particle entanglement spectra for quantum hall states on ... · 00.2 0.4 0.6 0.81 e x x2 0 0.025...

34
Particle entanglement spectra for quantum Hall states on lattices Gunnar Möller Cavendish Laboratory, University of Cambridge Cavendish Laboratory November 16, 2012, MPI-PKS Dresden Entanglement Spectra in Complex Quantum Wavefunctions A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012). Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.) GM & N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009) Sunday, 18 November 2012

Upload: others

Post on 10-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Particle entanglement spectra for quantum Hall states on lattices

Gunnar MöllerCavendish Laboratory, University of Cambridge

Cavendish Laboratory

November 16, 2012, MPI-PKS DresdenEntanglement Spectra in Complex Quantum Wavefunctions

A. Sterdyniak, N. Regnault, & GM, Phys. Rev. B 86, 165314 (2012).

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)

GM & N. R. Cooper, Phys. Rev. Lett. 103, 105303 (2009)

Sunday, 18 November 2012

Page 2: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

• Motivation: physical realizations of lattices with high flux density

• Relationship between different realizations of topological band structures:

• Particle entanglement spectrum as a probe for quantum Hall states in lattices

Outline

‣ Adiabatic continuation from Fractional Chern Insulators to Fractional Quantum Hall states

Sunday, 18 November 2012

Page 3: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Magnetic flux through periodic potentials

• magnetic field in presence of crystal potentials in solid state systems

• cold atoms in `rotating’ optical lattices: 0 ∼ a n 1

0 a n 1

• Simulating Aharonov-Bohm flux by complexhopping in tight binding optical lattices 0 a n 1

• Simulating Aharonov-Bohm flux by Berry phases in real space

0 a n 1“Optical Flux Lattices”

Simulation of Landau-gauge (continuum) 0 ∼ L1/2

• Chern bands: Berry flux in reciprocal space

0 a n 1

Cold A

toms

Solid State

Cold A

toms

Sunday, 18 November 2012

Page 4: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Cold Atoms I: Optical Lattices with Complex Hopping

B

optical lattice + Raman lasers

H = −J

α,β

b†αbβe

iAαβ + h.c.+

1

2U

α

nα(nα − 1)− µ

α

⇒ possibility to simulate Aharonov-Bohm effect of magnetic field by imprinting phases for hopping via Raman transitions

Aαβ = 2πnV

⇒ Bose-Hubbard with a magnetic field (! Lorentz force)

particle density vortex/flux density interaction nV U/JnV

J. Dalibard, et al. Rev. Mod. Phys. 83, 1523 (2011)

experimental realisation:

Sunday, 18 November 2012

Page 5: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Cold Atoms I: Optical Lattices with Complex Hopping

‘anti-magic’ optical lattice for Yb

Gerbier & Dalibard, NJP 2010

Staggered Flux ‘Rectified’ Flux

Realized by group of I. Bloch:Phys. Rev. Lett. 107, 255301 (2011). Experimental realization outstanding

Can tune flux density!

Sunday, 18 November 2012

Page 6: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Cold Atoms II: Berry phases of optically dressed states

for N=2, consider Bloch sphere of unit vector

spacially varying optical coupling of N internal states (consider N=2)

H =p2

2m1 +

2

−∆ ΩR(r)

ΩR(r) ∆

Yblocal spectrum En(r) and dressed states: |Ψr

adiabatic motion of atoms in space in the optical potential generates a Berry phase

nφ =1

8πijkµνni∂µnj∂νnk

n = Ψr|σ|Ψr

Berry flux generated:

Anφ d

2r =Ω

Total flux quanta = # times Bloch vector wraps sphere

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, RMP 2011

Sunday, 18 November 2012

Page 7: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Cold Atoms II: Optical Flux Lattices

periodic optical Raman potentials are conveniently located by standing wave Lasersyielding an optical flux lattice of high flux density, here nϕ=1/2a2 (fixed)

(a) Local direction of unit Bloch vector (b) Local density of Berry Flux n nφ

Nφ = 1

Nigel Cooper, PRL (2011); N. Cooper & J. Dalibard, EPL (2011)

Sunday, 18 November 2012

Page 8: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Fractionalization in Chern bands? Chern #1 Bands = FQHE ?

Proposition: correlated states reproduce the physics of FQHE

Sunday, 18 November 2012

Page 9: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

H =− t1

rr

a†rar + h.c.

