paul o’brien

37
Paul O’Brien Paul O’Brien 1975 – Liverpool University 1978 – PhD, University of Wales, Cardiff 1978 – Appointed lecturer at Chelsea College of Science and Technology 1984 – Queen Mary and Westfield College lecturer 1994 – Promoted to chair 1995 – Professor of Inorganic Chemistry, Imperial College 1997-1998 - Royal Society Amersham International Research Fellow 1999 - Professor of Inorganic Materials Chemistry at University of Manchester 2001-2002 - Research Dean in the Faculty of Science and Engineering at University of Manchester 2002 – Founded Nanoco Ltd to commercialize quantum dot synthesis Presently, Professor of Inorg. Mat. Chem., Head of School of Chemistry at University of Manchester

Upload: risa-yang

Post on 30-Dec-2015

29 views

Category:

Documents


0 download

DESCRIPTION

Paul O’Brien. 1975 – Liverpool University 1978 – PhD, University of Wales, Cardiff 1978 – Appointed lecturer at Chelsea College of Science and Technology 1984 – Queen Mary and Westfield College lecturer 1994 – Promoted to chair 1995 – Professor of Inorganic Chemistry, Imperial College - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Paul O’Brien

Paul O’BrienPaul O’Brien

1975 – Liverpool University 1978 – PhD, University of Wales, Cardiff 1978 – Appointed lecturer at Chelsea College of Science and Technology 1984 – Queen Mary and Westfield College lecturer 1994 – Promoted to chair 1995 – Professor of Inorganic Chemistry, Imperial College 1997-1998 - Royal Society Amersham International Research Fellow 1999 - Professor of Inorganic Materials Chemistry at University of

Manchester 2001-2002 - Research Dean in the Faculty of Science and Engineering at

University of Manchester 2002 – Founded Nanoco Ltd to commercialize quantum dot synthesis Presently, Professor of Inorg. Mat. Chem., Head of School of Chemistry at

University of Manchester

Page 2: Paul O’Brien

Research Interests

Novel synthetic routes to chalcogenide materials thin films quantum dots

Interest: semiconductor properties Applications:

Solar Cells Infrared detectors Photoconductors Thermoelectric generators and coolers LEDs

Page 3: Paul O’Brien

Chalcogenides

Chalcogenide refers to a Group VI elements S, Se, Te, or an alloy containing S, Se, Te.

O’Brien has explored chalcogenides of Cu, Pb, Cd, Ga, In, Bi, Sb.

CdTe/CdS junction: a low cost alternative to silicon in photovoltaic cells

Page 4: Paul O’Brien

CdS Thin Films

Page 5: Paul O’Brien

CdS Thin Film Synthesis and Deposition

Previously: Thin films deposited using metal alkyls O’Brien, Khan, and Frigo used Cd(Et2dtc)2

at T = 370oC as single-source precursors

New method: Single-source precursor: Cd(Et2mtc)2

Benefits: Lower deposition temperature Higher deposition rate Avoidance of metal alkyls and H2S

Page 6: Paul O’Brien

CdS Thin Film: Synthesis of Precursor

1. COS + Et2NH (10oC) (Et2mtc)2Et2N+

2. (Et2mtc)2Et2N+ + Cd(CO2CH3) white precipitate

3. Recrystallized to give colorless needles of Cd(Et2mtc)2

Page 7: Paul O’Brien

CdS Thin Film: Deposition

LP-MOCVD

Page 8: Paul O’Brien

CdS Thin Film: Deposition

LP-MOCVD Substrate: GaAs(100) or borosilicate glass

Cd(Et2mtc)2 volatilized at 150oC

Decomposed to CdS thin film on substrate at temperatures as low as 300oC

Page 9: Paul O’Brien
Page 10: Paul O’Brien

CdS Thin Film

Page 11: Paul O’Brien

CdS Thin Film

Band Gap = 2.39 eV (2.42 eV)

Deposition Temperature (300oC v. 370oC)

Deposition rate (1.06mh-1 v. 0.20mh-1)

