p4 quantum all

46
7/21/2019 P4 Quantum All http://slidepdf.com/reader/full/p4-quantum-all 1/46 1  a  s m  a  s  o  o  @  g m  a .  c  o m  C  e  o .  0  3  6  0  3  0  0  3  9 7 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. (a) Name the effect described above. ......................................................................................................................................[1] (b) The variation with frequency of the maximum kinetic energy k of the emitted electrons is shown in Fig. 7.1. Fig.7.1 Use Fig.7.1 to determine (i) the threshold frequency of the radiation, threshold frequency = ........................................ Hz (ii) a value for the Planck constant. Planck constant = ........................................ Js [4] 0 0 2 4 k  / 10 –19 J  / 10 14 Hz 6 8 4 8 12 16 20 9702/4 M/J/02

Upload: scudson

Post on 04-Mar-2016

29 views

Category:

Documents


1 download

DESCRIPTION

Questions and answers

TRANSCRIPT

Page 1: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 1/46

1

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 Electrons are emitted from a metal surface when it is illuminated with suitable electromagneticradiation.

(a) Name the effect described above.

......................................................................................................................................[1]

(b) The variation with frequency f of the maximum kinetic energy E k of the emitted electronsis shown in Fig.7.1.

Fig.7.1

Use Fig.7.1 to determine

(i) the threshold frequency of the radiation,

threshold frequency = ........................................ Hz

(ii) a value for the Planck constant.

Planck constant = ........................................ J s[4]

0

0

2

4

E k / 10

–19J

f  / 1014

Hz

6

8

4 8 12 16 20

9702/4 M/J/02

Page 2: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 2/46

2

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

(c) On Fig. 7.1, draw a line to show the variation with frequency f  of the maximum kineticenergy  E k of the emitted electrons for a second metal which has a lower work functionthan that in (b). [2]

(d) The kinetic energy of the electrons is described as the maximum. Suggest why emittedelectrons are likely to have a range of values of kinetic energy for any one frequency ofthe electromagnetic radiation.

..........................................................................................................................................

..........................................................................................................................................

......................................................................................................................................[2]

Page 3: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 3/46

3

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

Page 4: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 4/46

4

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) State the de Broglie relation, explaining any symbols you use.

..........................................................................................................................................

..........................................................................................................................................

.................................................................................................................................... [2]

(b) An electron of mass m  has kinetic energy E . Show that the de Broglie wavelength λ  ofthis electron is given by

[2]

(c) Calculate the potential difference through which an electron, initially at rest, must beaccelerated so that its de Broglie wavelength is equal to 0.40nm (the diameter of an

atom).

potential difference = .................................... V [3]

λ   =h 

mE 2.

9702/04/M/J/04

Page 5: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 5/46

5

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 A parallel beam of electrons, all travelling at the same speed, is incident normally on acarbon film. The scattering of the electrons by the film is observed on a fluorescent screen,as illustrated in Fig.7.1.

Fig. 7.1

(a) Assuming that the electrons behave as particles, predict what would be seen on thescreen.

..........................................................................................................................................

..................................................................................................................................... [1]

(b) In this experiment, the electrons do not behave as particles.

Describe briefly the pattern that is actually observed on the screen. You may draw asketch if you wish.

..........................................................................................................................................

..................................................................................................................................... [1]

carbon film

beam of

electrons

glass envelope

fluorescent

screen

vacuum

9702/04/M/J/06

Page 6: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 6/46

6

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

(c)   The speed of the electrons is gradually increased.

State and explain what change, if any, is observed in the pattern on the screen.

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

..................................................................................................................................... [3]

7   The photoelectric effect may be summarised in terms of the word equation

photon energy = work function energy + maximum kinetic energy of emitted electrons.

(a)   Explain

(i)   what is meant by a photon ,

...................................................................................................................................

...................................................................................................................................

.............................................................................................................................. [2]

(ii)   why most electrons are emitted with kinetic energy less than the maximum.

...................................................................................................................................

...................................................................................................................................

.............................................................................................................................. [2]

(b)   Light of constant intensity is incident on a metal surface, causing electrons to beemitted.

State and explain why the rate of emission of electrons changes as the frequency of theincident light is increased.

..........................................................................................................................................

..........................................................................................................................................

..................................................................................................................................... [2]

9702/04/O/N/06

Page 7: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 7/46

7

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

5 (a) (i) Explain what is meant by a photon .

  ..................................................................................................................................

  ............................................................................................................................. [1]

  (ii) Show that the photon energy of light of wavelength 350 nm is 5.68×

 10–19

 J. [1]

  (iii) State the value of the ratio

energy of photon of light of wavelength 700 nmenergy of photon of light of wavelength 350 nm

 .

  ratio = …………….. [1]

  (b) Two beams of monochromatic light have similar intensities. The light in one beam has

wavelength 350 nm and the light in the other beam has wavelength 700 nm.

  The two beams are incident separately on three different metal surfaces. The workfunction of each of these surfaces is shown in Fig. 5.1.

metal work function / eV

  tungsten  magnesium  potassium

4.493.682.26

Fig. 5.1

  (i) Explain what is meant by the work function  of the surface.

  ..................................................................................................................................

  ..................................................................................................................................

  ............................................................................................................................. [2]

9702/04/M/J/07

Page 8: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 8/46

8

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (ii) State which combination, if any, of monochromatic light and metal surface couldgive rise to photo-electric emission. Give a quantitative explanation of your answer.

  ..................................................................................................................................

  ..................................................................................................................................

  ..................................................................................................................................

  ..................................................................................................................................

  ..................................................................................................................................

  ............................................................................................................................. [3]

7 (a) State three pieces of evidence provided by the photoelectric effect for a particulatenature of electromagnetic radiation.