− t2

rr

a†rare

iφrr + h.c.

− t3

rr

a†rar + h.c.

+

U

2

r

nr(nr − 1)

Characteristic example: The Haldane Model

• tight binding model in real space on hexagonal lattice• with fine-tuned hopping parameters: obtain flat lower band, e.g. values [D. Sheng, PRL (2011)]

t1 = 1, t2 = 0.60, t2 = −0.58 and φ = 0.4π

F.D.M. Haldane, PRL (1988), Neupert et al. PRL (2011)

Sunday, 18 November 2012

Page 10: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

hαβ(k)unβ(k) = n(k)u

nα(k)

A(n,k) = −i

α

un∗α (k)∇ku

nα(k)

Bloch states

H =

k a†k,αhαβ(k)ak,β

• diagonalize Hamiltonian by Fourier transform

Topological (flat) bands in two-dimensions

• study Berry curvature in nth band:

Berry connection:

B(k) = ∇k ∧A(k)Berry curvature:

C = 12π

BZ d2kB(k)Chern number:

Sunday, 18 November 2012

Page 11: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Flux Lattices vs Chern Bands

= tight binding model in real space with topological flat bandsCBs

= tight binding model in reciprocal space with topological flat bands

real space reciprocal space

real space reciprocal space

N. R. Cooper, R. Moessner, arxiv:1208.4579

Flux Lattice

absorption of photons = momentum + state transfers

Sunday, 18 November 2012

Page 12: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Overview of underlying band structures

CBs

Lattices with homogeneous flux(Hofstadter bands)

Flux Lattices

insertion of flux quanta through plaquettes [see Wu et al]

Magnetic Fields & Landau Levels

(vanishing overall flux)

+ Interactions

Sunday, 18 November 2012

Page 13: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Interaction driven phases in these bands

CBs

Lattices withhomogeneous flux

Flux Latticesinsertion of flux quanta

through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C>1

Sunday, 18 November 2012

Page 14: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Strongly correlated states from the Hofstadter spectrum

• Hofstadter spectrum provides bands of all Chern numbers [Avron et al.]

E

n

• Interactions stabilize fractional quantum Hall liquids in these bands!

• CF Theory: GM & N. R. Cooper, PRL (2009)

• Near rational flux density: LL’s with additional pseudospin indexR. Palmer & D. Jaksch PRL 2006L. Hormozi et al, PRL 2012

1

2

-1

-2

Sunday, 18 November 2012

Page 15: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Interrelations between different interacting problems

CBs

Lattices withhomogeneous flux

Flux Lattices

insertion of flux quanta through plaquettes

Magnetic Fields & Landau Levels

FQHE

FCI

FQHE in lattices

FQHE ?

C>1

C=1

adiabatic continuation(Wannier or Bloch basis)

addition of oscillatorymagnetic field density

leaves LLL intact:should be adiabatic

adiabatically turning onlattice confinement

X.-L. Qi (2011), Wu et al (2012), Scaffidi & Möller (2012),Liu & Bergholtz (2012)

C>1

Sunday, 18 November 2012

Page 16: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Mapping from FQHE to FCI: Single Particle Orbitals

FCIFQHE

• Proposal by X.-L. Qi [PRL ’11]: Get FCI Wavefunctions by mapping single particle orbitals

• Idea: use Wannier states which are localized in the x-direction• keep translational invariance in y (cannot create fully localized Wannier state if C>0!)

• Qi’s Proposition: using a mapping between the LLL eigenstates (QHE) and localized Wannier states (FCI), we can establish an exact mapping between their many-particle wavefunctions

|W (x, ky) =

kx

f(x,ky)kx

|kx, ky

1:1

Sunday, 18 November 2012

Page 17: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Qi’s Mapping

• Can introduce a canonical order of states with monotonously increasing position:

Ky = ky + 2πx = 2πj/Ly

j = ny + Lyx = 0, 1, ..., Nφ − 1

ky = 2πny/Ly

• Increase in position for ky " ky + 2! = Chern-number C, as

∂kyXcg|x = − 1

∂θ(ky)

∂ky=

0B(px, ky)dpx

Y-L Wu, A. Bernevig, N. Regnault, PRB (2012)

More on Wannier states:

Z. Liu & E. Bergholtz arxiv 2012(see yesterday’s talk)

Sunday, 18 November 2012

Page 18: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Case study: Bosons with contact interactions