Major decomposition product = Et2NC(O)SC(O)NEt2

Page 12: Paul O’Brien

Cd Alternatives in Thin Films

Drive to replace Cd in thin films of solar cells: Cd = toxic heavy metal

Alternatives: CdTe Cu(In/Ga)E2 (E = S,Se)

Single – source asymmetrically substituted precursor

Page 13: Paul O’Brien

CuInS2, CuInSe2, CuGaS2

Precursor synthesis CS2 or CSe2 + NaOH + N-MHN solution MxSO4/MxCl + solution + (solvent at T) (1,2, 3, or 4)

M SO4/Cl T (oC) Solvent Product

Cu SO4-2 0 MeOH Cu(S2CNMenHex)2 (1)

In Cl- 0 MeOH In(S2CNMenHex)3 (2)

Cu Cl- -10 H2O Cu(Se2CNMenHex)2 (3)

In Cl- -20 H2O In(Se2CNMenHex)3 (4)

Page 14: Paul O’Brien

CuInS2, CuInSe2, CuGaS2

Precursor synthesis Ga(S2CNMenHex)3 (5) Na(S2CNMenHex) (dry benzene) + GaCl3 (hexane)

Ga(S2CNMenHex)3

Page 15: Paul O’Brien

Deposition of CuIn(S,Se)2, GaInS2 Thin Films

LP-MOCVD P = 10-2 Torr Graphite susceptor 100mg stoichiometrically (1:1) mixed precursors Films deposited on various substrates

glass ITO glass InP(100) GaAs(100) InP(111) Si(111)

Page 16: Paul O’Brien

Deposition of CuIn(S,Se)2, GaInS Thin Films

AACVD

Page 17: Paul O’Brien
Page 18: Paul O’Brien

CuInS2 thin films by LP-MOCVD 1:1 mixture of 1 and 2 Optimum temperatures:

Tpre > 220oC (250oC); Tsubs >430oC (450oC)

Band Gap: 1.41 eV (1.5 eV) Oriented Growth – InP(100)

Tsubs (oC) t (hr) m Color

450-470 < 1 5 Dark yellow

480-500 > 2 8 Dark black

a. glass; b. ITO glass; c.InP(100); d.GaAs(100); e.InP(111); f.Si(111)

Page 19: Paul O’Brien

CuInS2 thin films by AACVD

1:1 mix of 1 and 2 Lower Tsub: 350oC Morphology different than LP-MOCVD

Thinner flakes (0.2m v. 1m) Horizontal

After 2 hr. 1m thick film

Page 20: Paul O’Brien

CuInS2 thin films

On InP(100), 112 peak missing

Page 21: Paul O’Brien

CuInSe2 by LP-MOCVD

1:1 ratio of 3 and 4 Tpre = 180 –250oC; Tsub = 400-450oC

Growth rate = 1 mh-1

Band Gap = 1.08 eV (1.0-1.1 eV) No oriented growth Morphology ITO coated glass and Si(100) more homogeneous

Page 22: Paul O’Brien

CuInSe2 thin films by AACVD

1:1 ratio of 3 and 4 T = 425-475oC

Several different morphologies

Page 23: Paul O’Brien

CuInSe2 thin films

Page 24: Paul O’Brien

CuGaS2 thin film by LP-MOCVD, AACVD

1:1 ratio of 1 and 5 Tpre = 250oC; Tsub = 500oC LP-MOCVD T = 400-450oC

Page 25: Paul O’Brien

CuGaS2 thin film

Page 26: Paul O’Brien

CuIn(S,Se)2, GaInS Thin Films

Conclusions: M(S2/Se2CNRR’)2 = good precursors for CVD

AACVD and LP-MOCVD resulted in stoichiometric CuME2 films Morphology effected by experimental parameters XRD patterns similar for AACVD prepared films regardless of

deposited materials

Compound Band Gap

T (oC) m Growth Rate (m/h)

