pathology!ofthehematolymphoid system! 1and2 ...€¦ · 2! anemia!...

23
1 PATHOLOGY OF THE HEMATOLYMPHOID SYSTEM 1 AND 2 -INTRODUCTION TO ANEMIA ANEMIA OF DECREASED PRODUCTION.

Upload: others

Post on 22-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

1  

PATHOLOGY  OF  THE  HEMATOLYMPHOID  SYSTEM  1  AND  2  

-INTRODUCTION  TO  ANEMIA  -­‐  ANEMIA  OF  DECREASED  PRODUCTION.  

Page 2: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

2  

ANEMIA  

Anemia  is  defined  as  decrease  in  the  RBC  mass,  it  usually  is  reflected  by  decrease  in  hemoglobin  and  hematocrit  levels,  usually  not  always  as  we  shall  see  below.  The  reason  hemoglobin  and  hematocrit  are  used  instead  of  RBC  mass  is  that  he  latter  is  a  difficult  and  expensive  assay  to  perform;  it  is  used  mainly  in  large  centers  for  research  purposes.    To  understand  anemia,  it  is  vital  to  be  familiar  with  the  various  parameters  that  constitute  the  complete  blood  count  (CBC)  

-­‐ RBC  count:  the  number  of  RBCs  per  unit  volume,  usually  expressed  in  number  (usually  in  millions)  /microliter,  for  example  5x106/microliter  (μL)  

-­‐ Hemoglobin  concentration  (Hgb):  the  amount  of  hemoglobin  present  in  a  unit  volume,  typically  expressed  in  gm/dL  

-­‐ Hematocrit  (Hct):  the  ratio  of  the  length  of  the  tube  occupied  by  cells  over  the  whole  length  of  the  tube,  expressed  in  percentage  points.    

-­‐ Mean  cell  volume  (MCV):  the  average  volume  of  a  red  cell  expressed  in  femtoliters  (fL=10-­‐15  liter)  

-­‐ Mean  cell  hemoglobin  (MCH):  the  average  content  (mass)  of  hemoglobin  per  red  cell,  expressed  in  pictograms  (pg=10-­‐12g)  

-­‐ Mean  cell  hemoglobin  concentration  (MCHC):  the  average  concentration  of  hemoglobin  in  a  given  volume  of  packed  red  cells,  expressed  in  grams  per  deciliter.  

-­‐ Red  cell  distribution  width  (RDW):  the  coefficient  of  variation  of  red  cell  volume,  expressed  in  percentage  points.  

-­‐ Reticulocyte  count:  reticulocytes  are  immature,  anucleated  RBCs,  expressed  as  percentage  or  as  number/volume.  

Page 3: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  3  

   Here  are  some  pearls  regarding  the  above  mentioned  parameters  

• RDW  is  useful  in  differentiating  iron  deficiency  anemia  from  thalassemia  (both  have  low  MCV),  RDW  is  high  in  iron  deficiency  anemia  and  normal  to  low  in  thalassemia  

• MCV  is  the  basis  of  classification  of  anemias  into  microcytic,  normocytic  and  macrocytic  

• Spherocytosis  is  the  only  anemia  with  high  MCHC  • Reference  ranges  vary  from  place  to  place,  and  it  is  vital  that  you  

look  at  the  reference  range  provided  by  the  lab  that  performed  the  test  rather  than  memorizing  them.    

• Reticulocyte  count  helps  distinguish  anemia  resulting  from  decrease  production  vs  anemia  of  increased  peripheral  destruction.      

                                                         

Page 4: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  4  

This  is  a  schematic  depiction  of  how  hematocrit  is  measured,  basically  an  anticoagulated  specimen  is  centrifuged  and  the  length  occupied  by  the  cellular  component  (packed  RBCs,  platelets  and  WBCs)  is  measured  and  divided  by  the  whole  length  of  the  specimen.      

     Four  of  the  parameters  the  describe  RBCs  are  measured  (RBC  count,  RDW,  hemoglobin  concentration  and  hematocrit);  the  other  three  parameters  can  be  calculated  as  follows,    

-­‐ MCH=  Hgb/RBC  count  -­‐ MCV=  Hct/  RBC  count  -­‐ MCHC=  Hbg/Hct  

                     

Page 5: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  5  

       CBC  is  performed  in  a  test  tube  that  has  EDTA  additive  (tube  with  a  lavender  top)  in  it  to  prevent  coagulation.    