-6

-5

-4

-3

-2

-1

0

-6

-5

-4

-3

-2

-1

0

FCIFQHE

• Magnitude of two-body matrix elements for delta interactions in the Haldane model

• System shown: two-body interactions for N = 6, Lx × Ly = 3× 4

Ktoty = 0 Ktot

y = 4 Ktoty = 8 Ktot

y = 0 Ktoty = 4 Ktot

y = 8

Kto

ty

=0

Kto

ty

=4

Kto

ty

=8

Kto

ty

=0

Kto

ty

=4

Kto

ty

=8

• Matrix elements differ in magnitude, but overall similarities are present• Different block-structure due to non-conservation of linearized momentum Ky

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)

• Lack of translational invariance of matrix elements in momentum space

Sunday, 18 November 2012

Page 19: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

|Ψ(x)|Φ|2 |PkGS |Ψ|2

0 0.2 0.4 0.6 0.8 1x0.7

0.8

0.9

1

N=6, 3 x 4N=6, 4 x 3N=8, 4 x 4N=10,4 x 5

0 0.2 0.4 0.6 0.8 1x0.7

0.8

0.9

1

Evaluating the accuracy of the Wannier states: Overlaps

• different Hamiltonians: FCI and FQHE ground states must differ• can write both states in single Hilbert space with the same overall structure (indexed by Ky, enlarging the space for the torus)• Can study adiabatic deformations between the two types of systems:

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)

Overlap Weight in GS sector

FCI FCIFQHEFQHE

H(x) =∆FCI

∆FQHE

(1− x)HFQHE + xHFCI

Bosons at ν = 1/2

Sunday, 18 November 2012

Page 20: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Adiabatic continuation in the Wannier basis

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

E

x

x2

0

0.025

0.05

0.075

0 1 2 3 4

ky

x2

0 5 10 15

0

0.025

0.05

0.075

Ky

1

• We confirm the Laughlin state is adiabatically connected to the groundstate of the half-filled topological flat band of the Haldane model

FQHE FCI FQHE FCI

• Spectrum for N=10: • Gap for different system sizes & aspect ratios:

• Clean extrapolation to the thermodynamic limit - (unlike overlaps)

Th. Scaffidi & GM, arxiv:1207.3539 (to appear in Phys. Rev. Lett.)

Sunday, 18 November 2012

Page 21: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Entanglement spectra and quasiparticle excitations

|Ψ =

i

e−ξ,i/2|ΨA,i ⊗ |ΨB

,i

credit: Sterdyniak et al. PRL 2011

• Entanglement spectrum: arises from Schmidt decomposition of ground state into two groups A, B => Schmidt eigenvalues ξ plotted over quantum numbers for symmetries within each block

Dominant (universal) eigenvalues of PES yield count of excited states - and their wavefunctions - from groundstate wavefunction only!

Laughlin, N=8, NA=4

Sunday, 18 November 2012

Page 22: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

FCI: Adiabatic continuation of the entanglement spectrum

|Ψ =

i

e−ξ,i/2|ΨA,i ⊗ |ΨB

,i

Dictionary:

Total #eigenvalues below entanglement gap = 804 + 800 + 800 + 800 + 800

Total #eigenvalues below entanglement gap = 4x(201 + 200 + 200 + 200 + 200)

Same number of states for all x

‘Infinite’ entanglementgap for pureLaughlin state

FQHE FCI

N = 10

NA = 5

Ktoty

x

ktotT

Sunday, 18 November 2012

Page 23: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Conclusions on Mapping FCI wavefunctions

• Wavefunctions of FCI’s in the Wannier basis are similar but not identical to FQH states in the Landau gauge

• We demonstrated the adiabatic continuity of the ground states at ν=1/2 using Qi’s mapping between Wannier basis and FQH eigenstates

• FCI wavefunctions not very accurate for the Haldane model (higher overlaps in models with N>2 sublattices)

higher overlaps also by explicit gauge fixing, see: Wu, Regnault, Bernevig, PRB (2012)

T. Scaffidi, GM, arxiv:1207.3539 (PRL, in press)

Sunday, 18 November 2012

Page 24: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Idea: learn about PES using lattice FQHE states

B

H = −J

α,β

b†αbβe

iAαβ + h.c.+

1

2U

α

nα(nα − 1)− µ

α

Aαβ = 2πnV

• in lattices pierced by homogeneous magneticflux, FQHE is well understood:• continuum limit reduces to usual FQHE• trial wavefunctions for continuum quantum Hall states accurately describe lattice, also.

