pavement & material design,tanzania

Upload: miesty

Post on 23-Feb-2018

289 views

Category:

Documents


3 download

TRANSCRIPT

  • 7/24/2019 Pavement & Material Design,Tanzania

    1/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    2/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    3/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    4/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    5/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    6/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    7/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    8/185

    Cut back slope

    Shoulder breakpoint

    Shoulder Shoulder

    Embankment side slope

    Carriageway

    Roadway

    Open side drain

    Centre

    line

    Lane Lane

    Original ground level

    Finished road level

    Pavement layers

    Improvedsubgrade layers

    Cutting

    In-situ subgrade Fill

    Formation level

    Subgrade

    Roadbed

    Asphalt concrete surfacing Surface treated pavementsWearing course

    Binder course (if required)

    SurfacingSurfacing

    SubgradeSubgrade

    Surfacing

    Gravel roads

    Gravel wearing course

    Structural layer (improved subgrade, if required)

    Subgrade

  • 7/24/2019 Pavement & Material Design,Tanzania

    9/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    10/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    11/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    12/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    13/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    14/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    15/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    16/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    17/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    18/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    19/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    20/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    21/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    22/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    23/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    24/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    25/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    26/185

    Project appraisal

    Pavement Design-

    New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DE

    SIGN

    ELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    27/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    28/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    29/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    30/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    31/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    32/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    33/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    34/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    35/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    36/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    37/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    38/185

    75 mm

    Water Pervious materialBase

    course

    Subbase

    Granularbase course

    Subbase

    Water

  • 7/24/2019 Pavement & Material Design,Tanzania

    39/185

    General requirementmin 0,5 m

    Cuttings - general requirementmin 1,0 m

    Cuttings - lime modified subgrademin 0,5 m

    Pavement

    Formationlevel

    Pavement

    Formationlevel

    Pavement

    Formationlevel

  • 7/24/2019 Pavement & Material Design,Tanzania

    40/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    41/185

    Project appraisal

    Environment

    Pavement Design-New Roads

    Cross Section,Shoulders and Drainage

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    42/185

    tonnes load

    kPa

    load per area

    contact pressure

    loads t1 t2 t3 t4.......tn

  • 7/24/2019 Pavement & Material Design,Tanzania

    43/185

    Pavement serviceability

    Project construction, the

    pavement beingcompleted in parts.

    Completed

    pavementon

    theentire

    project

    Terminal valueof serviceability

    (nore

    seal)

    Res

    eal

    Reseal

    Pavement

    rehablitation

    Design Period

    Traffic count

    for each

    direction

    Chapter 4.2.1

    Axle load survey

    for each

    direction

    Chapter 4.2.2

    Proportion of

    E80 made up

    from axles

    heavier than 13t

    Chapter 4.2.4

    Vehicle

    equivalency

    factor

    Chapter 4.2.3

    Proportion of

    E80 made up

    from axles

    heavier than13tChapter 4.2.4

    Vehicle

    equivalency

    factorChapter 4.2.3

    Classify

    as'heavy' or not

    Chapter 4.2.4

    Apply

    traffic growth

    Chapter 4.2.5

    and lane

    distribution

    Chapter 4.2.6

    Include

    construction

    traffic

    Chapter 4.2.7

    Classify into

    Traffic Load Class

    Chapter 4.3Socio -economicstudies

    Design trafficloading

  • 7/24/2019 Pavement & Material Design,Tanzania

    44/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    45/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    46/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    47/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    48/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    49/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacing

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    50/185

    Original ground level

    Finished road level

    Pavement layers

    Design depth

    Other roads

    Paved trunk roads

  • 7/24/2019 Pavement & Material Design,Tanzania

    51/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    52/185

    Sitereconnaissance

    Compilation

    of input data

    Demarcation ofhomogenoussections

    Min 3 CBRtests per uniform

    section

    Cut ?Use lowestCBR value

    :CBRdesignClassify

    S3, S7, S15

    Design improved

    subgrade as

    required

    Min 5 CBRtests per uniform

    section

    Specialassessmentof thesection

    Plot valuesin ascendingorder

    Determine 90%-ile valueat the 0.1 X (n-1) pointon the curve

    Yes

    Yes

    YesNo

    No

  • 7/24/2019 Pavement & Material Design,Tanzania

    53/185

    0

    2

    4

    6

    8

    10

    12

    14

    16

    1 2 3 4 5 6 7 8 9Test

    CBR(%)

    n = 9 tests

    d = 0.1 x (n-1)

    = 0.8

    d=0.8

    Example

    CBR data68999

    11121214

    90% -ile7.6

    CBRdesign8%

    CBR values plottedin ascending order

    1

    10

    100

    88

    90

    92

    94

    96

    98

    100

    102

    104

    % of MDD

    CBR4dayssoaked

    (%)

  • 7/24/2019 Pavement & Material Design,Tanzania

    54/185

    Subgrade Density for

    class Wet or moderate determinationclimatic zones of CBRdesign

    4 days soaked value Tested at OMC 4 days soaked value [% of MDD]

    S15 Min 15 Min 15 Min 7 95 BS-HeavyS7 7 - 14 7 - 14 3 - 14 93 BS-HeavyS3 3 - 6 3 - 6 2 - 6 100 BS-Light

    Soaked and OMC refer to standard 4 days soaking and the optimum moisture content determined inaccordance with tests CML1.9 and CML 1.11. Climatic zones are shown in/Figure 2.1/.

    BS-Light compaction effort is used on poor in-situ soils and deep in-situ soils rather than BS-Heavy due to itsbetter correspondence with the actual effect from compaction equipment under conditions with poor support

    for compaction. The referred laboratory test methods are CML 1.9 and 1.11.

    Problem soils: Special treatment is required./Chapter 6/

    CBRdesign [%]

    Dry climatic zones(both requirements shall be met)

  • 7/24/2019 Pavement & Material Design,Tanzania

    55/185

    sub grad e l ayers C ompa cted l ayer

    Formation level (150 +150 mm) thickness (max 1m)

    Roadbed or previous fill layer

    Dump rock - cross section

    Max 2/3 of compactedlayer thickness

    dMAX

    *) Material requirements for improved subgrade layers, including limits for maximum compacted layerthickness are given inTable 5.5.

    G15G15

    300mm

    150mm

    G15

    150mm

    150mm

    150mm

    G15

    G7

    requirement or dry climate Moderate Wet

    General General requirements

    S3S7Heavy traffic classes (-H)

    WetModerate climateor dry

    G15

    S15

    Subgrade classes

    G7

    300mm 300mm

    150mmG7

    G7

    300mm 300mm

    Heavy traffic

    classes (-H)

    none

    none

    none none

    G15

    Improvedsubgrade

    layertobeconstructed

    Lowerlayer*)

    Upperlayer*)

    CBR [%], wet or moderate

    climatic zones 1)

    CBR [%], dry climatic zones 1) Min 15 at OMC Min 7 at OMC 1.9 and

    (both requirements shall be met) Min 7 after 4 days soaking Min 3 after 4 days soaking 1.7

    CBR-swell [%] 2) Max 1.5 Max 2.0

    PI [%] Max 25 Max 30 1.2 and 1.3

    Max particle size, dMAX 2/3 of layer thickness 2/3 of layer thickness 1,7

    Compacted layer thickness [mm] Max 250 Max 250

    1) Climatic zones are shown in /Figure 2.1/. CBR values shall be assesed at density as given in Table 5.3.

    Soaked and OMC refer to standard 4 days soaking and the optimum moisture content determined in

    accordance with tests CML test methods 1.9 and 1.11

    2) CBR-Swell is measured at 100% BS-Heavy compaction effort.