   As  mentioned  previously,  RBC  mass  is  a  difficult  assay  and  Hct  and  Hgb  are  used  clinically  to  assess  anemia,  however  there  some  scenarios  in  which  the  patient  is  anemic  with  normal  Hct  and  Hgb  and  vice  versa  

-­‐ Patients  with  acute  blood  loss,  such  as  traumatic  hemorrhage  in  a  car  accident,  loses  equal  amounts  of  plasma  and  packed  RBCs,  hence,  the  patient  will  have  normal  CBC  at  the  time  of  presentation,  but  in  reality  the  patient  is  anemic  as  he  has  lost  a  significant  amount  of  RBCs.  

-­‐ On  the  other  hand  a  patient  with  fluid  overload,  during  pregnancy  for  example  as  pregnant  women  retain  extra  amounts  of  fluid,  will  have  a  decreased  Hct  and  Hgb,  but  are  not  considered  anemic  since  no  RBC  loss  was  sustained.    

         

Page 6: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  6  

CLINICAL  MANIFESTATIONS  OF  ANEMIA    The  role  of  RBCs  is  to  deliver  oxygen  to  tissue  in  the  right  amount  for  the  basic  functions  to  meet  the  demands,  a  decrease  in  the  RBC  and  Hgb  means  decreased  capacity  to  deliver  oxygen,  the  body  will  try  to  compensate  for  the  deficit  and  in  that  case  no  symptoms  will  develop,  however,  if  the  compensatory  mechanisms  are  exceeded  by  the  anemia,  symptoms  will  appear:  

-­‐ Symptoms  related  to  decrease  Hgb  concentration  include  pale  skin  and  pale  conjunctiva  

-­‐ Symptoms  related  to  decrease  oxygen  delivery  include  fatigue,  dizziness,  faintness,  chest  pain  (and  myocardial  infarction  in  severe  cases),  and  muscle  weakness  

-­‐ Symptoms  related  to  compensatory  mechanisms  by  the  body  trying  to  overcome  the  anemia  include  shortness  of  breath  (tachypnea)  and  tachycardia.  Additionally,  in  some  forms  of  anemia,  splenomegaly  (enlarged  spleen)  might  develop  as  synthesis  of  blood  shifts  from  the  bone  marrow  to  the  spleen.    

-­‐ Symptoms  related  to  the  cause  of  anemia;  menorrhagia,  weight  loss  in  cases  of  colon  cancer,  symptoms  related  to  kidney  failure,  manifestations  of  chronic  rheumatologic  disorders…etc.      PLEASE  REMEMBER    

-­‐ The  development  of  symptoms  are  related  to  the  underlying  status  of  the  patients  and  their  physiologic  reserve;  symptoms  will  be  felt  more  readily  by  a  seasoned  athlete  suffering  a  small  degree  of  anemia  than  a  patient  who  lives  a  sedentary  lifestyle.  Additionally,  a  young  healthy  patient  will  tolerate  a  larger  degree  of  anemia  compared  to  an  elderly  patient  with  underlying  cardiac  or  respiratory  diseases.    

-­‐ The  onset  of  anemia  also  plays  a  role  in  the  development  of  anemia-­‐related  symptoms,  for  example  iron  deficiency  anemia  might  be  tolerated  and  completely  asymptomatic  if  occurs  over  an  extended  period  of  time  compared  to  anemia  happening  acutely  as  a  result  of  massive  blood  loss,  for  example.      

   WORK  UP  In  addition  to  taking  good  history  that  includes  the  patient  symptoms,  past  history,  medications  and  other  chronic  diseases,  thorough  physical  examination,  and  a  panel  of  tests  might  be  employed  to  further  classify  and  diagnose  anemia,  and  hence  dictate  the  proper  course  of  treatment;  these  include:    

1-­‐ Iron  indices  (serum  iron,  serum  iron-­‐binding  capacity,  transferrin  saturation,  and  serum  ferritin  concentrations),  which  help  distinguish  among  anemias  caused  by  iron  deficiency,  chronic  disease,  and  thalassemia.  

Page 7: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  7  

a. Ferritin  is  a  very  sensitive  test  for  iron  deficiency  and  in  fact  it  goes  down  before  iron  levels  or  hemoglobin  levels  go  down.    

b. Serum  iron  binding  capacity  is  high  in  iron  deficiency  anemia  as  it  reflects  the  amount  of  iron  that  can  bind  to  transferrin  (remember  the  empty  chair  analogy!)  