0 0.2 0.4 0.6 0.8 1nV

-4

-2

0

2

4

E

Sunday, 18 November 2012

Page 25: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Symmetries of lattices in magnetic flux

• finite simulation cell: Lx x Ly, periodic boundary conditions

• finite simulation cell: Lx x Ly

• translation group reduced to magnetic translations! can trivially translate magnetic unit cell enclosing an integer number of flux quanta

Lx

Ly

Nφ = 1

• choose to implement momenta only along ky (maybe reduced symmetry !)

0 0.2 0.4 0.6 0.8 1nV

-4

-2

0

2

4

E

kmaxy < Ly

Sunday, 18 November 2012

Page 26: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Target phase 1: Laughlin state for bosons at !=1/2

• reference: Laughlin state in the continuum (torus geometry)

F.D.M. Haldane, PRB (1985)

(10,9,9,10,9,9,10,9,9,10,9,9)

ν = 1/2, Nφ = 12

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

!

KyT,A

N=6, NA=3, N!

=12, Laughlin

(a) 2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

!Ky

T,A

N=6, NA=3, N!

=12, V0+ 0.3 V2

(b)

model wavefunction: V =

δ(ri − rj) ≡ V0 finite range interaction: V = V0 + 0.3V2

infinite entanglement gap finite entanglement gap

• count of entanglement eigenstates = count of QH wavefct. with Nφ = ν−1NA + ν−1NB ∆Nφ

count per sector (N=6, NA=3):

Ψ(z1, . . . , zN ) =

i<j

ϑ

zi − zjLy

iLx

Ly

2

Fc.m.(Z)e−12

i x

2i /l

2B

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

Sunday, 18 November 2012

Page 27: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Target phase 1: Laughlin state (bosons)

• contact interactions U on lattice, filling factor , vary lattice geometryν = N/Nφ = 1/2

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10 11

!

KyA

N = 6, NA = 3, Lx = 4, Ly = 12

(a)

0

2

4

6

8

10

12

14

16

0 1 2 3

!

KyA

N = 6, NA = 3, Lx = 6, Ly = 8

(d)

0

2

4

6

8

10

12

14

16

0 1 2 3

!

KyA

N = 6, NA = 3, Lx = 7, Ly = 8

(b)

0

2

4

6

8

10

12

14

16

0 1 2 3

!

KyA

N = 6, NA = 3 , Lx = 12, Ly = 4

(c)

does not match (discuss later)

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

(10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9) (28, 28, 28, 28)

(28, 28, 28, 28)

NL(ky) =

KTy

δky,(KTy modKmax

y ) N T (KTy )

• PES satisfy QH counting with ‘folding rule’

Sunday, 18 November 2012

Page 28: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Robustness of topological order

0

0.05

0.1

0.15

0.2

0.25

0.1 1 10 100 5

5.5

6

6.5

7

7.5

8

8.5

9

Gap

Enta

ngle

ment gap

U/t

N = 5, Lx = 6, Ly = 10

gapES gap NA = 2ES gap NA = 3

• energy gap vs entanglement gap

0 0.2 0.4 0.6 0.8 1nV

-4

-2

0

2

4

E• decrease of entanglement gap at large U from admixture of states in higher bands!

nφ = 1/6

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

Sunday, 18 November 2012

Page 29: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Stability of the Laughlin state

0

2

4

6

8

10

0.2 0.3 0.4 0.5 0.6

Enta

ngle

ment gap

n!

entanglement gap

• previous study of Chern number C=1/2+1/2 of groundstate manifold as indicator of Laughlin state: difficult to calculate M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin, PRA (2007)

• entanglement gap: same answer, but quantitative + much easier to calculate

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

• N=5 fixed• vary geometry

Sunday, 18 November 2012

Page 30: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

PES as a signature of competing states

0

2

4

6

8

10

12

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

!

KyA

N = 6, NA = 1, Lx = 6, Ly = 8

(a) 0

2

4

6

8

10

12

0 1 2 3

!

KyA

N = 6, NA = 2, Lx = 6, Ly = 8

(b)

0

2

4

6

8

10

12

14

16

0 1 2 3

!