    Min 15 after 4 days soaking Min 7 after 4 days soaking

  • 7/24/2019 Pavement & Material Design,Tanzania

    56/185

    Depth

    150mm

    Scarify & compact

    Future formation level

  • 7/24/2019 Pavement & Material Design,Tanzania

    57/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    58/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    59/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    60/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    61/185

    Routine investigations

    Expansive

    Extended investigations

    Expansive?

    In-depth studyDesign and constructionmeasures for expansive soils

    Normaldesign

    Severe consequencesto the construction

    economy?

    No

    No

    No

    Yes

    Yes

    Perhaps

    Cross section

    Outer zones having large seasonalvariations in moisture content

    Expansive soils

    Seasonal

    movement

    Seasonal

    movement

  • 7/24/2019 Pavement & Material Design,Tanzania

    62/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    63/185

    min. 6 m (4 m)

    side drainembankment

  • 7/24/2019 Pavement & Material Design,Tanzania

    64/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    65/185

    Freely draining material

    Pavement layers

    Fill and improved subgrade Side-fill

    Expansive soil

    1:6 or flatter

    1:2

    Freely draining materialPavement layers

    Fill and improved subgrade

    Side-fill

    Expansive soil excavated 0.6 m

    deep and replaced with fill

    Freely draining materialPavement layers

    Fill and improved subgrade Side-fill

    Temporary stockpile of

    Embankments 2 m or higher

    Embankments less than 2 m in hight

    excavated expansive soilto be used for side-fill

    >2 m

    Max. the width of the surfacing

    excavated expansive soilto be used for side-fill

    Temporary stockpile of

    < 2 m

    1:4 or flatter

    1:2

    1:6 or flatter

    1:2

    Expansive soil excavated 0.6 m deep and replaced with fill

  • 7/24/2019 Pavement & Material Design,Tanzania

    66/185

    cross section

    A thin bituminous sealgets pushed up by thecrystallisation forcesand blistering occurs,having a diametre of5 to 10 cm initially, Crystallisation of

    subsequently developing soluble salts under

    into a pothole. the bituminous seal.

    Soluble salts migrate towards thesurface within granular layers

    See detail

  • 7/24/2019 Pavement & Material Design,Tanzania

    67/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    68/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    69/185

    Project appraisal

    Environment

    Pavement Design-New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem SoilsDESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    70/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    71/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    72/185

    Material CML test properties method

    Wet or moderate climatic zones: min 80after 4 days soak Wet or moderate climatic zones: min 60after 4 days soakCBR [%] Dry climatic zones (both requirements shall be met): Dry climatic zones (both requirements shall be met):

    at 98% MDD of min 80at OMC of BS-Heavy min 60at OMC of BS-Heavy 1.7 and

    BS-Heavy min 60after 4 days soaking min 45after 4 days soaking 1.11

    General Coral rock, calcrete or General Coral rock, calcrete or

    Atterberg requirements other calcified materials requirements other calcified materials

    limits 1) Wet or Dry Wet Dry or Wet Dry or Wet Dry or

    moderate climate climate moderate climate moderate climate moderate

    maxLL [%] 30 40 35 45 35 45 40 45 1.2

    maxPI [%] 8 14 10 16 10 16 12 18 1.3maxLS [%] 4 7 5 8 5 8 6 9 1.4

    Grading, sieve

    sizes [mm]

    63

    37.5 Grading requirements:

    20 - dMAXshall be maximum 2/3 of the compacted layer thickness

    5 - Grading Modulus (GM*)

    ): min2.0 2 *) 0.425 GM = [ 300 - (% passing 2mm) - (% passing 0.425mm) - (% passing 0.075mm) ] / 100

    0.075

    Particle TFVdry : min80 kN TFVdry : min50 kN

    strength TFVsoaked : min60% of TFVdry TFVsoaked : min60% of TFVdry

    Soluble salts Where the gravel is used under a surface treatment, soluble salt content is assessed in accordance with /7-11/.

    Field density

    CBR - swell [%]max 0.5 max 1.0

    measured at BS-Heavy compaction measured at BS-Heavy compaction

    30 - 65

    1) It is emphasised that the Atterberg limits shall be measured according to CML test methods 1.2, 1.3 and 1.4. These methods follow BS procuders and

    Nominal value: min 98% of MDD, BS-Heavy

    utilise BS equipment. Other laboratory test procedures are likely to give results that are not comparable with the given material requirements.

    1.7

    2.7

    10 - 30

    20 - 50

    Material class

    5 - 15

    100

    80 - 100

    60 - 95

    Grading envelope, G80

    [% passing]

    G80 G60

    (no envelope for G60, coral rock, calcrete or other calcified materials)

  • 7/24/2019 Pavement & Material Design,Tanzania

    73/185

    Material CML test

    propertiesmethod

    Wet or moderate climatic zones: min 45after 4 days soak Wet or moderate climatic zones: min 25after 4 days soak

    CBR [%] Dry climatic zones (both requirements shall be met): Dry climatic zones (both requirements shall be met):

    at 95% MDD of min 45at OMC of BS-Heavy min 25at OMC of BS-Heavy 1.7 andBS-Heavy min 25after 4 days soaking min 15after 4 days soaking 1.11

    General Coral rock, calcrete or General Coral rock, calcrete or

    Atterberg requirements other calcified materials requirements other calcified materials

    limits 1) Wet or Dry Wet Dry or Wet or Dry Wet Dry ormoderate climate climate moderate moderate climate climate moderate

    maxLL [%] 40 45 45 50 45 50 45 55 1.2

    maxPI [%] 14 18 16 20 16 20 18 24 1.3 maxLS [%] 7 9 8 10 8 10 9 12 1.4

    Grading *)

    Modulus (GM) *) GM = [ 300 - (% passing 2mm) - (% passing 0.425mm) - (% passing 0.075mm) ] / 100

    Particle size dMAXshall be maximum 2/3 of the compacted layer thickness

    Soluble salts Where the gravel is used under a surface treatment, soluble salt content is assessed in accordance with /7-11/.

    Field density

    BS equipment. Other laboratory test procedures are likely to give results that are not comparable with the given material requirements.

    Nominal value: min 95% of MDD, BS-Heavy

    G45 G25

    1) It is emphasised that Atterberg limits shall be measured according to CML test methods 1.2, 1.3 and 1.4. These methods follow BS procuders and utilise

    1.7

    Material class

    min1.5 min1.2

    CBR - swell [%]max 0.5 max 1.0

    measured at BS-Heavy compactionmeasured at BS-Heavy compaction

  • 7/24/2019 Pavement & Material Design,Tanzania

    74/185

    Material CML test properties method

    Material source

    maxLL [%]1) 1.2

    maxLS [%]1) 1.4

    Grading, sieve

    sizes [mm] Coarse Type Fine Type Coarse Type Fine Type

    50 100

    37.5 100 90 - 100 100

    28 87 - 97 100 75 - 95 90 - 100

    20 75 - 90 87 - 97 60 - 90 65 - 95

    10 52 - 68 62 - 77 40 - 75 40 - 70

    5 38 - 55 44 - 62 29 - 60 29 - 52

    2 23 - 40 27 - 45 20 - 45 20 - 40

    1,18 18 - 33 22 - 38 17 - 40 15 - 33

    0,425 11 - 24 13 - 27 12 - 31 10 - 24

    0,075 4 - 12 5 - 12 5 - 15 4 - 12 Aggregate strength

    Soluble salt content For aggregate used under a surface treatment, soluble salt content is assessed in accordance with /7-11/.

    Field density requirements

    4

    of MDD BS-Heavy

    Nominal value: min 100%

    Material class

    CRR

    [% passing][% passing]

    CRS

    335

    Nominal value: min 88%

    30

    1) It is emphasised that Atterberg limits shall be measured according to CML test methods 1.2, 1.3 and 1.4. These methods follow BS procuders and utilise

    BS equipment. Other laboratory test procedures are likely to give results that are not comparable with the given material requirements.