 2-­‐  Plasma  unconjugated  bilirubin,  haptoglobin,  and  lactate  dehydrogenase  levels,  which  are  abnormal  in  hemolytic  anemias.      3-­‐  Serum  and  red  cell  folate  and  vitamin  B12  concentrations,  which  are  low  in  megaloblastic  anemias.    4-­‐ Hemoglobin  electrophoresis,  which  is  used  to  detect  abnormal  hemoglobins.  

 5-­‐ Coombs  test,  which  is  used  to  detect  antibodies  or  complement  on  red  cells  in  

suspected  cases  of  immune  hemolytic  anemia    

Other  tests  will  be  described  in  the  relevant  sections,  please  see  below  for  further  description  for  the  above-­‐mentioned  tests.      

CLASSIFICATION  OF  ANEMIA  There  are  two  classification  systems  for  anemia:  

-­‐ The  first  one  is  based  on  etiology,  anemia  can  be  divided  into  o Anemia  of  decreased  production  in  which  anemia  develops  due  to  

decrease  synthesis  of  RBCs  in  the  bone  marrow  o Anemia  of  increased  peripheral  removal  of  RBCs;  this  includes  

mechanisms  in  which  RBCs  are  removed  from  the  blood  in  a  rate  that  exceeds  the  bone  marrow  capacity  for  compensation.  

o The  best  way  to  differentiate  between  the  two  is  reticulocyte  count  (see  below)  

-­‐ The  second  one  is  based  on  the  size  of  the  RBCs  reflected  by  the  MCV,    o Microcytic:  MCV  is  below  reference  range  o Normocytic:  MCV  is  within  reference  range  o Macrocytic:  MCV  is  above  reference  range.    

   The  first  classification  is  a  pathophysiologic  one  and  is  very  important  to  understand  the  mechanism  of  anemia;  it  will  be  the  basis  of  our  lectures,  the  second  classification  is  a  clinical  and  will  be  vital  when  you  assess  your  patients.    

 

Page 8: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  8  

 

     As  mentioned  previously,  the  second  classification  looks  at  the  MCV  and  divides  anemia  into  three  categories:  

-­‐ The  most  important  causes  of  microcytic  anemia  are  o Iron  deficiency  anemia  o Thalassemia  o Sideroblastic  anemia  o Lead  poisoning    

-­‐ Macrocytic  anemia  is  divided  into  two  classes  o Megaloblastic  anemia:  caused  by  B12  and/or  folate  deficiency    o Nonmegaloblastic  anemia:  such  as  hypothyroidism,  

myeodysplastic  anemia,  and  some  cases  of  aplastic  anemia        

 The  role  of  reticulocyte  count  in  differentiating  anemia  of  decreased  production  from  anemia  of  increased  peripheral  removal/destruction                  RBC  production  in  the  bone  marrow  starts  as  a  stem  cell  that  is  capable  of  division  and  differentiation.  The  stem  cell  undergoes  a  series  of  differentiation  steps  in  which  it  becomes  more  differentiated,  synthesizes  hemoglobin  and  loses  the  nucleus.  The  step  that  directly  precedes  the  mature  RBC  is  called  a  reticulocyte.    Reticulocytes  are  larger  than  the  mature  RBC  and  appear  a  little  bit  darker  as  they  contain  remnants  of  RNA,  the  reticulocyte  does  not  have  a  nucleus.    Normally,  the  reticulocyte  count  should  not  exceed  1-­‐2%.    So  how  does  the  reticulocyte  count  help  in  classifying  anemia?    Well,  if  the  cause  of  anemia  is  decreased  production  at  the  level  of  bone  marrow,  such  as  cases  of  leukemia,  then  ALL  CELLS  will  decrease  in  number  including  reticulocytes,  however  if  the  anemia  is  caused  by  something  removing  RBCs  from  the  peripheral  blood,  such  as  hemorrhage  or  hemolytic  anemia,  then  the  bone  marrow  will  try  to  compensate  for  the  RBC  loss  by  increasing  production,  in  this  case,  reticulocytes  will  not  have  enough  time  to  mature  in  the  bone  marrow,  and  will  be  expelled  to  the  periphery  faster  than  normal,  hence  the  number  of  reticulocytes  will  increase.      In  summary,  low  reticulocyte  count  means  decrease  production  and  high  reticulocyte  count  means  peripheral  removal.        