1. ......................................................................................................................................

 ..........................................................................................................................................

2. ......................................................................................................................................

 ..........................................................................................................................................

3. ......................................................................................................................................

 ..........................................................................................................................................

[3]

  (b) (i) Briefly describe the concept of a photon.

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

  (ii) Explain how lines in the emission spectrum of gases at low pressure provide

evidence for discrete electron energy levels in atoms.

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

9702/04/O/N/08

Page 9: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 9/46

9

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (c) Three electron energy levels in atomic hydrogen are represented in Fig. 7.1.

increasingenergy

Fig. 7.1

  The wavelengths of the spectral lines produced by electron transitions between these

three energy levels are 486 nm, 656 nm and 1880 nm.

  (i) On Fig. 7.1, draw arrows to show the electron transitions between the energy levelsthat would give rise to these wavelengths.

  Label each arrow with the wavelength of the emitted photon. [3]

  (ii) Calculate the maximum change in energy of an electron when making transitionsbetween these levels.

  energy = ............................................... J [3]

Page 10: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 10/46

10

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

8 (a) Explain why, for the photoelectric effect, the existence of a threshold frequency and avery short emission time provide evidence for the particulate nature of electromagneticradiation, as opposed to a wave theory.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 .................................................................................................................................... [4]

  (b) State and explain two relations in which the Planck constant h   is the constant ofproportionality.

1. .....................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

2. .....................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................[6]

9702/04/M/J/09

Page 11: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 11/46

11

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) Explain how a line emission spectrum leads to an understanding of the existence ofdiscrete electron energy levels in atoms.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 .................................................................................................................................... [3]

  (b) Some of the lines of the emission spectrum of atomic hydrogen are shown in Fig. 7.1.

410 434 486 656

wavelength /nm

Fig. 7.1

  The photon energies associated with some of these lines are shown in Fig. 7.2.

wavelength / nm photon energy / 10 –19 J

410

434

486

656

4.85

4.58

……………

3.03

Fig. 7.2

  (i) Complete Fig. 7.2 by calculating the photon energy for a wavelength of 486 nm.

[2]

9702/42/O/N/09

Page 12: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 12/46

12

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (ii) Energy levels of a single electron in a hydrogen atom are shown in Fig. 7.3.

 –21.80

 –5.45

 –2.42

 –1.36 –0.87 –0.60

energy/10 –19J

Fig. 7.3 (not to scale)

  Use data from (i) to show, on Fig. 7.3, the transitions associated with each of the

four spectral lines shown in Fig. 7.1. Show each transition with an arrow. [2]

Page 13: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 13/46

13

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) State an effect, one in each case, that provides evidence for

  (i) the wave nature of a particle,

  ..............................................................................................................................[1]

  (ii) the particulate nature of electromagnetic radiation.

  ..............................................................................................................................[1]

  (b) Four electron energy levels in an atom are shown in Fig. 7.1.

electronenergy

 –0.87 × 10 –19 J

 –1.36 × 10 –19 J

 –2.42 × 10 –19 J

 –5.44 × 10 –19 J

Fig. 7.1 (not to scale)

  An emission spectrum is associated with the electron transitions between these energy

levels.  For this spectrum,

  (i) state the number of lines,

  ..............................................................................................................................[1]

  (ii) calculate the minimum wavelength.

wavelength = ........................................... m [2]

9702/41/O/N/10

Page 14: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 14/46

14

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

8 (a) By reference to the photoelectric effect, state what is meant by the threshold frequency .

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..................................................................................................................................... [2]

  (b) The surface of a zinc plate has a work function of 5.8 × 10 –19 J.  In a particular laboratory experiment, ultraviolet light of wavelength 120 nm is incident

on the zinc plate. A photoelectric current I  is detected.  In order to view the apparatus more clearly, a second lamp emitting light of wavelength

450 nm is switched on. No change is made to the ultraviolet lamp.

Using appropriate calculations, state and explain the effect on the photoelectric currentof switching on this second lamp.

 ..........................................................................................................................................

 ..................................................................................................................................... [4]

9702/43/O/N/10

Page 15: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 15/46

9702/41/M/J/11

15

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 Experiments are conducted to investigate the photoelectric effect.

  (a) It is found that, on exposure of a metal surface to light, either electrons are emittedimmediately or they are not emitted at all.

  Suggest why this observation does not support a wave theory of light.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[3]

  (b) Data for the wavelength λ of the radiation incident on the metal surface and the maximumkinetic energy E K of the emitted electrons are shown in Fig. 7.1.

 λ / nm   E K / 10–19 J

650240

–4.44

  Fig. 7.1

  (i) Without any calculation, suggest why no value is given for E K  for radiation of

wavelength 650 nm.

  ..................................................................................................................................

  ..............................................................................................................................[1]

  (ii) Use data from Fig. 7.1 to determine the work function energy of the surface.

  work function energy = ............................................. J [3]

Page 16: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 16/46

16

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (c) Radiation of wavelength 240 nm gives rise to a maximum photoelectric current I .  The intensity of the incident radiation is maintained constant and the wavelength is now

reduced.

  State and explain the effect of this change on

  (i) the maximum kinetic energy of the photoelectrons,

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

  (ii) the maximum photoelectric current I .

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

Page 17: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 17/46

17

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) State what is meant by the de Broglie wavelength .

 ..........................................................................................................................................

 ..........................................................................................................................................

 .................................................................................................................................... [2]

  (b) An electron is accelerated in a vacuum from rest through a potential difference of 850 V.

  (i) Show that the final momentum of the electron is 1.6 × 10–23 N s.