EDX

LP-MOCVD CuInS2 1.41 450 5 5.0 1:1:2

AACVD CuInS2 nr 350 1 0.5 1:1:2

LP-MOCVD CuInSe2 1.08 450 2 1.0 1:1:2

AACVD CuInSe2 nr 450 nr nr nr

LP-MOCVD GaInS2 nr 500 nr nr nr

AACVD GaInS2 nr 450 1 1.5 Cu 30% Ga 24% S46%

Page 27: Paul O’Brien

Chalcogenide Quantum Dots

Bulk: band gap specific to chemical composition

Quantum dots: band gap tuned by altering size

Page 28: Paul O’Brien

Chalcogenide Quantum Dots

Previous Synthetic Methods:1. Aqueous solution

Air sensitivity

2. Growth within host material Removal of host material

3. Anaerobic preparation using organometallics Hazardous, toxic, pyrophoric conditions

Page 29: Paul O’Brien

Chalcogenide Quantum Dots

New Method: Single molecular precursor Advantages:

Avoid hazardous precursors Only one non-volatile precursor involved New synthetic routes may lead to unique properties

Page 30: Paul O’Brien

Chalcogenide Quantum Dots

Precursor: (Cd/Zn)[R2(dtc/dsc)]2

Growth: Precursor decomposed in a high boiling point

coordinating solvent, TOPO

Page 31: Paul O’Brien

Chalcogenide Quantum Dots

Synthesis of Precursor

Page 32: Paul O’Brien

Chalcogenide Quantum Dots

“On-pot” synthesis of nanoparticles Cd(S2CNMenHex)2 dissolved in TOP Injected into hot TOPO/TOP >200oC

Page 33: Paul O’Brien

Chalcogenide Quantum Dots

Page 34: Paul O’Brien

Chalcogenide Quantum Dots

Page 35: Paul O’Brien

Chalcogenide Quantum Dots

Fig.1 XRD of CdSe Fig.2 XRD of CdS

Page 36: Paul O’Brien

Chalcogenide Quantum Dots

QD BG Bulk BG Particle Size (Å)

CdS 2.51 2.42 53-59

CdSe 2.02 1.73 54-59

ZnS nr nr nr

ZnSe 3.58 2.58 35-42

Page 37: Paul O’Brien

References Paul O’Brien Materials Chemistry Group http://people.man.ac.uk/~mbdsspo2/ Crouch, David; Norager, Sebastian; O’Brien, Paul; Park, Jin-Ho; Pickett, Nigel. New Synthetic

Routes For Quantum Dots. Phil. Trans. R. Soc. Lond. A (2003) 361, 297-310. Chunggaze, M.; Malik, M. Azad; O'Brien, P.. Deposition of cadmium sulfide thin films from the

single-source precursor bis(diethylmonothiocarbamato)cadmium(II) by low-pressure metalorganic chemical vapor deposition. Advanced Materials for Optics and Electronics (1997), 7(6), 311-316.

O’Brien, Paul; Boyle, David S.; Govender, Kuveshni. Developing Cadmium-free Window Layers for Solar Cell Applications: Some Factors Controlling the Growth and Morphology of B-Indium Sulfide Thin Films and Related (In,Zn)S Ternaries. J. Mater.Chem (2003), 13, 2242-2247.

Pickett, Nigel L; O’Brien, Paul. Synthesis of Semiconductor Nanoparticles Using Single-Molecular Precursors. The Chemical Record. (2001), 1, 467-479.

Crowell, John E. Chemical Methods of Thin Film Deposition: Chemical Deposition: Chemical Vapor Deposition, Atomic Layer Deposition, and Related Technologies. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. (2003), 21(5), S88-S95.

Frigo, D.M.; Khan, O.F.Z.; O’Brien, P. J. Cryst. Growth, 1989, 96, 989-992. Kodas and Hampden-Smith. Aerosol Process of Materials. 1999. Ludolph, B.; Malik, M. O’Brien, P., Revaprasadu, N. A Novel single molecule precursor routes for

the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide. Chem. Commun. 1998, 1849