Page 9: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  9  

    Please  take  a  look  at  the  following  chart        

     Please  note  the  following  -­‐This  chart  combines  both  classifications  -­‐  Most  cases  of  micro-­‐  and  macrocytic  anemia  are  anemias  of  decreased  

production.  -­‐Normocytic  anemia  can  be  due  to  either  peripheral  removal  or  decreased  

production,  the  best  way  to  differentiate  is  reticulocyte  count.  -­‐  Some  disease  can  be  normocytic  or  macrocytic,  and  some  can  be  either  

normocytic  or  microcytic.        

     

Page 10: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  10  

ANEMIA  OF  DECREASED  PRODUCTION  Many  causes  of  anemia  of  decreased  production  exist;  however,  in  this  

discussion  only  the  most  common  entities  will  be  covered.  Specifically,  iron  deficiency  anemia,  anemia  of  chronic  disease,  megaloblastic  anemia,  anemia  in  liver  disease,  anemia  of  chronic  renal  disease,  aplastic  anemia  and  myelophthisic  anemia.    

 Before  going  with  detail  into  these  disease  entities,  a  quick  overview  of  iron  

metabolism  is  presented,  it  is  very  important  to  understand  iron  deficiency  anemia  and  anemia  of  chronic  disease.  

 Approximately  two  thirds  of  iron  is  present  in  hemoglobin,  another  6%  is  

present  in  myoglobin.  Around  25%  of  iron  is  present  in  storage  and  transport  status,  specifically,  transferrin  and  ferritin.  Transferrin  is  the  major  transporter  of  iron  in  the  serum,  and  ferritin  is  the  major  storage  protein  for  iron  inside  the  cells,  however,  small  amounts  of  ferritin  are  also  present  in  the  serum  and  are  very  helpful  in  the  assessment  of  iron  stores  in  the  body  (see  below).      

 Iron  is  present  in  the  diet  in  two  forms:  heme  iron  and  nonheme  iron,  heme  iron  is  present  in  meat  and  poultry  and  is  more  readily  absorbable  than  nonheme  iron  which  is  present  in  vegetables.      

Regulation  of  iron  absorption  occurs  within  the  duodenum  (see  figure).    After  reduction  by  ferric  reductase,  ferrous  iron  (Fe2+)  is  transported  across  the  apical  membrane  by  divalent  metal  transporter-­‐1  (DMT1).  A  second  transporter,  ferroportin,  then  moves  iron  from  the  cytoplasm  to  the  plasma  across  the  basolateral  membrane.  The  newly  absorbed  iron  is  next  oxidized  by  hephaestin  and  ceruloplasmin  to  ferric  iron  (Fe3+),  the  form  of  iron  that  binds  to  transferrin.  Both  DMT1  and  ferroportin  are  widely  distributed  in  the  body  and  are  involved  in  iron  transport  in  other  tissues  as  well.  As  depicted  in  the  figure  (middle  panel),  part  of  the  iron  that  enters  enterocytes  is  delivered  to  transferrin  by  ferroportin,  whereas  the  remainder  is  incorporated  into  cytoplasmic  ferritin  and  is  lost  through  the  exfoliation  of  mucosal  cells.  

The  fraction  of  iron  that  is  absorbed  is  regulated  by  hepcidin,  a  small  peptide  that  is  synthesized  and  secreted  from  the  liver  in  an  iron-­‐dependent  fashion.  In  general,  high  iron  levels  in  the  plasma  enhance  hepcidin  production,  whereas  low  iron  levels  suppress  it.  However,  hepcidin  production  also  is  sensitive  to  inflammation  and  to  factors  released  from  erythroblasts  in  the  bone  marrow.  Specifically,  hepcidin  levels  rise  in  the  face  of  systemic  inflammation  because  of  the  direct  effects  of  inflammatory  mediators  such  as  IL-­‐6  on  hepatocytes,  and  in  the  setting  of  ineffective  hematopoiesis,  which  is  marked  by  increased  numbers  of  erythroblasts  in  the  bone  marrow.  Hepcidin  circulates  to  the  duodenum,  where  it  binds  ferroportin  and  induces  its  internalization  and  degradation.  Thus,  when  hepcidin  concentrations  are  elevated  (see  figure  right  panel),  such  as  when  serum  iron  levels  are  high  or  there  is  systemic  inflammation,  ferroportin  levels  fall  and  more  iron  is  incorporated  into  cytoplasmic  ferritin  and  is  lost  by  excretion.  Conversely,  when  hepcidin  levels  are  low  (see  figure,  left  panel),  such  as  when  there  is  iron  deficiency,  ineffective  hematopoiesis,  or  the  genetic  defects  that  lead  to  primary  hemochromatosis  ,  the  basolateral  transport  of  iron  is  increased.  In  iron  