  [2]

  (ii) Calculate the de Broglie wavelength of this electron.

  wavelength = ........................................... m [2]

9702/42/M/J/11

Page 18: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 18/46

18

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (c) Describe an experiment to demonstrate the wave nature of electrons.  You may draw a diagram if you wish.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 .................................................................................................................................... [5]

Page 19: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 19/46

19

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) Explain how the line spectrum of hydrogen provides evidence for the existence ofdiscrete electron energy levels in atoms.

..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[3]

  (b) Some electron energy levels in atomic hydrogen are illustrated in Fig. 7.1.

A Benergy

 –3.40 eV

 –1.50 eV

 –0.85 eV

Fig. 7.1

  Two possible electron transitions A and B giving rise to an emission spectrum areshown.

  These electron transitions cause light of wavelengths 654 nm and 488 nm to be emitted.

  (i) On Fig. 7.1, draw an arrow to show a third possible transition. [1]

  (ii) Calculate the wavelength of the emitted light for the transition in (i).

  wavelength = ............................................ m [3]

9702/41/O/N/11

Page 20: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 20/46

20

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 An explanation of the photoelectric effect includes the terms photon energy and work functionenergy.

  (a) Explain what is meant by

  (i) a photon ,

  ..................................................................................................................................

  ..................................................................................................................................

  ............................................................................................................................. [2]

  (ii) work function energy .

  ..................................................................................................................................

  ............................................................................................................................. [1]

  (b) In an experiment to investigate the photoelectric effect, a student measures thewavelength λ  of the light incident on a metal surface and the maximum kinetic energy

E max of the emitted electrons. The variation with E max of1

λ  is shown in Fig. 7.1.

0 1–1–2–3–4 2 3 4

1

2

3

4

0

λ 

1 / 106m–1

E max / 10–19J

Fig. 7.1

  (i) The work function energy of the metal surface is Φ .  State an equation, in terms of λ , Φ  and E max, to represent conservation of energy

for the photoelectric effect. Explain any other symbols you use.

  ..................................................................................................................................

  ..................................................................................................................................

  ............................................................................................................................. [2]

9702/43/O/N/11

Page 21: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 21/46

21

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (ii) Use your answer in (i) and Fig. 7.1 to determine

  1.  the work function energy Φ of the metal surface,

Φ = ............................................. J [2]

  2.  a value for the Planck constant.

  Planck constant = ........................................... J s [3]

Page 22: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 22/46

22

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

8 (a) Explain what is meant by a photon .

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..................................................................................................................................... [3]

  (b) An emission spectrum is seen as a series of differently coloured lines on a blackbackground.

  Suggest how this observation provides evidence for discrete electron energy levels inatoms.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..................................................................................................................................... [2]

9702/41/M/J/12

Page 23: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 23/46

23

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 The photoelectric effect may be represented by the equation

photon energy = work function energy + maximum kinetic energy of electron.

  (a) State what is meant by work function energy .

 ..........................................................................................................................................

  ......................................................................................................................................[1]

  (b) The variation with frequency f   of the maximum kinetic energy E K  of photoelectronsemitted from the surface of sodium metal is shown in Fig. 7.1.

6.0 6.5 7.0 7.5 8.04.5 5.0 5.5

0.2

0

0.4

0.6

0.8

E K / eV

f  / 1014 Hz

Fig. 7.1

  Use the gradient of the graph of Fig. 7.1 to determine a value for the Planck constant h .Show your working.

h  = ............................................. J s [2]

9702/42/M/J/12

Page 24: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 24/46

24

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (c) The sodium metal in (b) has a work function energy of 2.4 eV. The sodium is replaced bycalcium which has a work function energy of 2.9 eV.

  On Fig. 7.1, draw a line to show the variation with frequency f  of the maximum kineticenergy E K of photoelectrons emitted from the surface of calcium. [3]

8 (a) State what is meant by a photon .

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[2]

  (b) It has been observed that, where photoelectric emission of electrons takes place, thereis negligible time delay between illumination of the surface and emission of an electron.

  State three other pieces of evidence provided by the photoelectric effect for theparticulate nature of electromagnetic radiation.

1. ......................................................................................................................................

 ..........................................................................................................................................

2. ......................................................................................................................................

 ..........................................................................................................................................

3. ......................................................................................................................................

 ..........................................................................................................................................[3]

  (c) The work function of a metal surface is 3.5 eV. Light of wavelength 450 nm is incident onthe surface.

  Determine whether electrons will be emitted, by the photoelectric effect, from thesurface.

[3]

9702/41/O/N/12

Page 25: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 25/46

25

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) State what is meant by the de Broglie wavelength .

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[2]

  (b) An electron is accelerated from rest in a vacuum through a potential difference of 4.7 kV.

  (i) Calculate the de Broglie wavelength of the accelerated electron.

  wavelength = ............................................ m [5]

  (ii) By reference to your answer in (i), suggest why such electrons may assist with an

understanding of crystal structure.

..................................................................................................................................

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

9702/43/O/N/12

Page 26: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 26/46

26

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 Some data for the work function energy Φ and the threshold frequency f 0  of some metalsurfaces are given in Fig. 7.1.

metal   Φ / 10–19 J   f 0 / 1014 Hz

sodium

zincplatinum

3.8

5.89.0

5.8

8.8

Fig. 7.1

  (a) (i) State what is meant by the threshold frequency .

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

  (ii) Calculate the threshold frequency for platinum.

threshold frequency = ............................................ Hz [2]

  (b) Electromagnetic radiation having a continuous spectrum of wavelengths between300 nm and 600 nm is incident, in turn, on each of the metals listed in Fig. 7.1.

  Determine which metals, if any, will give rise to the emission of electrons.