    2.7

    1.7

    TFVdry: min110 kN

    TFVsoaked : min75% of TFVdry TFVsoaked : min60% of TFVdry

    of Aggregate Density

    Crushed rock. Shall be made by crushing and

    screening of fresh quarried rock or clean, un-weathered

    boulders of minimum 0.3 m diameter. All particles shall

    be crushed, no soil fines allowed.

    Crushed stone. Made by crushing and screening of

    blasted rock, stones, boulders and oversize from natural

    gravel. Min 50% by mass of particles larger than 5 mm

    shall have at least one crushed face. Max 30% of

    material passing 5 mm can be soil fines.

  • 7/24/2019 Pavement & Material Design,Tanzania

    75/185

    Material CML test properties C2 C1 CM method

    Earthworks quality soils/gravel

    minUCS [MPa] 2,0 1,0 0,5 1.21

    ICL - test 1.22

    max PI after stabilisation [%]1)

    8 8 8 1.2 and 1.3

    Before stabilisation:

    min CBRsoaked [%] at 95% MDD of BS-Heavy

    max PI [%]1) 20 25 35 1.2 and 1.3

    min 1.5 min 1.2 -

    Particle size, dMAX

    Aggregate strength TFVdry : min 50 kN - - 2.7

    Field density Nominal value: min 97% of MDD BS-Heavy

    Grading modulus*)

    Nominal quality of source material - with requirements as given here

    1)

    It is emphasised that Atterberg limits shall be measured according to CML test methods 1.2, 1.3 and 1.4. These methods follow BS procuders and utilise BS equipment. Other laboratory test procedures are likely to give results that are not comparable with the given material requirements.

    1.11

    1.7

    The content of organic matter should not exceed 0.5% - 1% - 2% for C2 - C1 - CM materials respectively.

    Source material

    Material class

    d MAXto be max 2/3 of compacted layer thickness

    Stabiliser content [ % design ] shall be minimum the initial consumption of lime (ICL) value

    *) GM = [ 300 - (% passing 2mm) - (% passing 0.425mm) - (% passing 0.075mm) ] / 100

    30 -20

    Subbase quality soils/gravel

  • 7/24/2019 Pavement & Material Design,Tanzania

    76/185

    curing membrane

    cemented base course

    Loose - 50 mm -granular layer tobe kept wet.

    cemented subbase

  • 7/24/2019 Pavement & Material Design,Tanzania

    77/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    78/185

    Material properties DBM 40 DBM 30

    CMLtestmethod

    Dense bitumen macadam Dense bitumen macadam

    Max nominal size 40 mm 30 mm

    Grading, sievesizes [mm] % passing % passing

    50 100 -

    37.5 95 - 100 100 28 70 - 95 90 - 100

    20 - 70 - 95

    14 56 - 76 58 - 82

    10 53 - 70 52 - 73

    5 39 - 56 40 - 56 1.7

    2 24 - 40 24 - 40

    1,18 19 - 35 19 - 35

    0,425 9 - 25 9 - 25

    0,300 7 - 21 7 - 21

    0,075 2 - 9 2 - 9

    3.22

    Type of bitumen

    Aggregate strength

    Layer thickness 80 - 200 mm 60 - 150 mm

    Bitumen content nominally 4.0% nominally 4.5%

    60/70 or 40/50 penetration grade

    Material class

    TFV soaked : min 75% of TFV dry TFV dry : min 110 kN

    2.7

  • 7/24/2019 Pavement & Material Design,Tanzania

    79/185

    Material LAMBS CML test properties Large aggregate mix for base course method

    Aggregates shall be made by crushing of fresh rockor clean, large boulders with a diametre >0.3 m.

    min 37.5

    max 50

    Shape of the grading min 0.4 *)

    curve, n-value max 0.7

    Aggregate TFVsoaked 24hrs: min 75% of TFVdry

    strength TFVdry : min 110 kN

    Aggregate LS [%] max 2 1.4

    Filler content, pass. 0.075 mm [%] 5 - 8 1.7

    Traffic TLC 20 and TLC 50: 40/50 pen. grade

    Traffic TLC 1 to TLC 10: 60/70 pen. grade

    Bitumen content [%] 3.5 to 4.5 to be determined in the mix design 3.22

    Mix design Shall be carried out in accordance with Ref/7- 4/

    min 1.5 x ( dMAX), preferably 2 x ( dMAX)80 - 200 mm compacted thickness

    3.5

    Aggregate type

    Bitumen grade

    Layer thickness

    2.7

    Max particle size, dMAX [mm]

    1.7

    Water absorption [%] max 3 3.13

  • 7/24/2019 Pavement & Material Design,Tanzania

    80/185

    Material CMLtestmethod properties PM 80 PM 60 PM 30

    Max nominal size [mm] 80 60 30

    125 100 50

    The layer thickness of the penetration macadam should correspond with theaggregate fraction in order to obtain stability of the layer.

    Bitumen spray rate [l/m2]

    *)3 - 4 3 - 4 2 - 3

    3.5 Bitumen type 80/100 or 60/70 penetration grade

    Aggregate strength TFVsoaked : min 75% of TFVdry TFV dry : min 110 kN 2.7

    Grading, sieve Main fraction sizes [mm] % passing % passing % passing

    100 100 - -

    75 75 - 100 100 -63 - 80 - 100 -

    50 0 - 50 0 - 50 -37,5 0 - 25 0 - 25 100 2.3

    28 0 - 5 0 - 5 80 - 10020 - - 0 - 50

    14 - - 0 - 2510 0 - 5

    Flakiness Index - - 35

    Grading, sieve Key stone *)

    sizes [mm] % passing % passing % passing

    50 100 - -37,5 85 - 100 100 -

    28 0 - 50 85 - 100 -20 0 - 25 0 - 50 100

    14 0 - 5 0 - 25 85 - 100 2.3

    10 - 0 - 5 0 - 55

    6.3 - - 0 - 25 5 - - 0 - 10

    Flakiness Index - 35 35

    Material class

    Layer thickness [mm]

    *) Requirements for alternative use of a bituminous mix instead of key stone are set out in the text.

    2.4

    2.4

  • 7/24/2019 Pavement & Material Design,Tanzania

    81/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    82/185

    Material Material class

    propertiesFBMIX

    CML test

    Foamed bitumen mix method

    Aggregate source Natural gravel or crushed material, free from lumps of clay or other deleterious matter.

    PI [%]1) max 14 before admixture of bitumen 1.2 and 1.3

    CBRsoaked [%] min 30 before admixture of bitumen, tested at 95 % MDD of BS-heavy 1.11

    Aggregate TFVsoaked: min 75% of TFVdry

    strength Traffic TLC 3 and TLC 10: TFVdry : min 110 kN

    Traffic TLC 1 and lower: TFVdry: min 80 kN

    Grading, sievesizes [mm] % passing

    37,5 10028 80 - 10020 60 - 9510 42 - 785 30 - 652 20 - 50

    0,425 10 - 300,075 5 - 15

    E-Modulus [MPa] min 1600, measured by indirect tensile strength, tested at 29oC 3.21

    Marshall stability [N] min 6000 tested at 40oC

    Marshall flow [mm] 2 - 4

    Moisture content at min: mix design moisture less 1.5% points

    the time of laying [%] max: mix design moisture plus 0.5% points

    Type of bitumen 80/100 or 150/200 penetration grade 3.5

    Adhesion agents Approved adhesion agents shall be admixed at min 0.5% by weight of bitumen

    Bitumen content Consumption, residual bitumen: 80 to 100 litres per m3of compacted material 3.22

    Field density min 96% of Marshall dry density

    1) It is emphasised that Atterberg limits shall be measured according to CML test methods 1.2, 1.3 and 1.4. These methods follow

    BS procuders and utilise BS equipment. Other laboratory test procedures are likely to give results that are not comparable with the given material requirements.

