MOSFET:

    4/18

    )1(21)()( 2

    = DSDSGSoxpD vvVtv

    LWCi

    Where, rDS is linear resistance.

    If vDSvGS-Vt (Saturation region )from equation (1)

    )2(2

    )()(

    2

    =Vtv

    L

    WCi GSoxpD

    If vDS>vGS-Vt (triode region ):

    If |vDS| is sufficiently small, we obtain iD-VDS characteristic near origin:

    )()(

    1' VtvL

    Wk

    ivr

    GSpD

    DSDS

    ==

    DSGSpD vVtvL

    Wki ))((' =

    On verge of saturation: replace VGS-Vt=VDS in either region equation

    (as shown by dashed line)

    2)(

    2

    DSoxpD

    v

    LWCi =

  • 8/3/2019 P Channel MOSFET:

    5/18

  • 8/3/2019 P Channel MOSFET:

    6/18

  • 8/3/2019 P Channel MOSFET:

    7/18

    Complimentary MOS or CMOS:

  • 8/3/2019 P Channel MOSFET:

    8/18

    Table 4.1

    Large-signal equivalent-circuit model of an n-channel and p-

    channel MOSFET operating in the saturation region:

  • 8/3/2019 P Channel MOSFET:

    9/18

    Design an amplifier of gain 30 v/v

    Choose the device

    Set DC bias

    Choose a circuit topology

    Design

    Analyse

    Re-design

    Aim

  • 8/3/2019 P Channel MOSFET:

    10/18

    Where to bias? Max gain-------MAX IDRD------------MAX ID

    Min distortion

    ID= f (VGS)------SATURATION REGION

    Max current, ID captures variations of VGS faithfully

    ID= F (VGS, VDS)-----------LINEAR REGION

    Min current, ID

    varies with VGS

    , VDS

    ---(extra

    variation)

  • 8/3/2019 P Channel MOSFET:

    11/18

    Transfer characteristics

    VVVV

    mAKR

    VVI

    KRletVV

    VVVV

    oVtGSQ

    D

    DSDDD

    DDS

    tDD

    816.1816.01

    333.018

    410

    18,4

    1,10

    =+=+=

    =

    =

    =

    ==

    ==

  • 8/3/2019 P Channel MOSFET:

    12/18

    Output characteristicload line

    )(, ID

    DDDDDSO

    vfiwhere

    iRVvv

    =

    ==

    )1

    (

    1

    D

    DS

    DD

    DDD

    R

    slopewithlineloadofequation

    vRR

    Vi

    =

    =

  • 8/3/2019 P Channel MOSFET:

    13/18

  • 8/3/2019 P Channel MOSFET:

    14/18

    Example 4.8.

    vGS1=1.891-1.816=0.075V=75mV

    vGS2=1.816-1.741=0.075V=75mV

  • 8/3/2019 P Channel MOSFET:

    15/18

    Example 4.8. At vGS=1.891V , iD=0.397mA

    At vGS=1.816V , iD=0.333mAAt vGS=1.741V , iD=0.275mA

    iD1=0.397-0.333

    =0.064mAiD2=0.333-0.275

    =0.058mA

    This Shows non-linearity.At vGS=1.891V , Vo=2.85V

    At vGS=1.816V , Vo=4V

    At vGS=1.741V , Vo=5.05V Vo1=4-2.85=1.15V

    Vo2=5.05-4=1.05V

    This shows non- linearity.

  • 8/3/2019 P Channel MOSFET:

    16/18

    Operation as a Switch:

    When vI

  • 8/3/2019 P Channel MOSFET:

    17/18

    Selecting an appropriate location for bias point Q:

  • 8/3/2019 P Channel MOSFET:

    18/18

    Bias point Q1, too close to VDD: (RD too small)

    does not leave sufficient room for positive signal swing atthe drain

    occurs when vgs decreases further

    can amplify only positive input cycles.

    output signal will be distorted

    Bias point Q2 is too close to the boundary of the triode

    region: (RD too Large)

    might not allow for sufficient negative signal swing

    occurs when vgs increased further

    can amplify only negative input cycles