..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[2]

  (c) When light of a particular intensity and frequency is incident on a metal surface,electrons are emitted.

  State and explain the effect, if any, on the rate of emission of electrons from this surfacefor light of the same intensity and higher frequency.

..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[3]

9702/41/M/J/13

Page 27: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 27/46

27

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) The emission spectrum of atomic hydrogen consists of a number of discrete wavelengths.  Explain how this observation leads to an understanding that there are discrete electron

energy levels in atoms.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..................................................................................................................................... [2]

  (b) Some electron energy levels in atomic hydrogen are illustrated in Fig. 7.1.

–0.54eV

–0.85eV

energy

–1.5eV

–3.4eV

Fig. 7.1

9702/42/M/J/13

Page 28: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 28/46

28

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  The longest wavelength produced as a result of electron transitions between two of theenergy levels shown in Fig. 7.1 is 4.0 × 10–6 m.

  (i) On Fig. 7.1,

  1.  draw, and mark with the letter L, the transition giving rise to the wavelength of

4.0 × 10–6 m, [1]

  2.  draw, and mark with the letter S, the transition giving rise to the shortestwavelength. [1]

  (ii) Calculate the wavelength for the transition you have shown in (i) part 2.

wavelength = ............................................. m [3]

  (c) Photon energies in the visible spectrum vary between approximately 3.66 eV and1.83 eV.

  Determine the energies, in eV, of photons in the visible spectrum that are produced by

transitions between the energy levels shown in Fig. 7.1.

  photon energies .................................................................................... eV [2]

Page 29: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 29/46

29

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 Electrons, travelling at speed v   in a vacuum, are incident on a very thin carbon film, asillustrated in Fig. 7.1.

thin carbon

film

fluorescent

screen

electron,

speed v 

Fig. 7.1

The emergent electrons are incident on a fluorescent screen.A series of concentric rings is observed on the screen.

(a) Suggest why the observed rings provide evidence for the wave nature of particles.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[2]

  (b) The initial speed of the electrons is increased. State and explain the effect, if any, on theradii of the rings observed on the screen.

 ..........................................................................................................................................

 ..........................................................................................................................................

 ..........................................................................................................................................

  ......................................................................................................................................[3]

9702/41/O/N/13

  (c) A proton and an electron are each accelerated from rest through the same potentialdifference.

  Determine the ratio

de Broglie wavelength of the proton

de Broglie wavelength of the electron.

  ratio = .................................................. [4]

Page 30: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 30/46

30

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

7 (a) By reference to the photoelectric effect, explain

  (i) what is meant by work function energy ,

..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

  (ii) why, even when the incident light is monochromatic, the emitted electrons have arange of kinetic energy up to a maximum value.

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

  (b) Electromagnetic radiation of frequency f   is incident on a metal surface. The variationwith frequency f   of the maximum kinetic energy E MAX  of electrons emitted from thesurface is shown in Fig. 7.1.

0

1

2

3

4

0 1 2 3 4 5

f /1015 Hz

E MAX /10–18J

  Fig. 7.1

9702/43/O/N/13

Page 31: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 31/46

31

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (i) Use Fig. 7.1 to determine the work function energy of the metal surface.

  work function energy = ............................................. J [3]

  (ii) A second metal has a greater work function energy than that in (i).On Fig. 7.1, draw a line to show the variation with f  of E MAX for this metal. [2]

  (iii) Explain why the graphs in (i) and (ii) do not depend on the intensity of the incidentradiation.

  ..................................................................................................................................

  ..................................................................................................................................

  ..............................................................................................................................[2]

Page 32: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 32/46

32

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

9 For a particular metal surface, it is observed that there is a minimum frequency of light belowwhich photoelectric emission does not occur. This observation provides evidence for a particulatenature of electromagnetic radiation.

  (a) State three further observations from photoelectric emission that provide evidence for aparticulate nature of electromagnetic radiation.

1. ...............................................................................................................................................

 ...................................................................................................................................................

2. ...............................................................................................................................................

 ...................................................................................................................................................

3. ...............................................................................................................................................

 ...................................................................................................................................................[3]

  (b) Some data for the variation with frequency f  of the maximum kinetic energy E MAX of electronsemitted from a metal surface are shown in Fig. 9.1.

5.5 6.0 6.5 7.0 7.50

0.2

0.4

0.6

0.1

0.3

0.5E MAX

 / eV

f / 1014 Hz

Fig. 9.1

  (i) Explain why emitted electrons may have kinetic energy less than the maximum at anyparticular frequency.

  ...........................................................................................................................................

  ...........................................................................................................................................

  ...................................................................................................................................... [2]

9702/41/M/J/14

Page 33: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 33/46

33

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (ii) Use Fig. 9.1 to determine

  1.  the threshold frequency,

threshold frequency = ................................................... Hz [1]

  2.  the work function energy, in eV, of the metal surface.

  work function energy = ................................................... eV [3]

Page 34: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 34/46

34

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

cool

hydrogen gas

incident

white light

emergent

light

Fig. 8.1

The spectrum of the light emerging from the gas cloud is found to contain a number of dark lines.

  (a) Explain why these dark lines occur.

 ...................................................................................................................................................

 ...................................................................................................................................................

 ...................................................................................................................................................

 ...................................................................................................................................................

 .............................................................................................................................................. [3]

  (b) Some electron energy levels in a hydrogen atom are illustrated in Fig. 8.2.

–0.38–0.55

–0.85

–1.51

energy / eV

–3.41

Fig. 8.2

9702/41/O/N/14

Page 35: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 35/46

35

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  One dark line is observed at a wavelength of 435 nm.