    1.1

    2.7

    1.7

    3.18

  • 7/24/2019 Pavement & Material Design,Tanzania

    83/185

    MaterialMaterial class

    CML test

    properties BEMIXmethod

    Bitumen emulsion mix

    Aggregate source Natural gravel or crushed material, free from lumps of clay or other deleterious matter.

    PI [%]1) max 8 before admixture of bitumen 1.2 and 1.3

    CBRsoaked [%] min 30 before admixture of bitumen, tested at 95 % MDD of BS-heavy 1.11

    Aggregate TFVsoaked : min 75% of TFVdry

    strength Traffic TLC 3: TFV dry : min 110 kN

    Traffic TLC 1 and lower: TFVdry : min 80 kN

    Grading, sievesizes [mm] % passing

    37,5 10028 80 - 10020 60 - 9510 35 - 705 25 - 502 18 - 35

    0,425 10 - 250,075 5 - 8

    E-Modulus [MPa] min 1200, measured by indirect tensile strength, tested at 29oC 3.21

    Marshall stability [N] min 4500 tested at 40oC

    Marshall flow [mm] 2 - 4

    Moisture content at min: mix design moisture less 1.5% points

    the time of laying [%] max: mix design moisture plus 0.5% points

    Type of base bitumen 80/100 or 150/200 penetration grade 3.5

    Bitumen content Consumption, residual bitumen: 80 to 100 litres per m3of compacted material 3.22

    Field density min 96% of Marshall dry density

    1)It is emphasised that Atterberg limits shall be measured according to CML test methods 1.2, 1.3 and 1.4. These methods follow

    BS procuders and utilise BS equipment. Other laboratory test procedures are likely to give results that are not comparable with the given material requirements.

    1.1

    2.7

    1.7

    3.18

  • 7/24/2019 Pavement & Material Design,Tanzania

    84/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    85/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    86/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    87/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    88/185

    Project appraisal

    Environment

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    89/185

    granular

    granular

    time and traffic

    riding quality

    rut depth

    cracking

    granular

    cemented

    traffic

    deformation

    deflection

    curvature

    post-cracked phasepre-cracked influenceof waterphase

  • 7/24/2019 Pavement & Material Design,Tanzania

    90/185

    bituminous mix

    granular or cemented

    time and traffic

    riding quality

    rut depth

    cracking

    cemented

    cemented (preferred)

    time and traffic

    riding quality

    rut depth

    cracking

    penetration macadam

    granular or cemented

    time and traffic

    riding quality

    deformation

    cracking

  • 7/24/2019 Pavement & Material Design,Tanzania

    91/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    92/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    93/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    94/185

    < 0.2 0.2 - 0.5 0.5 - 1.0 1 - 3 3 - 10 10 - 20 20 - 50

    G45

    150mm

    Basecourse

    150mm

    G80

    150mm

    G25

    150mm

    Subgrade

    C1G45

    CBR >15%

    G45

    150mm

    Subbase

    1)

    C1

    200mm

    ST

    AC

    ST

    TLC 20 TLC 50

    GranularBase course type:

    AC50mm

    applicable)

    TLC 10TLC 02 TLC 05

    2)

    CRR

    200mm

    G60 G80

    150mm

    (not applicable)

    150mm

    AC50mm

    100mm

    CRRCRR

    asbelow

    CRS

    150mm

    150mm

    150mm

    asbelow

    200mm

    +150mm

    150mm

    C2200mm

    CM

    For the heavy Traffic Load

    For the heavy Traffic Load

    General requirements

    below

    as

    as

    below

    General requirements

    asbelow

    asbelow

    asbelow

    General requirements

    Classes (TLC 05-Hto TLC 20-H) (notCRS

    (not

    applicable)

    below

    ST

    CRS

    125mm

    ST ST

    asbelow

    as

    Heavy Traffic Load Classes (-H) apply for

    For the heavy Traffic Load

    loaded to above13 tonnes.

    Surfacing

    Classes (TLC 05-Hto TLC 20-H)

    Traffic Load Classes (million E80) E80 >0.2 million under conditions where

    TLC 3

    Material requirements:

    Climatic zones: layers or base course:/Chapter 7/ Dry / Moderate

    Bituminous surfacings:/Chapter 10/-

    more than 50% of E80 comes from axles

    -

    - Granular or cemented materials for subbase

    TLC 1

    - Surface treatments, carriageway:

    - Shoulders: /Chapter 10.7/

    Traffic:- Traffic Load Classes, including the heavy ( -H)

    classes: /Chapter 4/ Subgrade design:

    - Design for CBR less than 15%: /Chapter 5/

    Classes (TLC 05-Hto TLC 20-H)

    /Chapter 10.2 to 10.4/

    Asphalt concrete: /Chapter 10.8/

    - Material standards of improved subgrade layers: /Chapter 5/

    Surfacing design:

    /Figure 2.1/

  • 7/24/2019 Pavement & Material Design,Tanzania

    95/185

    < 0.2 0.2 - 0.5 0.5 - 1.0 1 - 3 3 - 10 10 - 20 20 - 50

    200mm

    - Surface treatments, carriageway:

    For the heavy Traffic Load

    Heavy Traffic Load Classes (-H) apply for

    Surfacing

    Basecourse

    E80 >0.2 million under conditions where

    150mm

    G45

    150mm

    G80

    200mm

    150mm

    CRS

    below

    loaded to above13 tonnes.

    below below

    For the heavy Traffic Load

    Classes (TLC 05-Hto TLC 20-H)

    ST

    G80

    Subgrade

    AC

    AC

    AC50mm

    100mm

    150mm

    CRS

    150mm

    G45

    asbelow

    150mm

    Subbase

    1)

    C2

    G25

    CBR >15%

    200mm

    CM

    200mm

    asbelow

    C1

    CRR

    150mm

    150mm

    as

    below

    +150mm

    as

    CM C1

    as

    asbelow

    125mm

    CRR

    150mm

    CRS

    STST

    TLC 50

    50mm

    100mm

    AC

    AC

    TLC 20

    50mm

    CRR

    below

    General requirements

    Classes (TLC 05-Hto TLC 20-H)

    as150mm

    CRR

    ST

    150mm

    General requirements

    General requirements

    For the heavy Traffic Load

    Classes (TLC 05-Hto TLC 20-H)

    (not

    applicable)

    (not

    applicable)

    (not

    applicable)as

    Base course type:

    layers:/Chapter 5/

    Surfacing design:

    TLC 02 TLC 05 TLC 1 TLC 3

    Traffic Load Classes (million E80) more than 50% of E80 comes from axles

    TLC 10

    Bituminous surfacings:/Chapter 10/ Wet-

    /Chapter 10.2 to 10.4/- Shoulders: /Chapter 10.7/- Asphalt concrete: /Chapter 10.8/

    Material requirements:- Granular or cemented materials for subbase Climatic zones:

    layers or base course:/Chapter 7/

    GranularSubgrade design:

    - Design for CBR less than 15%: /Chapter 5/- Material standards of improved subgrade

    Traffic:

    - Traffic Load Classes, including the heavy (-H)lasses: /Chapter 4/

    /Figure 2.1/

  • 7/24/2019 Pavement & Material Design,Tanzania

    96/185

    < 0.2 0.2 - 0.5 0.5 - 1.0 1 - 3 3 - 10 10 - 20 20 - 50

    150mm150mm

    Subgrade

    Subbase

    1)

    General requirements

    (not

    applicable)