Page 11: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  11  

deficiency,  the  suppression  of  hepcidin  is  beneficial  as  it  serves  to  help  to  correct  the  deficiency,  but  inappropriately  low  levels  of  hepcidin,  as  in  primary  hemochromatosis,  eventually  lead  to  systemic  iron  overload.  

The  human  body  controls  iron  levels  through  absorption  only  as  there  is  no  mechanisms  to  control  the  excretion,  iron  is  excreted  in  a  fixed  rate  of  approximately  1  to  2 mg/day  through  the  shedding  of  mucosal  and  skin  epithelial  cells,  and  this  loss  must  be  balanced  by  the  absorption  of  dietary  iron,  which  is  tightly  regulated  (see  previous  discussion).  

 

 FIGURE: Regulation of iron absorption. Duodenal epithelial cell uptake of heme and nonheme iron is depicted. When the storage sites of the body are replete with iron and erythropoietic activity is normal, plasma hepcidin balances iron uptake and loss to maintain iron hemeostasis by downregulating ferroportin and limiting iron uptake (middle panel). Hepcidin rises in the setting of systemic inflammation or when iron levels are high, decreasing iron uptake and increasing iron loss by the shedding of duodenocytes (right panel), and it falls in the setting of low plasma iron or primary hemochromatosis, resulting in increased iron uptake (left panel) with reduced shedding. DMT1, Divalent metal transporter-1.

 

Page 12: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  12  

   IRON  DEFICIENCY  ANENMIA    Deficiency  of  iron  is  the  most  common  nutritional  deficiency  in  the  

world  and  results  in  clinical  signs  and  symptoms  that  are  mostly  related  to  anemia.  

 Four  major  mechanisms  contribute  to  iron  deficiency:  

1- Chronic blood loss is the most important cause of iron deficiency anemia in the Western world. The most common sources of bleeding are the gastrointestinal tract (e.g., peptic ulcers, colon cancer, hemorrhoids) and the female genital tract (e.g., menorrhagia, metrorrhagia, endometrial cancer). 2- In the developing world, low intake and poor bioavailability because of predominantly vegetarian diets are the most common causes of iron deficiency. In the United States, low dietary intake is an infrequent culprit but is sometimes culpable in infants fed exclusively milk, in the impoverished, in the elderly, and in teenagers subsisting predominantly on junk food. 3- Increased demands not met by normal dietary intake occur worldwide during pregnancy and infancy. 4- Malabsorption can occur with celiac disease or after gastrectomy.

 Clinical  findings:  Iron  deficiency  anemia  is  insidious  and  asymptomatic  and  occasionally  the  

apparent  symptoms  are  those  of  the  underlying  disease  (for  example,  excessive  menorrhagia  in  a  female).  When  symptoms  develop,  they  are  those  of  anemia  (weakness,  pallor…etc).  Additionally,  spooning  of  the  fingernails  and  pica  (eating  nonedible  materials  such  as  dirt,  clay  and  paint)  might  develop.    

A  rare  syndrome  characterized  by  iron  deficiency,  glossitis,  esophageal  webs  and  difficulty  swallowing  is  known  as  Plummer-­‐Vinson  syndrome  is  well  documented.    (See  figure)  

Page 13: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  13  

       Laboratory  findings:  In  peripheral  smears,  red  cells  are  microcytic  and  hypochromic  (see  figures).  Diagnostic  criteria  include  anemia,  hypochromic  and  microcytic  red  cell  indices,  low  serum  ferritin  and  iron  levels,  low  transferrin  saturation,  increased  total  iron-­‐binding  capacity,  increased  RDW  and,  ultimately,  response  to  iron  therapy.  For  unclear  reasons,  the  platelet  count  often  is  elevated.  Erythropoietin  levels  are  elevated,  but  the  marrow  response  is  blunted  by  the  iron  deficiency;  thus,  marrow  cellularity  usually  is  only  slightly  increased.      