  (i) Calculate the energy, in eV, of a photon of light of wavelength 435 nm.

  energy = ................................................... eV [4]

  (ii) On Fig. 8.2, draw an arrow to indicate the energy change that gives rise to this dark line.[1]

Page 36: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 36/46

36

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

8 (a) State what is meant by a photon .

 ...................................................................................................................................................

 ...................................................................................................................................................

 .............................................................................................................................................. [2]

  (b) A beam of light is incident normally on a metal surface, as illustrated in Fig. 8.1.

metal surface

light beam

area of cross-section

1.3×10–5 m2

Fig. 8.1

  The beam of light has cross-sectional area 1.3 × 10−5 m2 and power 2.7 × 10−3 W.  The light has wavelength 570 nm.

  The light energy is absorbed by the metal and no light is reflected.

  (i) Show that a photon of this light has an energy of 3.5 × 10−19 J.

[1]

9702/43/O/N/14

Page 37: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 37/46

37

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (ii) Calculate, for a time of 1.0 s,

  1.  the number of photons incident on the surface,

  number = ........................................................ [2]

  2.  the change in momentum of the photons.

  change in momentum = ........................................... kg m s−1  [3]

  (c) Use your answer in (b)(ii) to calculate the pressure that the light exerts on the metal surface.

  pressure = ................................................... Pa [2]

Page 38: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 38/46

38

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

8 A photon of wavelength 6.50 × 10−12 m is incident on an isolated stationary electron, as illustratedin Fig. 8.1.

incident photon

electronmass m e

deflected photon

wavelength 6.84× 10 –12 m

 

wavelength 6.50× 10 –12 m

Fig. 8.1

The photon is deflected elastically by the electron of massm 

e. The wavelength of the deflectedphoton is 6.84 × 10−12 m.

  (a) Calculate, for the incident photon,

  (i) its momentum,

  momentum = .................................................. N s [2]

  (ii) its energy.

  energy = ...................................................... J [2]

9702/41/M/J/15

Page 39: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 39/46

39

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  (b) The angle θ  through which the photon is deflected is given by the expression

Δλ   =h 

m ec  (1 – cosθ )

  where Δλ   is the change in wavelength of the photon, h   is the Planck constant and c   is the

speed of light in free space.

  (i) Calculate the angle θ .

θ   = ...................................................... ° [2]

  (ii) Use energy considerations to suggest why Δλ  must always be positive.

  ...........................................................................................................................................

  ...........................................................................................................................................

  ...........................................................................................................................................

  ...................................................................................................................................... [3]

Page 40: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 40/46

40

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

A/AS LEVEL EXAMINATIONS - JUNE 2003 9702 04

6 (a) greater binding energy gives rise to release of energy................... M1so must be yttrium ...........................................................................A1 [2]

(b) probability of decay......................................................................... M1of a nucleus per unit time.................................................................A1 [2]

(c) (i)1  A = N..............................................................................................C13.7 x 106 x 365 x 24 x 3600 = 0.025N ..............................................C1N  = 4.67 x 1015.................................................................................A1 [3]

(i)2 mass = 0.09 x (4.67 x 1015)/(6.02 x 1023) .........................................C1= 6.98 x 10-10 kg......................................................................A1 [2]

(ii)   A =  A0 e- t 

 A/A0 = e-0.025t  ....................................................................................C1= 0.88......................................................................................A1 [2]

  A/AS LEVEL EXAMINATIONS - JUNE 2004 9702 04

7 (a) λ   = h/ p or λ   = h/mv  M1with λ  , h and (or mv) p identified  A1 [2]

(b)E   =

2

1mv 2

C1

= p2/2m or v  = √(2E /m), hence M1

λ  = h/√(2mE )  A0 [2]

(c) E  = qV   C1(0.4 x 10-9)2 x 2 x 9.11 x 10-31 x 1.6 x 10-19 x V  = (6.63 x 10-34)2  C1V  = 9.4 V (2 s.f. scores 2/3)  A1 [3]

Total [7]

GCE A/AS Level – May/June 2006 9702 04

7 (a) ‘uniform’ distribution B1 [1]

(b) concentric rings B1 [1]

(c) higher speed, more momentum M1

λ  = h / p M1

so λ  decreases and ring diameter decreases A1 [3]

GCE A/AS LEVEL - OCT/NOV 2006 9702 04

7 (a) (i) quantum/packet/discrete amount of energy M1electromagnetic mentioned A1 [2]

(ii) max. k.e. corresponds to electron emitted from surface B1energy is required to bring electron to surface B1 [2]

(b) at higher frequency, fewer photons (per second) for same intensity M1so rate of emission decreases A1 [2](allow argument based on photoelectric efficiency)

Page 41: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 41/46

41

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  GCE A/AS LEVEL May/June 2007 9702 04

5 (a) (i) packet/discrete quantity/quantum (of energy) of e.m. radiation B1 [1]

(ii)  either E = (6.63 × 10–34× 3 × 108)/(350 × 10–9)

or E = (6.63 × 10–34× 8.57 × 1014) M1

E  = 5.68 × 10–19 J A0 [1]

(iii)  0.5 B1 [1]

(b) (i) energy of photon M1  to cause emission of electron from surface

either with zero k.e or photon energy is minimum A1 [2]

(ii)  correct conversion eV→ J or J → eV seen once B1photon energy must be greater than work function C1350 nm wavelength and potassium metal A1 [3]

GCE A/AS LEVEL – October/November 2008 9702

7 (a) e.g. ‘instantaneous’ emission (of electrons)threshold frequency below which no emission(max) electron energy dependent on frequency(max) electron energy not dependent on intensityrate of emission (of electrons) depends on intensity

(any three sensible suggestions, 1 each) B3 [3]

(b) (i)  ‘packet’ / quantum of energy M1of electromagnetic energy / radiation A1 [2]

