parameterizing energy conversion on rough topography using...

20
Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form drag Sally Warner, Parker MacCready University of Washington Jim Moum, Jonathan Nash, Aurélie Moulin Oregon State University February 21, 2012 Ocean Sciences Conference, Salt Lake City, UT

Upload: others

Post on 27-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form drag

Sally Warner, Parker MacCreadyUniversity of Washington

Jim Moum, Jonathan Nash, Aurélie MoulinOregon State University

February 21, 2012Ocean Sciences Conference, Salt Lake City, UT

Page 2: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Form drag and mixing

U0

Form dragpressure

Tidalenergyconversion

Form drag causes:

- internal wave generation

- eddy generation

- local mixing and dissipation

Page 3: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Experiment location

Seattle

Tacoma

Edwards et al., 2004

Puget Sound, WA

PointThree Tree

Previous work

McCabe et al., 2006

> Measured the internal form drag

> Measured the external form drag

Our goal> Measure the total form drag with bottom pressure sensors

Internal lee waves

EddyBottom

pressure

Page 4: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Why measure form drag?Find better parameterizations for form drag that can be implemented into larger scale models.

Fine grid resolution resolves form drag>> Drag coefficients well parameterized

Imagine sometopography with tides

Coarse grid resolution does not resolve form drag>> Drag coefficients unknown

Build model

Page 5: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

New method: PPODsUse bottom pressure sensors (PPODs) to directly measure form drag.

lon

Three Tree Point Bathymetry

1 km

−122.4 −122.38 −122.36

47.43

47.44

47.45

47.46

47.47

47.4447.4547.46

−200

−100

0

lat

m

ridgetransect

−200

−100

0

Bathymetric height

m

headlandtransect

m−300 −200 −100 0

bottom lander (L1−L7)

autonomous Ppod (P1−P8)

Bottom pressure sensors: PPODs

Page 6: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

New method: PPODsAugment bottom pressure sensors with shipboard ADCP, CTD, and microstructure measurements.

lon

Three Tree Point Bathymetry

1 km

−122.4 −122.38 −122.36

47.43

47.44

47.45

47.46

47.47

47.4447.4547.46

−200

−100

0

lat

m

ridgetransect

−200

−100

0

Bathymetric height

m

headlandtransect

m−300 −200 −100 0

bottom lander (L1−L7)

autonomous Ppod (P1−P8)

Shipboard transects with Chameleon profiler

Page 7: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

10

σθ

[kg m−3]

22.6

22.8

23

23.2

23.4

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

Bottom pressure at max flood

high pressureanomaly on the upstream side

low pressureanomaly on the downstream side

total PPOD pressure– resting pressure– tidal height

= pressure anomaly

lon

1 km

−122.4

−122.38

−122.36

47.43

47.44

47.45

47.46

47.47

47.44

47.45

47.46

−200−100

0

lat

m

ridge

trans

ect

−200−100

0Ba

thym

etric

hei

ght

m

head

land

trans

ect

m

−300

−200

−100

0

current

Page 8: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

10

σθ

[kg m−3]

22.6

22.8

23

23.2

23.4

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

Density at max flood

Internal lee wave visible in density section

Bottom pressure anomaly from the density section

internal pressure+ external pressure

= PPOD pressure

Internal lee waves

EddyBottom

pressure

Page 9: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

−122.4

−122.3

9−

122.3

8−

122.3

7

47.4

4

47.4

45

47.4

5

47.4

55

47.4

6

47.4

65

lat

lon

Max e

bb tid

e

10/2

906:3

9

Sla

ck tid

e

10/2

909:5

8

Max flo

od tid

e

10/2

913:5

8

80 m

48 m

20 m

0.5

m/s

m

−300

−200

−100

0

Eddy currents at max flood

tidalcurrent

20 m48 m80 m

0.5 m/s

Eddy signature visable

Internal lee waves

EddyBottom

pressure

Page 10: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Dissipation at max flood

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

10

σθ

[kg m−3]

22.6

22.8

23

23.2

23.4

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

547.4447.44547.4547.45547.46

−250

−200

−150

−100

−50

0

dept

h [m

]

Ridge transect [lat]

12:33

log10(ε)

[W kg−1]

−8

−7

−6

−5

Energy dissipation ratein the lee wave is 5x10-5 W/kg

Page 11: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

10

σθ

[kg m−3]

22.6

22.8

23

23.2

23.4

−200

−150

−100

−50

0

dept

h [m

]

12:33

47.4447.44547.4547.45547.46−10

−5

0

5

10

botto

m p

ress

ure

anom

.[m

m e

quiv

. SSH

]

[lat]−10

−5

0

5

Time series of form drag

Spatial integral of pressure anomalies at every time step gives a time series of form drag