Page 14: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  14  

     

     

The  upper  left  image  shows  a  completely  iron  depleted  bone  marrow  The  lower  right  image  depicts  a  normal  bone  marrow  with  normal  iron  (blue)  

Page 15: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  15  

   Treatment  is  directed  at  replacing  iron  and  most  importantly  at  treating  the  underlying  condition,  treating  the  causative  disease  (colon  cancer)  is  more  vital  than  treating  mild  asymptomatic  iron  deficiency  anemia.      ANEMIA  OF  CHRONIC  INLAMMATION    Often  referred  to  as  the  anemia  of  chronic  disease,  anemia  associated  with  chronic  inflammation  is  the  most  common  form  of  anemia  in  hospitalized  patients.  It  superficially  resembles  the  anemia  of  iron  deficiency  but  arises  instead  from  the  suppression  of  erythropoiesis  by  systemic  inflammation.  It  occurs  in  a  variety  of  disorders  associated  with  sustained  inflammation:    1-­‐  Chronic  microbial  infections,  such  as  osteomyelitis,  bacterial  endocarditis,  and  lung  abscess  

 2-­‐  Chronic  immune  disorders,  such  as  rheumatoid  arthritis  and  regional  enteritis  

 3-­‐  Neoplasms,  such  as  Hodgkin  lymphoma  and  carcinomas  of  the  lung  and  breast    Pathogenesis:  the  key  element  in  anemia  of  chronic  disease  is  elevated  hepcidin  which  results  from  increase  serum  levels  of  IL-­‐6.  Hepcidin  inhibits  iron  transportation  from  bone  macrophages  into  erythroid  precursor  cells  via  downregulation  of  ferroprotein.  Additionally,  chronic  inflammation  suppresses  erythropoietin  production  by  the  kidneys.      The  functional  advantages  of  these  adaptations  in  the  face  of  systemic  inflammation  are  unclear;  they  may  serve  to  inhibit  the  growth  of  iron-­‐dependent  microorganisms  or  to  augment  certain  aspects  of  host  immunity.    Clinical  Features  As  in  anemia  of  iron  deficiency,  the  serum  iron  levels  usually  are  low  in  the  anemia  of  chronic  disease,  and  the  red  cells  may  be  slightly  hypochromic  and  microcytic.  Unlike  iron  deficiency  anemia,  however,  storage  iron  in  the  bone  marrow  and  serum  ferritin  are  increased  and  the  total  iron-­‐binding  capacity  is  reduced.  Administration  of  erythropoietin  and  iron  can  improve  the  anemia,  but  only  effective  treatment  of  the  underlying  condition  is  curative.                  

Page 16: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  16  

MEGALOBLASTIC  ANEMIA  Megaloblastic  anemia  is  caused  by  deficiency  of  vitamin  B12  and/or  folate  deficiency.  B12  and  folate  are  important  cofactors  in  the  synthesis  of  thymidine,  one  of  the  four  building  blocks  of  DNA.    Rapidly  dividing  cells,  especially  the  bone  marrow  cells,  are  more  affected  than  other  cells.    The  name  “megaloblastic”  refers  to  the  morphologic  changes  seen  in  bone  marrow;  the  erythroid  precursor  cells  are  larger  than  normal  and  show  immature  nuclei  resulting  from  defective  DNA  synthesis,  however,  RNA  and  hemoglobin  synthesis  proceed  normally,  and  hence,  the  cytoplasm  shows  normal  maturation,  this  phenomenon  is  called  nuclear-­‐cytoplasmic  asynchrony,  meaning  that  the  cytoplasm  and  nuclei  are  maturing  in  different  rates.    Additional  morphologic  findings  include  hypersegmented  neutrophils  (neutrophils  with  nuclei  showing  more  than  4  segments)  and  abnormally  shaped  platelets.      

     

Page 17: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  17  

   Defective  DNA  synthesis  results  in  increased  apoptosis  of  the  erythroid  

precursor  cells  and  decreased  cell  division,  which  contributes  to  anemia.  All  bone  marrow  cells  are  affected,  and  it  is  common  for  those  patients  to  present  pancytopenia.    

 In  addition  to  the  morphologic  changes  seen  in  the  images  above,  the  RBCs  

are  usually  oval  shaped  and  markedly  macrocytic  (MCV  more  than  110).      Folate  deficiency    Folate  deficiency  results  from    1-­‐ Dietary:  the  most  common  cause,  remember,  the  body  storage  of  

folate  is  sufficient  for  a  couple  of  months  only  and  if  the  diet  is  poor  in  folate,  deficiency  develops  rapidly,  in  contrast  to  B12  (see  below).    