(ii) discrete wavelengths mean photons have particular energies M1energy of photon determined by energy change of (orbital) electron M1so discrete energy levels A0 [2]

(c) (i) three energy changes shown correctly B1arrows ‘pointing’ in correct direction B1wavelengths correctly identified B1 [3]

(ii) chooses λ  = 486 nm C1

  ∆E =  hc  / λ   C1

= (6.63 × 10–34× 3.0 × 108) / (4.86 × 10–9)

= 4.09 × 10–19 J (allow 2 s.f .) A1 [3]

GCE A/AS LEVEL May/June 2009 9702 04

8 (a) wave theory predicts any frequency would give rise to emission of electron M1if exposure time is sufficiently long A1photon has (specific value of) energy dependent on frequency M1emission if energy greater than threshold / work function / energy to removeelectron from surface A1 [4]

(b) photon is packet/quantum of energy M1of electromagnetic radiation A1(photon) energy = h × frequency B1 [3]

every particle has an (associated) wavelength B1wavelength = h /  p  M1where  p is the momentum (of the particle) A1 [3]

GCE A/AS LEVEL October/November 2009 9702 41

7 (a) e.g. more (output) power available

e.g. less ripple for same smoothing capacitorany sensible suggestion ............................................................................................ B1 [1]

(b) (i) curve showing half-wave rectification .................................................................B1 [1]

(ii)  similar to (i) but phase shift of 180°  ....................................................................B1 [1]

(c) (i) correct symbol, connected in parallel with R ...................................................... B1 [1]

(ii) 1 larger capacitor / second capacitor in parallel with R .....................................B1 [1](not increase R )2 same peak values ........................................................................................... B1correct shape giving less ripple ..........................................................................B1 [2]

[Total: 7]

Page 42: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 42/46

42

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

GCE AS/A LEVEL – October/November 2010 9702 41

7 (a) (i) e.g. electron / particle diffraction B1 [1]

(ii) e.g. photoelectric effect B1 [1]

(b) (i) 6 A1 [1]

(ii) change in energy = 4.57 × 10

–19

 Jλ  = hc / E   C1

= (6.63 × 10–34× 3.0 × 108) / (4.57 × 10–19)

= 4.4 × 10–7m A1 [2]

GCE A LEVEL – October/November 2010 9702 43

8 (a) minimum frequency for electron to be emitted (from surface) M1of electromagnetic radiation / light / photons A1 [2]

(b) E  = hc  / λ    or E = hf   and c  = f λ   C1

either threshold wavelength = (6.63 × 10–34× 3.0 × 108) / (5.8 × 10–19)

= 340 nmor   energy of 340 nm photon = 4.4 × 10–19 Jor threshold frequency = 8.7 × 1014 Hzor 450 nm → 6.7 × 1014 Hz A1appropriate comment comparing wavelengths / energies / frequencires B1

so no effect on photo-electric current B1 [4]

  GCE AS/A LEVEL – May/June 2011 9702 41

7 (a) for a wave, electron can ‘collect’ energy continuously B1for a wave, electron will always be emitted /electron will be emitted at all frequencies….. M1after a sufficiently long delay A1 [3]

(b) (i) either   wavelength is longer than threshold wavelengthor frequency is below the threshold frequencyor photon energy is less than work function  B1 [1]

  (ii) hc / λ  = φ  + E MAX  C1

(6.63 × 10–34 × 3.0 × 108) / (240 × 10–9) = φ  + 4.44 × 10–19  C1

φ  = 3.8 × 10–19J (allow 3.9 × 10–19J) A1 [3]

(c) (i) photon energy larger M1so (maximum) kinetic energy is larger A1 [2]

(ii)  fewer photons (per unit time) M1so (maximum) current is smaller A1 [2]

GCE AS/A LEVEL – May/June 2011 9702 42

7 (a) wavelength of wave associated with a particle M1that is moving A1 [2]

(b) (i) energy of electron = 850 × 1.6 × 10–19  M1= 1.36 × 10–16J

energy = p2 / 2m  or p = mv   and E K = ½mv 

2 momentum = √ (1.36 × 10–16 × 2 × 9.11 × 10–31) M1

= 1.6 × 10–23Ns A0 [2]

(ii)   λ  = h / p C1wavelength = (6.63 × 10–34) / (1.6 × 10–23)

= 4.1 × 10–11m A1 [2]

(c) diagram or description showing:electron beam in a vacuum B1incident on thin metal target / carbon film B1fluorescent screen B1pattern of concentric rings observed M1pattern similar to diffraction pattern observed with visible light A1 [5]

Page 43: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 43/46

43

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  GCE AS/A LEVEL – October/November 2011 9702 41

7 (a) each line represents photon of specific energy M1photon emitted as a result of energy change of electron M1specific energy changes so discrete levels A1 [3]

(b) (i) arrow from –0.85 eV level to –1.5 eV level B1 [1]

(ii) ∆E   = hc  /λ   C1

= (1.5 – 0.85) × 1.6 × 10

–19

  C1= 1.04 × 10–19 J

λ   = (6.63 × 10–34 × 3.0 × 108)/(1.04 × 10–19)= 1.9 × 10–6 m A1 [3]

(c) spectrum appears as continuous spectrum crossed by dark lines B1two dark lines B1electrons in gas absorb photons with energies equal to the excitation energies M1light photons re-emitted in all directions A1 [4]

GCE AS/A LEVEL – October/November 2011 9702 43

7 (a) (i)  packet/quantum of energy M1of electromagnetic radiation A1 [2]

(ii) minimum energy to cause emission of an electron (from surface) B1 [1]