    CM

    CBR >15%

    G45G45

    G45 C1

    C1150mm

    200mmC1

    General requirements

    For the heavy Traffic Load

    G25

    For the heavy Traffic Load

    Basecourse

    Surfacing

    Classes (TLC 05-Hto TLC 20-H)

    +150mm

    CM

    150mm150mm

    CM

    150mm

    +125mm

    AC100mm

    ST STST

    50mmAC

    below AC

    C1 C2C1

    50mm

    asbelow

    as

    as

    150mm 150mmGeneral requirements

    below belowClasses (TLC 05-Hto TLC 20-H)

    ST

    150mm 150mm 150mm 150mm

    CM

    ST

    (not

    applicable)

    as

    below

    as

    200mm

    C1

    125mm

    as

    below

    For the heavy Traffic LoadClasses (TLC 05-Hto TLC 20-H)

    asbelow(not

    applicable)

    below

    as

    below

    as

    below

    C2 C2

    as

    Traffic:

    - Traffic Load Classes, including the heavy ( -H) classes: /Chapter 4/

    TLC 50

    Subgrade design:- Design for CBR less than 15%: /Chapter 5/- Material standards of improved subgrade

    layers: /Chapter 5/

    Surfacing design:

    Cemented

    TLC 10 TLC 20

    - Surface treatments, carriageway:/Chapter 10.2 to 10.4/

    E80 >0.2 million under conditions where more than 50% of E80 comes from axles loaded to above13 tonnes.

    Heavy Traffic Load Classes (-H) apply for

    - Asphalt concrete: /Chapter 10.8/

    - Bituminous surfacings:/Chapter 10/

    - Granular or cemented materials for subbase Material requirements:

    layers or base course:/Chapter 7/

    - Shoulders: /Chapter 10.7/

    Base course type:

    TLC 02 TLC 05 TLC 1 TLC 3

    Traffic Load Classes (million E80)

    AllClimatic zones:

    /Figure 2.1/

  • 7/24/2019 Pavement & Material Design,Tanzania

    97/185

    < 0.2 0.2 - 0.5 0.5 - 1.0 1 - 3 3 - 10 10 - 20 20 - 50

    150mm

    FBMIX

    DBM 30

    DBM 40

    DBM 30

    FBMIX FBMIX

    CM

    CM

    CM

    150mm

    200mm200mm

    G45G45G45

    60mm

    DBM 40

    DBM 30

    BEMIX BEMIX BEMIX BEMIX

    DBM 30

    FBMIX

    ST ST

    125mm+

    125mm

    LAMBS LAMBS LAMBS

    80mm

    ACAC50mm

    200mm175mm

    LAMBS

    DBM 40

    50mm

    STST

    TLC 20 TLC 50TLC 10

    100mm125mm

    Subbase1)

    200mm

    150mm

    Subgrade

    G45G45

    CBR > 15%

    150mm

    this pavement type.

    DBM 30

    ST

    Alternative material types: FBMIX

    Basecourse

    S

    urfacing

    LAMBS

    DBM 40 DBM 40

    TLC 02 TLC 05 TLC 1 TLC 3

    Traffic Load Classes(million E80)No special pavement design alternatives are required for the heavy Traffic LoadClasses (TLC 05-Hto TLC 50-H )for

    All

    Base course type:

    layers: /Chapter 5/

    Surfacing design:-

    Climatic zones:

    - Bituminous base course: /Chapter 7/

    Bituminous

    mix- Asphalt concrete: /Chapter 10.8/

    Surface treatments, carriageway: /Chapter 10.2 to 10.4/-

    - Design for CBR less than 15%: /Chapter 5/- Material standards of improved subgrade

    Traffic:- Traffic Load Classes:/Chapter 4/

    Subgrade design:

    Shoulders: /Chapter 10.7/

    Material requirements:

    - Granular or cemented materials for subbase layers:/Chapter 7/

    - Bituminous surfacings: /Chapter 10/ /Figure 2.1/

  • 7/24/2019 Pavement & Material Design,Tanzania

    98/185

    < 0.2 0.2 - 0.5 0.5 - 1.0 1 - 3 3 - 10 10 - 20 20 - 50

    TLC 02 TLC 05 TLC 1 TLC 3 TLC 10 TLC 20

    150mm125mm

    +

    150mm

    +

    125mm

    50mm

    PM60

    50mm

    100mm125mm

    PM80

    CMCM CMCM

    C1150mm200mm

    150mm

    50mm

    PM30Basecourse

    PM80

    AC50mm

    STST

    100mm

    AC

    PM30 PM60

    G45

    150mm

    G45

    150mm

    ST

    CBR > 15%

    C1

    Subgrade

    Subbase

    1)

    CM

    125mm 125mm

    Surfacing

    Traffic Load Classes(million E80)

    TLC 50

    are required for the heavy Traffic LoadClasses (TLC 05-Hto TLC 50-H)forthis pavement type.

    No special pavement design alternatives

    PM80

    AC100mm100mm

    AC

    Penetration

    Traffic:

    Subgrade design:

    layers: /Chapter 5/

    - Traffic Load Classes:/Chapter 4/

    Shoulders:/Chapter 10.7/- Asphalt concrete:/Chapter 10.8/-

    - Design for CBR less than 15%: /Chapter 5/- Material standards of improved subgrade

    Macadam

    Base course type:

    AllClimatic zones:- Bituminous surfacings: /Chapter 10/

    - Penetration Macadam: /Chapter 7/

    Surfacing design:- Surface treatments, carriageway: /Chapter 10.2 to 10.4/

    Material requirements:

    - Granular or cemented materials for subbase layers:/Chapter 7/

    /Figure 2.1/

  • 7/24/2019 Pavement & Material Design,Tanzania

    99/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    100/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    BituminousSurfacings

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    101/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    102/185

    Carry out desk study

    Start Carry out initial assessment ofpavement condition

    Establish homogenous sections

    based on initial assessment ofpavement condition

    Carry out structural surveys asrequired based on the detailedcondition survey

    Carry out detailed condition surveyif required in accordance with/Fig. 9.2/

    Assess each homogenous sectionaccording to/Fig 9.2/

    Re-assess demarcation intohomogenous sections based on allavailable data

    Carry out pavement rehabilitationdesign for each homogenoussection

    Combine sections with similarrehabilitation measures intopractical lengths for construction

  • 7/24/2019 Pavement & Material Design,Tanzania

    103/185

    YES NO

    NO YES

    NO

    YES

    NO

    YES

    Any possibilitiesof salvaging the

    pavement ?

    Determine

    subgrade CBR/Chapter 5/

    Design full pavement

    reconstruction without anyfurther investigation of the

    section./Chapter 9.3.3/

    Carry out detailed condition

    surveys: - rutting

    - roughness - surface defects

    /Chapter 9.1.4/

    Start

    Determine the need forstructural surveys:

    - DCP

    - deflection - sampling (lab. testing)

    /Chapter 9.1.4/

    Traffic

    projection/Chapter 9.1.2/

    Recommend correctivemeasures. Further

    investigation of the section isnormally not necessary.

    Section withno distress ?

    Section with

    only localiseddistress ?

    Section withonly surface

    defects ?

    Establish the cause of thelocalised distress, if necessarycarry out additional fieldtesting.

    Traffic

    projection/Chapter

    9.1.2/

  • 7/24/2019 Pavement & Material Design,Tanzania

    104/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    105/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    106/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    107/185

    RUTTING: SOUND WARNING or SEVERE WARNING or SEVERE

    CRACKING: WARNING or SEVERE SEVERE SOUND or WARNING

    If rutting is due to shoving in the asphalt:carry out special investigations.