KyA

N = 6, NA = 3, Lx = 6, Ly = 8

(d)

• need to understand ‘outlier’, still at

study variation of PES under number NA of particles in particle partition

d=2 low lying states

second gap encompassing d’=Nϕ states: LLL basis!

ν = N/Nφ = 1/2

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

Sunday, 18 November 2012

Page 31: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Signatures of Condensed States in the PES

0

2

4

6

8

10

12

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

!

KyA

N = 6, NA = 1, Lx = 6, Ly = 8

(a) 0

2

4

6

8

10

12

0 1 2 3

!

KyA

N = 6, NA = 2, Lx = 6, Ly = 8

(b) 0

2

4

6

8

10

12

14

16

0 1 2 3

!

KyA

N = 6, NA = 3, Lx = 6, Ly = 8

(d)

• invariance of low-lying level degeneracy in PES under variation of NA: d=2

ΨN =

i

φia†i

N

|vac.

• this is a signature of a condensed state, e.g. pure condensate:

! same wavefunction for all values of N = condensate wavefunction φi

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

• (near) degenerate low-lying entanglement eigenvalues for condensates

! special case of NA =1 : reduced density matrix = single particle DM ρ1 = c†i cj

! signature of discrete symmetry breaking! See GM & N. R. Cooper, PRA (2010)

• here: translational symmetry breaking = density wave state

Sunday, 18 November 2012

Page 32: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Target phase 2: Moore-Read state for bosons at !=1

0

0.02

0.04

0 5

(E -

E0)/

U

Kx + Nx Ky

N = 6, Lx = 6, Ly = 6, k =2

0

0.01

0.02

0 5

(E -

E0)/

U

Kx + Nx Ky

N = 6, Lx = 6, Ly = 6, k =1, U/t = 0.1

• easy to stabilize with 3-body interactions • 2-body contact interactions:

×2

2

4

6

8

10

12

14

16

0 1 2 3 4 5

!

KyA

N = 6, NA = 3, Lx = 6, Ly = 6, k =2, V/t =1

2

4

6

8

10

12

14

16

0 1 2 3 4 5

!

KyA

N = 6, NA = 3, Lx = 6, Ly = 6, k =1, U/t =0.1

Energy

Energy

PES

PES

• robust entanglement gap• match count of MR: (7,6,6,7,6,6) • count of MR qh’s reproduced

(7,6,6,7,6,6)

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

Sunday, 18 November 2012

Page 33: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Extent of Moore-Read phase for 2-body interactionsA. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1 1.2 0

2

4

6

8

10

E/t

spre

ad/g

ap

U/t

N = 6, Lx = 6, Ly = 6

spreadgap

Spread/Gap

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 1 1.5 2

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Ove

rlap

Enta

ngle

ment gap

U/t

N = 6, Lx = 6, Ly = 6

OverlapEntanglement gap

• study behaviour when two-body interaction strength U is tuned

0 0.2 0.4 0.6 0.8 1nV

-4

-2

0

2

4

E

nφ = 1/6

• entanglement gap provides proxy for overlap

• robust entanglement gap gives indication that Moore-Read phase can be stabilized by two-body interactions

• finite size effects of the energy spectrum are strong: Energy spectrum not nearly as clear as PES

• collapse of energy gap at Uc ~ 1.25t ! LL mixing

Sunday, 18 November 2012

Page 34: Particle entanglement spectra for quantum Hall states on ... · 00.2 0.4 0.6 0.81 E x x2 0 0.025 0.05 0.075 01234 k y x2 051015 0 0.025 0.05 0.075 K y 1 • We confirm the Laughlin

Gunnar Möller MPIPKS Dresden, November 2012

Conclusions

• Flux lattices of cold atomic gases provide multiple opportunities to realise flat Chern bands in the near future

• Adiabatic continuation yields a robust tool for identifying correlated phases in Chern bands by association with FQHE physics

• PES is a reliable tool for identifying correlated phases:

T. Scaffidi, GM, arxiv:1207.3539 (PRL, in press)

A. Sterdyniak, N. Regnault & GM, Phys. Rev. B 86, 165314 (2012).

‣ topological states: universal quasihole count‣ entanglement gap clear signature of the stability of topological properties‣ condensed phases: conservation of low-lying structure for different cuts

Sunday, 18 November 2012