(b) (i) hc/ λ  = Φ + E max  M1c and h explained A1 [2]

(ii) 1. either   when 1/λ  = 0, Φ = –E max  or evidence of use of x -axis intercept from graph

or chooses point close to the line and substitutes values of 1/λ  and

E max into hc/ λ  = Φ + E max  C1Φ  = 4.0 × 10–19 J (allow ±0.2 × 10–19 J) A1 [2]

2. either   gradient of graph is 1/hc   C1

gradient = 4.80 × 1024→ 5.06 × 1024  M1

h  = 1/(gradient × 3.0 × 108)

= 6.6 × 10–34 Js →  6.9 × 10–34 Js A1

or   chooses point close to the line and substitutes values of 1/λ  and

E max into hc /λ  = Φ + E max  (C1)

values of 1/λ  and E max are correct within half a square (M1)

h  = 6.6 × 10–34 Js →  6.9 × 10–34 Js (A1) [3](Allow full credit for the correct use of any appropriate method)(Do not allow ‘circular’ calculations in  part 2   that lead to the same value of

Planck constant that was substituted in  part 1 )

GCE AS/A LEVEL – May/June 2012 9702 41

8 (a) packet/quantum/discrete amount of energy M1of electromagnetic radiation A1(allow 1 mark for ‘packet of electromagnetic radiation’)energy = Planck constant × frequency (seen here or in b )  B1 [3]

(b)  each (coloured) line corresponds to one wavelength/frequency B1energy = Planck constant × frequencyimplies specific energy change between energy levels B1so discrete levels A0 [2]

GCE AS/A LEVEL – May/June 2012 9702 42

8 (a) nuclei having same number of protons/proton (atomic) number B1different numbers of neutrons/neutron number B1 [2](allow second mark for nucleons/nucleon number/mass number/atomicmass if made clear that same number of protons/proton number)

(b) probability of decay per unit time is the decay constant C1

λ   = ln 2 / t½  = 0.693 / (52 × 24 × 3600) C1

= 1.54 × 10–7s–1  A1 [3]

(c) (i)  A = A0exp(–λ t )7.4 × 106 = A0exp(–1.54 × 10–7 × 21 × 24 × 3600) C1 A0 = 9.8 × 106Bq A1 [2](alternative method uses 21 days as 0.404 half-lives)

(ii)   A = λ N   and mass = N  × 89 / N  A  C1

mass = (9.8 × 10

6

 × 89) / (1.54 × 10

–7

 × 6.02 × 10

23

)= 9.4 × 10–9g A1 [2]

Page 44: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 44/46

44

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  GCE AS/A LEVEL – October/November 2012 9702 41

8 (a) discrete quantity/packet/quantum of energy of electromagnetic radiation B1energy of photon = Planck constant × frequency B1 [2]

(b) threshold frequency (1)rate of emission is proportional to intensity (1)max. kinetic energy of electron dependent on frequency (1)max. kinetic energy independent of intensity (1)

(any three, 1 each, max 3) B3 [3]

(c) either E = hc/ λ   or hc/ λ  = eV C1

λ  = 450 nm to give  work function of  3.5 eV

energy = 4.4 × 10–19 or 2.8 eV  to give λ   = 355nm M12.8eV < 3.5eV so no emission 355nm < 450nm so no A1 [3]

or work function = 3.5eVthreshold frequency = 8.45×1014Hz C1450nm = 6.67×1014Hz M16.67 × 1014Hz < 8.45 × 1014Hz A1

  GCE AS/A LEVEL – October/November 2012 9702 43

7 (a) wavelength associated with a particle M1that is moving A1 [2]

(b) (i) kinetic energy = 1.6 × 10–19 × 4700 C1= 7.52 × 10–16J 

either energy = p2/2m or E K = ½mv 2 and p = mv   C1 p = √(7.52 × 10–16 × 2 × 9.1 × 10–31) C1

= 3.7 × 10–23Nsλ  = h/ p C1

= (6.63 × 10–34) / (3.7 × 10–23)= 1.8 × 10–11m A1 [5]

(ii) wavelength is about separation of atoms B1can be used in (electron) diffraction B1 [2]

GCE AS/A LEVEL – May/June 2013 9702 41

7 (a) (i) lowest frequency of e.m. radiation M1giving rise to emission of electrons (from the surface) A1 [2]

  (ii) E  = hf  C1

threshold frequency = (9.0 × 10–19) / (6.63 × 10–34)= 1.4 × 1015Hz A1 [2]

(b) either 300nm ≡ 10 × 1015Hz (and 600nm ≡ 5.0 × 1014Hz)

or 300nm ≡ 6.6 × 10–19J (and 600nm ≡ 3.3 × 10–19J)

or   zinc λ 0 = 340nm, platinum λ 0 = 220nm (and sodium λ 0 = 520nm) M1emission from sodium and zinc A1 [2]

(c) each photon has larger energy M1fewer photons per unit time M1fewer electrons emitted per unit time A1 [3]

 

GCE AS/A LEVEL – May/June 2013 9702 42

7 (a)  each wavelength is associated with a discrete change in energy M1

discrete energy change / difference implies discrete levels A1 [2]

(b) (i) 1.  arrow from –0.54 eV to –0.85 eV, labelled L B1 [1]

2.  arrow from –0.54 eV to –3.4 eV , labelled S B1 [1](two correct arrows, but only one label – allow 2 marks)(two correct arrows, but no labels – allow 1 mark)

(ii) E  = hc  / λ   C1

(3.4 – 0.54) × 1.6 × 10–19 = (6.63 × 10–34× 3.0 × 108) / λ   C1

λ  = 4.35 × 10–7 m A1 [3]