    Cons ider whether full reconstruc tion Cons ider whether full reconstruc tionapplies/Chapter 9.3.3/ applies/Chapter 9.3.3/

    NO

    YES

    NO

    YES

    Structural number method/Chapter 9.2.2/, or (for confirmation) Maximum deflection method /Chapter 9.2.1/

    Mechanistic method /Chapter 9.2.3/

    Select appropriate rehabilitation option /Chapter 9.3/ and consider options to prevent reflective cracking if applicable /Chapter 9.4/

    Major mode of distress

    Rehabilitation design method

    Design traffic loading is less than

    10 million E80?

    Good correlation rutting / deflection, orroughness / deflection?

  • 7/24/2019 Pavement & Material Design,Tanzania

    108/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    109/185

    YES

    NO

    YES

    NO

    Establish homogenous

    sections. (The CUSUM

    method in /Appendix A8.3/may be used).

    Measure and calculate design

    deflection for each

    homogenous section.

    Determine expected pavement

    life (total E80)

    /Fig. 9.5/

    Maximum deflection methoddoes not apply.

    Past E80 larger

    than expected

    pavement life?

    Calculate residual capacity:= expected capacity - past E80

    Residual life

    larger than

    design traffic

    loading?

    No strengthening is required

    based on the maximum

    deflection method.

    Determine target deflection.

    /Fig. 9.5 or /Fig. 9.6/

    Determine requiredstrengthening, SNdiff

    /Fig. 9.7/

    Select overlay alternative as

    appropriate.

    /Table 9.9/

    Determine traffic loading:

    - past E80

    - future E80 (design traffic loading)

  • 7/24/2019 Pavement & Material Design,Tanzania

    110/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    111/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    112/185

    TLC 05 TLC 1 TLC 3 TLC 10 TLC 20

    Critical condition. 90%confidence in achieving life

    167

    154

    142

    129

    116

    103

    90

    77

    64

    51

    39

    2613

    0.2 0.3 0.5 1.0 1.5 2.0 3.0 5.0 10 15 20 30

    Equivalent standard axles, E80 [ x 106 ]

    De

    flection

    [mm

    x10

    2]

    0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

    0.8

    0.6

    0.4

    0.2

    0.50

    0.80

    1.60

    2.20

    Targetdeflection[mm]

    Design deflection, measured [ mm ]

    Structuralnumber,SNdiff

    1.20

  • 7/24/2019 Pavement & Material Design,Tanzania

    113/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    114/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    115/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    116/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    117/185

    *) Asphalt concrete Bituminous mix Penetration Granular baseoverlay for base course 1) macadam 2) course 3)

    < 0.50

    Only TLC 10 or lower

    Only TLC 10 or lower

    Only TLC 10 or lower

    Only TLC 10 or lower

    CRR 200 mm

    Bit. 100 mm

    ACPM 60 100 mm

    100 mmPM 60

    80 mm

    ST

    PM 80

    80 mm

    125 mm

    ST

    50 mm

    ST

    2,25

    2,00

    Bit.

    ST

    AC Bit.

    50 mm50 mmPM 30

    Apply a surface treatment or do nothing depending on site conditions.

    CRR

    ST

    150 mm

    ST

    PM 30 50 mm

    100 mmBit. 80 mm

    ST

    AC 60 mm

    AC

    PM 60

    alternatively:

    alternatively:

    alternatively:

    alternatively:

    alternatively:

    alternatively:

    alternatively:

    PM 80

    ST

    AC 100 mm

    PM 60

    50 mm

    100 mm

    125 mmPM 80

    ST

    140 mmBit.

    AC

    50 mm

    50 mm

    ST

    100 mm

    Bit.

    AC60 mm

    50 mm

    AC 50 mm

    PM 80 125 mm

    ST

    AC

    200 mm

    AC 50 mm

    AC 50 mm

    125 mm

    50 mm

    CRR 150 mm

    CRR

    ST

    200 mm

    AC

    0,50

    CRR

    ST

    PM 30 50 mm

    1,00

    1,25

    1,50

    120 mm

    ST

    *) Select the nearest of the given values for SN diffSN diff

    0,75

    Overlay alternatives

    AC 40 mm

    AC

    PM 30 50 mm

    1,75

    AC 50 mm

    PM 60 100 mmBit.

    PM 60 100 mmAC 120 mm2 mm

    100 mm

    PM 60Bit. 100 mm

    AC

    130 mm

    50 mm

    ST

    PM 60

  • 7/24/2019 Pavement & Material Design,Tanzania

    118/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    119/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    120/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    121/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    Gravel RoadsSTRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    122/185

    Asphalt Concrete *)

    Double Surface Dressing

    Double Otta Seal

    Single Otta Seal with a Sand Cover Seal

    Single Surface Dressing with a Sand Cover Seal

    Double Sand Seal

    32 11 125 640 1

    Years

    Type of surfacing 13 147 8 9 10

  • 7/24/2019 Pavement & Material Design,Tanzania

    123/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    124/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    125/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    126/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    127/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    128/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    129/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    130/185

    MaterialCML test

    properties method AADT>100: TFVsoaked: min. 75% of TFVdry For AADT100: TFVdry: min. 110 kN For AADT

  • 7/24/2019 Pavement & Material Design,Tanzania

    131/185

    Sieve sizes Coarse grading1)

    Medium grading1)

    CML test

    [mm] [% passing] [% passing] method

    20 100 100

    14 60 - 82 68 - 94

    10 36 - 58 44 - 73

    5 10 - 30 19 - 42 1.7

    2 0 - 8 3 - 18

    1,18 0 - 5 1 - 14

    0,425 0 - 2 0 - 6

    0,075 0 - 1 0 - 2

    1)These grading envelopes are given for the the purpose of proper design of the seal and are not material requirements for aggregate.

    AADT at the time Type of bitumen of construction

    The grading should be

    altered for this application

    150/200 normally

    MC3000 in cold weather

    80/100 penetration grade bitumen shall not be used in Otta Seal unless softened or cut back to meet the above requirements.

    Softening to make 150/200: 3% - 5% softener is mixed with 95% - 97% 80/100 pen. grade bitumen. Softener can be apurpose-made petroleum destillate, alternatively engine oil, old or new.

    The cutback bitumen grades can be made by blending 150/200 pen. grade bitumen on site using the following proportions:

    MC3000: 5% - 8% kerosine mixed with 92% - 95% 150/200 pen. grade bitumen

    MC800: 15% - 18% kerosine mixed with 82% - 85% 150/200 pen. grade bitumen

    If the cutback grades are made directly from 80/100 pen. grade bitumen, then an additional 3% - points kerosine shall be used.

    Diesel shall not be used for cutting back to MC grades. Circulation in the tank shall be carried out at least 1 hour after mixing.

    Proper safety procedures shall be adhered to in the case cutting back on site is being done.

    Type of Otta Seal

    2nd layer 1,5 1,6 1,7 AADT

  • 7/24/2019 Pavement & Material Design,Tanzania

    132/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    133/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    134/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    135/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    136/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    137/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    138/185

    Material CML test properties AC 20 AC 14 AC 10 method

    Primarily b inder course. Wearing course in areas with Wearing course, but only under

    Notes - use of the different Wearing course in severely normal traffic loading. conditions with moderate

    mix types loaded areas Chapter 10.8.2. traffic loading.

    Preferably to be surface dressed

    when used as wearing course.