}

Page 12: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

tidalvelocity

[m/s]

total form drag and power from PPODs

Large peaks of power during strong flood tides

−0.3

−0.2

−0.1

0

0.1

0.2

−1.5

−1

−0.5

0

0.5

1

1.5

totalinternal

10/26 10/28 10/30 11/1−5

0

5

10

15

20

25

−0.2

−0.1

0

0.1

−1

−0.5

0

0.5

1

−5

0

5

10

15

20

flood tide

−0.3

−0.2

−0.1

0

0.1

0.2

−1.5

−1

−0.5

0

0.5

1

1.5

total

10/26 10/28 10/30 11/1−5

0

5

10

15

20

25

−0.2

−0.1

0

0.1

−1

−0.5

0

0.5

1

−5

0

5

10

15

20

flood tide

form drag[N/m x 104]

power= drag x U

[W/m x 102]

Time series of form dragFlood tide

Page 13: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

tidalvelocity

[m/s]

total form drag and power from PPODs

internal form drag and power from density

form drag[N/m x 104]

power= drag x U

[W/m x 102]

Large peaks of power during strong flood tides for both the total form drag and internal form drag

−0.3

−0.2

−0.1

0

0.1

0.2

−1.5

−1

−0.5

0

0.5

1

1.5

totalinternal

10/26 10/28 10/30 11/1−5

0

5

10

15

20

25

−0.2

−0.1

0

0.1

−1

−0.5

0

0.5

1

−5

0

5

10

15

20

flood tide

−0.3

−0.2

−0.1

0

0.1

0.2

−1.5

−1

−0.5

0

0.5

1

1.5

total

10/26 10/28 10/30 11/1−5

0

5

10

15

20

25

−0.2

−0.1

0

0.1

−1

−0.5

0

0.5

1

−5

0

5

10

15

20

flood tide

Time series of form dragFlood tide

Page 14: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Parameterizing form dragtotal

(from PPODs)internal

(from density)

−1.5

−1

−0.5

0

0.5

1

1.5

−0.2 −0.1 0 0.1 0.2

−2

−1

0

1

2

−0.2 −0.1 0 0.1 0.2tidal velocity

[m/s]

form drag[N/m x 104]

power= drag x U

[W/m x 102]

tidal velocity[m/s]

linear wave drag

bluff body drag

2 parameterizations:

DW

C hU UBBD T T=

12 0ρ

DW

NU hwaveT=

πρ

8 02

Page 15: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Drag coefficients in modelsIn a 5-km grid cell: > without Three Tree Point, just frictional drag CD = 3x10-3

> with Three Tree Point, frictional and form drag CD = 3x10-2

>>> Drag is 10x higer with form drag than just with frictional drag in this 5 km x 5 km box

5 km

5 km

Page 16: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Conclusions• Bottom pressure sensors (PPODs) provide a relatively

inexpensive — but accurate and easy — way to directly measure the total form drag on under-sea topography.

• The form drag at Three Tree Point is significantly larger than frictional drag.

• Using bottom pressure measurements, we have made a step towards better form drag parameterizations of tidal flow over oceanographic topography.

Page 17: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

More PPODs and form drag:

Downslope flows and Bernoulli: Toward a direct measure of topographic form drag

Jim Moum, Uwe Stoeber and Jonathan Nash

Wednesday

#B2125

Page 18: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Eddy pressure from model

negative surface pressure anomaly

Internal lee waves

SurfaceeddyBottom

pressure

external pressure

[± 1 cm]

internal pressure

[± 1 cm]

total bottom pressure

[± 1 cm]

surface vorticity

[10-3 1/s]

positive internal pressure anomaly

external and internal pressures counteract each other

Page 19: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Bottom pressure anomalies

total PPOD pressure– resting pressure– tidal height

= pressure anomaly

47.4447.4547.46

−200

−100

0

lat

m

ridgetransect

Pressure anomalies along the ridge transect

−0.20

0.2tid

al c

urre

nts

[m s−1

]

−505

[m

m]

−505

[m

m]

−505

[m

m]

−505

[m

m]

−505

[m

m]

10/29 10/30 10/31

−505

[m

m]

Nor

th s

ide

Hea

dlan

d cr

est

Sout

h si

deebb tide flood

tideebb floodN

ort

hC

rest

Sou

th

Page 20: Parameterizing energy conversion on rough topography using ...people.oregonstate.edu/~warnersa/publications/... · Parameterizing energy conversion on rough topography using bottom

Parameterizing form drag

linear wave drag

bluff body dragDW

C hU UBBD T T=

12 0ρ

DW

NU hwaveT=

πρ

8 02

0

100

200

300

400

500[W

m−1

]

ridge line headland line

totalbluff bodywave

totalbluff bodywave

internal

Edwards, et al.friction

average power[W/m]

0

100

200

300

400

500

[W m

−1]

ridge line headland line

totalbluff bodywave

totalbluff bodywave

internal

Edwards, et al.friction

internal (from density pertubations)

total(from PPODs)