(c)  –1.50 → –3.4 = 1.9 eV–0.85 → –3.4 = 2.55 eV (allow 2.6 eV)–0.54 → –3.4 = 2.86 eV (allow 2.9 eV)3 correct, 2 marks with –1 mark for each additional energy2 correct, 1 mark but no marks if any additional energy differences  B2 [2]

Page 45: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 45/46

45

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  GCE A LEVEL – October/November 2013 9702 42

7 (a) either if light passes through suitable film / cork dust etc. M1either diffraction occurs and similar pattern observed A1or  concentric circles are evidence of diffraction (M1)or  diffraction is a wave property (A1) [2]

(b)  (speed increases so) momentum increases M1λ  = h/p so λ  decreases M1

hence radii decrease A1 [3](special case: wavelength decreases so radii decreases – scores 1/3)or(speed increases so) energy increases (B1)λ  = h / √(2Em) so λ  decreases (M1)hence radii decrease (A1)

(c) electron and proton have same (kinetic) energy C1either E  = p2 / 2m or p = √(2Em) C1ratio = pe / pp = √(me / mp) C1ratio = √{(9.1 × 10–31) / (1.67 × 10–27)}ratio = 2.3 × 10–2  A1 [4]

GCE A LEVEL – October/November 2013 9702 43

7 (a) (i) minimum photon energy B1minimum energy to remove an electron (from the surface) B1 [2]

  (ii) either maximum KE is photon energy – work function energyor   max KE when electron ejected from the surface B1energies lower than max because energy required to bring electron tothe surface B1 [2]

(b) (i) threshold frequency = 1.0 × 1015Hz (allow ± 0.05 × 10 15 ) C1work function energy = hf 0  C1

= 6.63 × 10–34× 1.0 × 1015

= 6.63 × 10–19J A1 [3]  (allow alternative approaches based on use of co-ordinates of points on

the line)

(ii) sketch: straight line with same gradient M1displaced to right A1 [2]

  (iii) intensity determines number of photons arriving per unit time B1intensity determines number of electrons per unit time (not energy) B1 [2]

  GCE AS/A LEVEL – May/June 2014 9702 41

9 (a) e.g. no time delay between illumination and emissionmax. (kinetic) energy of electron dependent on frequencymax. (kinetic) energy of electron independent of intensityrate of emission of electrons dependent on/proportional to intensity

 

(any three separate statements, one mark each, maximum 3) B3 [3]

(b) (i) (photon) interaction with electron may be below surface B1energy required to bring electron to surface B1 [2]

(ii) 1. threshold frequency = 5.8 × 1014 Hz A1 [1]

2. Φ  = hf 0  C1

= 6.63 × 10–34 × 5.8 × 1014

  = 3.84 × 10–19 (J) C1

= (3.84 × 10–19)/(1.6 × 10–19)

= 2.4 eV A1 [3]

or

hf = Φ + E MAX  (C1)chooses point on line and substitutes values E MAX, f and h intoequation with the units of the hf term converted from J to eV  (C1)Φ = 2.4 eV (A1)

Cambridge International AS/A Level – October/November 2014 9702 41

8 (a) photon ‘absorbed’ by electron B1photon has energy equal to difference in energy of two energy levels B1electron de-excites emitting photon (of same energy) in any direction B1 [3]

(b) (i) E   = hc /λ   C1

= (6.63 × 10–34× 3 × 108) / (435 × 10–9) C1

= 4.57 × 10–19

J (allow 2 s.f.) C1= (4.57 × 10–19) / (1.6 × 10–19) (eV)= 2.86eV (allow 2 s.f.) A1 [4]

(ii) arrow pointing in either direction between –3.41eV and –0.55eV B1 [1]

Page 46: P4 Quantum All

7/21/2019 P4 Quantum All

http://slidepdf.com/reader/full/p4-quantum-all 46/46

46

 a s i  f  m a s  o o @

 gm ai  l  . c  om

 C  el  l  N  o. 0  3 4  6 7  0  3  0  0  3  9 

  Cambridge International AS/A Level – October/November 2014 9702 43

8 (a) discrete amount/packet/quantum of energy M1of electromagnetic radiation/ EM radiation A1 [2]

(b) (i) E   = hc /λ 

  = (6.63 × 10–34× 3.0 × 108) / (570 × 10–9) = 3.49 × 10–19J A1 [1]

(ii) 1. number = (2.7 × 10–3) / (3.5 × 10–19) C1

= 7.7 × 1015  A1 [2]

2. momentum of photon = h /λ   C1

= (6.63 × 10–34) / (570 × 10–9)

= 1.16 × 10–27kgms–1  C1

change in momentum = 1.16 × 10–27× 7.7 × 1015

  = 8.96 × 10–12kgm s–1  A1 [3]

(allow E = pc route to 9 ×  10 –12)

(c)  pressure = (change in momentum per second)/area C1

= (8.96 × 10–12) / (1.3 × 10–5)

= 6.9 × 10–7 Pa A1 [2]

Cambridge International AS A Level – May June 2015 9702 41

8 (a) (i)  p = h /λ 

  = (6.63 × 10–34) / (6.50 × 10–12) C1

= 1.02 × 10–22Ns A1 [2]

(ii) E   = hc /λ  or E = pc

= (6.63 × 10–34× 3.00 × 108) / (6.50 × 10–12) C1

= 3.06 × 10–14J A1 [2]

(b) (i) 0.34 × 10–12 = (6.63 × 10–34) / (9.11 × 10–31× 3.0 × 108) × (1 – cos θ  ) C1

θ  = 30.7° A1 [2]

(ii)  deflected electron has energy M1this energy is derived from the incident photon A1

deflected photon has less energy, longer wavelength (so ∆λ  always positive) B1 [3]