2-­‐ Increased  demands  during  pregnancy  and  infancy.  3-­‐ Certain  foods  such  as  acidic  foods  and  beans  4-­‐ Drugs  such  as  phenytoin  which  interferes  with  absorption  and  

methotrexate  which  interferes  with  metabolism.  5-­‐ Malabsorptive  disorders,  such  as  celiac  disease  and  tropical  sprue,  

that  affect  the  upper  third  of  the  small  intestine  where  folate  is  absorbed.    

Clinical  manifestations  Typically  insidious  and  nonspecific,  weakness,  fatigue  and  shortness  of  breath  if  severe.  Could  be  completely  asymptomatic.  Since  the  cells  of  the  GI  tract  are  rapidly  dividing,  symptoms  related  to  the  GI  such  as  sore  tongue  can  develop.      Unlike  vitamin  B12  deficiency,  no  neurological  symptoms  are  seen  in  the  setting  of  folate  deficiency.      The  diagnosis  of  a  megaloblastic  anemia  is  readily  made  from  the  examination  of  smears  of  peripheral  blood  and  bone  marrow.  The  anemia  of  folate  deficiency  is  best  distinguished  from  that  of  vitamin  B12  deficiency  by  measuring  serum  and  red  cell  folate  and  vitamin  B12  levels.    Vitamin  B12  deficiency    Dietary  deficiency  is  an  exceptionally  rare  cause  of  B  12  deficiency  and  is  noted  only  among  strictly  vegan  people  who  do  not  consume  meat,  milk,  eggs  or  cheese.  B12  stores  in  the  body  are  sufficient  for  5-­‐20  years.      Vitamin  B12  deficiency  results  from  diseases  that  interfere  with  its  absorption:  

Page 18: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  18  

1-­‐ Pernicious  anemia:  the  most  common  cause,  in  pernicious  anemia  antibodies  against  the  gastric  parietal  cells  (the  cells  that  produce  intrinsic  factor  which  is  vital  for  B12  absorption)  result  in  damage  to  these  cells  and  decreased  production  of  intrinsic  factor  

2-­‐ Gastrectomy(leading  to  loss  of  intrinsic  factor–producing  cells)  3-­‐  Ileal  resection(resulting  in  loss  of  intrinsic  factor–B12  complex–absorbing  

cells).  4-­‐ Disorders  that  disrupt  the  function  of  the  distal  ileum  (such  as  Crohn  

disease,  tropical  sprue,  and  Whipple  disease).    5-­‐ In  older  persons,  gastric  atrophy  and  achlorhydria  may  interfere  with  the  

production  of  acid  and  pepsin,  which  are  needed  to  release  the  vitamin  B12  from  its  bound  form  in  food      Clinical  manifestations    In  addition  to  the  nonspecific  symptoms  seen  in  folate  deficiency,  patient  with  vitamin  B12  deficiency  might  have  neurological  symptoms,  including:  

1-­‐ Peripheral  neuropathy:  numbness,  parasthesia  and  feeling  cold  of  the  distal  parts  of  the  lower  limbs.  

2-­‐ Loss  of  position  sense  and  ataxia  3-­‐ Neuropsychiatric  manifestations  including  delusions,  

hallucinations,  cognitive  changes  (like  memory  decline),  depression,  and  dementia  

 PLEASE  REMEMBER  -­‐Folate  administration  in  a  patient  with  vitamin  B12  deficiency  can  alleviate  anemia  but  it  worsens  the  neurological  symptoms.  -­‐Sometimes  in  patients  with  vitamin  b12  deficiency,  neurological  symptoms  might  develop  without  anemia.    -­‐ Anemia  responds  dramatically  to  parenteral  vitamin  B12,  however,  the  neurologic  manifestations  often  fail  to  resolve    

 Findings  supporting  the  diagnosis  of  vitamin  B12  deficiency  are  (1)  low  serum  vitamin  B12  levels,  (2)  normal  or  elevated  serum  folate  levels,  (3)  moderate  to  severe  macrocytic  anemia,  (4)  leukopenia  with  hypersegmented  granulocytes,  and  (5)  a  dramatic  reticulocytic  response  (within  2  to  3  days)  to  parenteral  administration  of  vitamin  B12.  Pernicious  anemia  is  associated  with  all  of  these  findings  plus  the  presence  of  serum  antibodies  to  intrinsic  factor.          