    Layer thickness [mm] Compacted 50 - 80 Compacted 40 - 60 Compacted 30 - 40

    Aggregate properties

    3.13

    Aggregate strength TFVsoaked : min 75% of TFVdryTFVdry : min 110 kN

    2.7

    The filler shall be hydrated lime, Portland cement, limestone dust or other suitable types proven to

    1.7

    % passing 0.075 mm: 70 - 100 %, all material shall pass the 0.600 mm sieve size

    Grading, sieve sizes

    [mm]

    28 100

    20 80 - 100 100

    14 60 - 80 85 - 100 100

    10 50 - 70 72 - 94 85 - 100

    5 36 - 56 52 - 72 55 - 72

    2,36 28 - 44 37 - 55 38 - 57 1.7

    1,18 20 - 34 26 - 41 27 - 42

    0,600 15 - 27 16 - 28 18 - 32

    0,300 10 - 20 12 - 20 13 - 23

    0,150 5 - 13 8 - 15 9 - 16

    0,075 2 - 6 4 - 10 4 - 10

    Bitumen type

    Normal loading conditions: 60/70 or 40/50 penetration grade Severely loaded areas: Chapter 10.8.2 40/50 penetration grade, or modified binders

    3.5

    Marshall (2x75 blow)

    mix requirements

    Severely loaded areas: min 9000 Chapter 10.8.2

    Traf fic TLC 20 and TLC 50: min 8000 max 18000

    Traffic TLC 10 and TLC 3: min 7000 max 15000

    Traffic TLC 1 and lower: min 4000 max 10000

    Flow [mm] min 2 max 4 3.18

    Air voids [%] min 3 max 6

    Voids in Mineral Aggregate [%] min 14 for AC 20 min 15 for AC 14 min 16 for AC 10

    Refusal lab. compaction Air voids shall be min. 3% after refusal lab. compaction for severely loaded areas Chapter 10.8.2.

    Indirect tensile strength [kPa] min 800 tested at 25oC

    3.20

    3.21 Imersion index [%] min 75

    Water absorption [%]

    provided materials are carefully selected. Addition of a separate type of fines is normally needed.

    [ % passing ]

    give acceptable results in AC mixes under the prevailing conditions.

    max 2

    Stability [N]

    Requirements for the filler

    Mix type

    Coarse aggregates shall be made of crushed fresh rock or stones. Fine aggregate, passing the

    and free from soft or unsound particles, clay or other deleterious matter. Coral rock can be used

    5 mm sieve, can be a material such as sand, gravel or crushed stone. All aggregate shall be durable Types of aggregate

  • 7/24/2019 Pavement & Material Design,Tanzania

    139/185

    Nominal mix CML testmethod proportions

    AC 20 AC 14 AC 10 Aggregate [%] 95 94,5 94 Bitumen [%] 5 5,5 6

    3.18

    Normal loading conditions: 60/70 or 40/50 penetration grade

    Severely loaded areas: 40/50 penetration grade or modified binders3.5

    Asphalt Concrete

    Type of bitumen

  • 7/24/2019 Pavement & Material Design,Tanzania

    140/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    141/185

    Project appraisal

    Environment

    Pavement Design-

    New Roads

    Cross Section,Shoulders and Drainage

    Traffic

    Subgrade

    Problem Soils

    Pavement Materials

    DESIGNELEMENTS

    PavementRehabilitation

    BituminousSurfacings

    STRUCTURAL

    DESIGN

    Comparison of alternatives andselection of design

    Refinement of design, if required

    Ch

    Ch

  • 7/24/2019 Pavement & Material Design,Tanzania

    142/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    143/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    144/185

    Erodible materials

    0 10

    200

    100

    0

    20

    Good

    Ravels and corrugates

    30

    Ravels

    Slippery

    270

    40

    Good, but may be dusty

    ShrinkageProduct,SP

    Grading Coefficient, GC

    500

    400

    300

    400

    120

    16 34

  • 7/24/2019 Pavement & Material Design,Tanzania

    145/185

    Moderate or dry Wet climatic zones climatic zones

    1) Classification S15, S7 and S3 and requirements for G7 materials are given:/Chapter 5 Subgrade/.

    Subgrade classes1)

    GW

    100mm

    150mm200mm

    S3S15 orS7

    100mm

    GW

    ( none )G7

    subgrade

    layer

    Gravelwearingcourse

    Improved

    100mm

    GW

    G7

    1) Classificationsubgrade classes S3, S7 and G15 and requirements for G7 and G15 materials are given:/Chapter 5 Subgrade/.2) Maximum 50% heavy vehicles is assumed. Heavy vehicles are those having an un-laden weight of more than

    3 tonnes, or buses with a seating capacity of 40 or more: /Chapter 4 Traffic/.

    S7 1)

    G71)150 G7 1)G7 1)

    150 GW

    G15 1)

    300150 G71)

    150 G151)

    GW

    100 mmGWGW

    G15 1)

    Dry / Moderate Dry / Moderate Dry / ModerateWet

    G151)100

    GWGW150

    Wet

    GW 150

    G71) 200

    GW 150

    G151) 200G151) 200

    AADT 2)

    S15 1) GW GW

    < 20 20 - 100 100 - 300

    150 mm

    150 mm 150 mm 150 mm

    150 mm

    150 mm150 mm

    S3 1)

    climatic zones

    150

    GW

    300

    Wetclimatic zones climatic zones climatic zones climatic zones climatic zones

    G7 1)

    150150

    GW

    mm

    mm mm

    mm

    mm

    mm

  • 7/24/2019 Pavement & Material Design,Tanzania

    146/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    147/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    148/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    149/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    150/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    151/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    152/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    153/185

    CML test method,reference number

    Tests on Soils and Gravels1.1 Moisture Content BS1377:Part 2:19901.2 Liquid Limit (Cone Penetrometer) BS1377:Part 2:19901.3 Plastic Limit & Plasticity Index BS1377:Part 2:1990

    1.4 Linear Shrinkage BS1377:Part 2:1990

    1.5 Particle Density Determination - Pyknometer BS1377:Part 2:19901.6 Bulk Density for undisturbed samples BS1377:Part 2:19901.7 Particle Size Distribution - Wet sieving BS1377:Part 2:19901.8 Particle Size Distribution - Hydrometer Method BS1377:Part 2:19901.9 Compaction Test - BS Light and BS Heavy BS1377:Part 4:19901.10 CBR Test - One point method BS1377:Part 4:1990

    BS1377:Part 4:1990 andTMH1:method A8:1986

    1.12 Consolidation Test - Oedometer BS1377:Part 5:19901.13 Triaxial Test BS1377:Part 7:19901.14 Shear Box Test BS1377:Part 7:19901.15 Permeability Test - Constant Head BS1377:Part 5:1990

    BS1377:Part 3:1990 and

    NPRA 014 test 14.445

    1.17 Crumb Test BS1377:Part 5:19901.18 pH Value (pH meter) BS1377:Part 3:1990

    TMH1:method A14:1986 and

    BS1924:Part 2:1990

    TMH1:method A14:1986 and

    BS1924:Part 2:19901.21 UCS of Stabilised Materials TMH1:method A14:1986

    1.22 Initial Consumption of Lime - ICL BS1924:Part 2:1990

    Tests on Aggregates and Concrete

    2.1 Moisture Content of Aggregates BS812:Part 109:19902.2 Relative Density and Water Absorption BS812:Part 2:1975

    2.3 Sieve Tests on Aggregates BS812:Part 103.1:19852.4 Flakiness Index (FI) and Average Least Dimension (ALD) BS812:Section 105.1:19892.5 Elongation Index BS812:Section 105.2:19902.6 Aggregate Crushing Value (ACV) BS812:Part 110:19902.7 Ten Percent Fines Value (TFV) BS812:Part 111:19902.8 Aggregate Impact Value (AIV) BS812:Part 112:19902.9 Los Angeles Abrasion Test (LAA) ASTM C535-89

    2.10 Sodium Soundness Test (SSS) ASTM C88-902.11 Slump Test BS1881:Part 102:19832.12 Making of Concrete Test Cubes BS1881:Part 108:19832.13 Concrete Cube Strength BS1881:Part 116:1983