Page 19: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  19  

ANEMIA  OF  CHRONIC  LIVER  DISEASE    Anemia  in  the  setting  of  chronic  liver  disease  (cirrhosis  for  example)  results  from  several  etiologis:  

• Iron  deficiency  is  the  most  common  • Hypersplenism  • Therapy  related  hemolytic  anemia  and  suppression  of  EPO  receptor  • Alcoholic-­‐cirrhosis-­‐induced  folate  deficiency    

Morphologically:  anemia  is  characterized  by  the  presence  of  spur  cells  (also  known  as  acanthocytes)  which  are  large  erythrocytes  covered  with  spikelike  projections  that  vary  in  width,  length,  and  distribution.  

   ANEMIA  OF  CHRONIC  RENAL  DISEASE    Anemia  of  chronic  renal  disease  also  stems  from  several  etiologies:  

• Decrease  EPO  production  by  the  damaged  kidney.  • High  levels  of  inflammatory  cytokines  • Hemolysis  • Chronic  bleeding  • Folate  deficiency  in  patients  on  dialysis.  

 Morphologically  anemia  of  chronic  kidney  disease  are  characterized  by  ecchinocytes  (also  known  as  Burr  cells)  which  are  RBCs  with  circumferential  short,  wide-­‐based  membrane  projections.    

Page 20: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  20  

       APLASTIC  ANEMIA    Aplastic  anemia  refers  to  a  syndrome  of  chronic  primary  hematopoietic  failure  and  attendant  pancytopenia  (anemia,  neutropenia,  and  thrombocytopenia).    The  bone  marrow  is  completely  devoid  of  hematopoietic  cells  and  is  filled  with  adipose  tissue  instead.    

                     

Page 21: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  21  

Etiology  Most  commonly  is  idiopathic.  Known  causes  include  drugs,  chemical  agents,  infection,  hereditary  syndromes  among  others  (see  table)  

   PATHOGENESIS:  Two  mechanisms:  

1-­‐ An  immune  attack  against  the  multipotent  stem  cells  by  T  lymphocytes,  this  theory  is  supported  by  the  fact  the  a  sizable  majority  of  patients  respond  well  to  anti-­‐T  cell  immune  therapy.    

2-­‐ Stem  cell  intrinsic  abnormality  which  results  in  decreased  ability  of  stem  cells  to  divide  and  differentiate  and  also  increased  early  cell  death.    

Clinical  manifetations  1-­‐ Anemia  due  to  decreased  RBC  production  2-­‐ Increased  risk  of  infections  due  to  neutropenia  3-­‐ Bleeding:  petichiae  and  ecchymosis  due  to  decreased  platelets.  Aplastic  anemia  does  not  cause  splenomegaly;  if  splenomegaly  is  present,  another  diagnosis  should  be  sought.    Treatment  is  by  anti-­‐T  cell  immune  therapy  or  by  bone  marrow  transplantation.    

Page 22: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  22  

 MYELOPHTHISIC  ANEMIA.  Myelophthisic  anemia  is  caused  by  extensive  infiltration  of  the  marrow  by  tumors  or  other  lesions.  It  most  commonly  is  associated  with  metastatic  breast,  lung,  or  prostate  cancer.  Other  tumors,  advanced  tuberculosis,  lipid  storage  disorders,  and  osteosclerosis  may  produce  a  similar  clinical  picture.  The  principal  manifestations  include  anemia  and  thrombocytopenia;  in  general,  the  white  cell  series  is  less  affected.  Characteristically  misshapen  red  cells,  some  resembling  teardrops,  are  seen  in  the  peripheral  blood.  Immature  granulocytic  and  erythrocytic  precursors  also  may  be  present  (leukoerythroblastosis)  along  with  mild  leukocytosis.  Treatment  is  directed  at  the  underlying  condition      

               End      

1

2

3

1-tear drop RBC 2-immature erythroid precursor cell 3-immture myeloid cell

Page 23: PATHOLOGY!OFTHEHEMATOLYMPHOID SYSTEM! 1AND2 ...€¦ · 2! ANEMIA! AnemiaisdefinedasdecreaseintheRBCmass,itusuallyisreflectedbydecreasein hemoglobinandhematocritlevels,us uallynotalwaysasweshallseebelow

  23