    Tests on Asphalt and Bituminous Materials3.1 Pre-conditioning of Bitumen Samples Prior to Mixing or Tes ting NPRA 014 test 14.5113.2 Density of Bituminous Binders ASTM D70-973.3 Flash and Fire Point by Cleveland Open Cup ASTM D92-90

    3.4 Thin-Film Oven Test (TFOT) ASTM D1754-873.5 Penetration of Bituminous Materials ASTM D5-86

    3.6 Softening Point Test ASTM D36-70

    3.7 Ductility ASTM D113-863.8 Viscosi ty Determination using the Brookfield Thermosel Apparatus ASTM D4402-913.9 Density and Water Absorption of Aggregates Retrieved on a 4.75 mm Sieve ASTM C127-883.10 Density and Water Absorption of Aggregates Passing the 4.75 mm Sieve ASTM C128-883.11 Calibration of Glass Pycnometers (0.5-1 litre) NPRA 014 test 14.59223.12 Mixing of Test Specimens; Hot Bituminous Mixes NPRA 014 test 14.5532

    Determination of Maximum Theoretical Density of Asphalt Mixes

    and Absorption of Binder into Aggregates3.14 Bulk Density of Saturated Surface Dry Asphalt Mix Samples ASTM D2726-963.15 Bulk Density of Paraffin-Coated Asphalt Mix Samples ASTM D1188-893.16 Bulk Density of Asphalt Mix Samples, Calliper Measurements NPRA 014 test 14.56223.17 Calculation of Void Content in Bituminous Mixes ASTM D3203 and AASHTO pp19-933.18 Marshall Test ASTM D1559-893.19 Marshall Mix Design ASTM D1559-89

    3.20 Refusal Density Mix Design TRL Overseas Road Note 31, app. D:19903.21 Indirect Tensile Strength Test ASTM D3967 and NPRA 014 test 14.5543.22 Determination of Binder Content and Aggregate Grading by Extraction ASTM D2172-88, method B3.23 Effect of Water on Bituminous Coated Aggregates, Boiling Test ASTM D3625-96

    ASTM D2041-95 and D4469-85

    Reference to test methods

    CBR Test - Three point method1.11

    Preparation of Stabilised Samples for UCS1.19

    Compaction Test - Stabilised Materials1.20

    Organic Content - Ignition Loss Method1.16

    Name of test

    3.13

  • 7/24/2019 Pavement & Material Design,Tanzania

    154/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    155/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    156/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    157/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    158/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    159/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    160/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    161/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    162/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    163/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    164/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    165/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    166/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    167/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    168/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    169/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    170/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    171/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    172/185

    CBR data

    3

    4 90%-ile

    5 3,4

    5 CBR DESIGN6 3 %

    0

    1

    2

    3

    4

    5

    6

    7

    1 2 3 4 5

    Test

    CBR(%)

    d=0.4

    n = 5 testsd = 0.1 x (n-1)

    = 0.4

    CBR values plottedin ascending order

    1 2 3

    Subgrade class

    G15

    150mm

    G15

    150mm

    G15Upper layer

    Lower layer

    Section

    S3 S7 S7

    not required

    150mm

    G7

    150mm

    CBR values plottedin ascending order

    CBR data

    68

    9

    9

    9

    11 90%-ile12 7,6

    12 CBR DESIGN14 8 % 0

    2

    4

    6

    8

    10

    12

    14

    16

    1 2 3 4 5 6 7 8 9

    Test

    CBR(%)

    d=0.8

    n = 9 testsd = 0.1 x (n-1)

    = 0.8

  • 7/24/2019 Pavement & Material Design,Tanzania

    173/185

    B C

    Chainage Rutting Difference CUSUM

    measured from average (Accumulated[Km] [mm] (A- B) values of C )

    1 14 -1,2 -1,2

    2 13 -0,2 -1,4

    3 15 -2,2 -3,6

    4 14 -1,2 -4,85 13 -0,2 -5,0

    6 14 -1,2 -6,2

    7 7 5,8 -0,4

    8 9 3,8 3,4

    9 8 4,8 8,2

    10 13 -0,2 8,0

    11 15 -2,2 5,8

    12 18 -5,2 0,6

    13 14 -1,2 -0,6

    14 16 -3,2 -3,8

    15 14 -1,2 -5,0

    16 14 -1,2 -6,2

    17 15 -2,2 -8,4

    18 18 -5,2 -13,6

    19 14 -1,2 -14,8

    20 15 -2,2 -17,0

    21 9 3,8 -13,222 10 2,8 -10,4

    23 9 3,8 -6,6

    24 12 0,8 -5,8

    25 9 3,8 -2,0

    26 11 1,8 -0,2

    Average: A = 12,8

    Homogenous sections

    -20

    -15

    -10

    -5

    0

    5

    10

    0 2 4 6 8 10 12 14 16 18 20 22 24 26

    Chainage

    CUSUM

    Plotting of CUSUM against Chainage

    Interpretation of data:

    A change of slope indicates change of conditions along

    the data. Four distinct homogenous sections can be seenin the above chart.

  • 7/24/2019 Pavement & Material Design,Tanzania

    174/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    175/185

    Existing pavement: Material coefficients:/Table 9.4/

    t1= 60 mm Asphalt concrete, severely cracked a1= 0.18

    t2= 180 mm Natural gravel, PI = 10, CBR = 40% a = 0.10

    t2= 150 mm Natural gravel, PI = 15, CBR = 15% a = 0.08

    CBR = 8%

    Calculations: /Chapter 9.2.2/

    SNexist = (a1xt1) / 25.4 = (0.18 x60) / 25.4 = 0.43

    Old AC a1= 0.18 t1=60mm

    SNrequired = 2.35 /Table 9.5/ for TLC 10 and CBR=40

    CBR = 40% a2 = 0.10 t2= 180mm

    SNexist = [(a1xt1)+(a2xt2) ] / 25.4 = [(0.18 x60)+(0.10 x180)] / 25.4 = 1.33

    SNdiff = SNrequired - SNexist = 2.75 - 1.33 = 1.42

    SNrequired= 2.75 /Table 9.5/ for TLC 10 and CBR=15

    CBR = 15% a3 = 0.08 t3 = 150mm

    SNexist= [(a1xt1)+(a2 xt2)+(a3 xt3)] / 25.4 = [(0.18 x60)+(0.10 x180)+(0.08 x150)] / 25.4 = 1.61

    SNdiff = SNrequired - SNexist = 3.30 - 1.61 = 1.69SNrequired = 3.30 /Table 9.5/for TLC 10 and CBR=8

    CBR = 8%

    SNdiff = SNrequired - SNexist = 2.35 - 043 =1.92 (highest, i.e. critical)

  • 7/24/2019 Pavement & Material Design,Tanzania

    176/185

    AC 50 mm

    PM 80 125 mm

    Asphalt concrete Bituminous mix Penetration Granular baseoverlay for base course macadam course

    3 )1 ) 2 )

    Overlay alternatives

    SNdiff The nearest value for SNdiff has been selected.

    2,00

    AC 50 mm

    PM 80 125 mm

    Alternatively:ST

    AC 50 mm

    Bit. 100 mm PM 60

    AC 50 mm

    PM 60 100 mmCRR 00 mm

    100 mm

  • 7/24/2019 Pavement & Material Design,Tanzania

    177/185

    New base course and surfacing to be selected in compliance with

    Exitsing AC reprocessed, or removed, depending on chosen method.

    Existing base course (and subbase) reprocessed to subbasein the new pavement.

    /Chapter 8.3.2/depending on achieved quality of the new subbase.

    Existing base course (and subbase)

    Reprocessed AC

    New base course

    New surfacing

  • 7/24/2019 Pavement & Material Design,Tanzania

    178/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    179/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    180/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    181/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    182/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    183/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    184/185

  • 7/24/2019 Pavement & Material Design,Tanzania

    185/185