f +#ppm .*d'/-c 2 rj--& - ntrs.nasa.gov materi a1 s branch submitted by the ... sensitivity...

42
I . y . d DEPARTIqENT OF MECHANICAL ENGINEERING AND MECHANICS OLD I>OFJIINION UNIVERSITY SCHOOL OF ENGINEERING ! NORFOLK, VIRGINIA 23508 ~ I OPTIMAL CURE CYCLE DESIGN FOR AUTOCLAVE PROCESSING OF THICK COMPOSITES LAMINATES: A FEASIBILITY STUDY c f /$/J;.", i:"d +#PPM -7- .*d'/-C 2 "rJ"--& t, /- *I" BY Jean W. HOU, Principal Investigator Progress Report For the period January 15 t o October 15, 1985 Prepared f o r National Aeronautics and Space Administration Langley Research Center Hampton, VA 23665 Under Research Grant NAG-1-561 Robert M. Baucom, Technical Monitor MD-Polymeri c Materi a1 s Branch (NASA-CR-181261) CPTXEAL CUEE CYCLE DESIGN N ~ J - ~ W I FCB AUTCCLAVE E6CCBSSIblG CE TEICK COBPCSITES LAMINATES: A EEASIBXLIIY S51UCb Proqress Feport, 15 Jan. - 15 Cct, 1915 (Gld Unclas 041cnAnion Univ,) 42 p Avail: h31S HC G3/24 0093187 November 19 8 5 I T I ! I https://ntrs.nasa.gov/search.jsp?R=19870018301 2018-05-07T11:52:25+00:00Z

Upload: dinhdang

Post on 04-Mar-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

I

. y . d

DEPARTIqENT OF MECHANICAL ENGINEERING AND MECHANICS

OLD I>OFJIINION UNIVERSITY SCHOOL OF ENGINEERING !

NORFOLK, V I R G I N I A 23508 ~

I

OPTIMAL CURE CYCLE DESIGN FOR AUTOCLAVE PROCESSING OF THICK COMPOSITES LAMINATES: A FEASIBILITY STUDY

c f /$/J;.", i:"d +#PPM -7-

.*d'/-C 2 "rJ"--& t,

/- *I" BY

Jean W . HOU, P r i n c i p a l I n v e s t i g a t o r

Progress Report For t h e p e r i o d January 15 t o October 15, 1985

Prepared f o r Nat iona l Aeronaut ics and Space A d m i n i s t r a t i o n Langley Research Center Hampton, VA 23665

Under Research Grant NAG-1-561 Robert M. Baucom, Technical Mon i to r MD-Polymeri c Mater i a1 s Branch

(NASA-CR-181261) CPTXEAL CUEE CYCLE DESIGN N ~ J - ~ W I F C B AUTCCLAVE E6CCBSSIblG CE TEICK C O B P C S I T E S L A M I N A T E S : A EEASIBXLIIY S51UCb Proqress Feport, 15 Jan. - 15 Cct, 1915 (Gld Unclas

0 4 1 c n A n i o n U n i v , ) 42 p A v a i l : h31S HC G3/24 0093187

November 19 8 5

I

T I !

I

https://ntrs.nasa.gov/search.jsp?R=19870018301 2018-05-07T11:52:25+00:00Z

Page 2: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

DEPARTMENT OF MECHANICAL ENGINEERING AND MECHANICS SCHOOL OF ENGINEERING '

OLD DOMINION UNIVERSITY NORFOLK, V I R G I N I A 23508

OPTIMAL CURE CYCLE DESIGN FOR AUTOCLAVE PROCESSING OF THICK COMPOSITES LAMINATES: A FEASIBILITY STUDY

BY

Jean W. Hou, P r i n c i p a l I n v e s t i g a t o r

Progress Report For t h e p e r i o d January 15 t o October 15, 1985

Prepared f o r Nat iona l Aeronaut ics and Space Admin i s t ra t i on Langley Research Center Hampton, VA 23665

Under Research Grant NAG-1-561 Robert M. Baucom, Technical Moni tor MD-Polymeric Mater i a1 s Branch

Submitted by t h e Old Dominion U n i v e r s i t y Research Foundation P. 0. Box 6369 Nor fo lk , V i r g i n i a 23508

Nov ember 19 8 5

Page 3: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

TABLE OF CONTENTS

INTRODUCTION ...................................................... CONCLUSIONS ....................................................... REFERENCES...................................... .................. APPENDIX A: NUMERICAL STUDIES ON THE DESIGN SENSIT IV ITY

CALCULATION OF TRANSIENT PROBLEMS WITH DISCONTINUOUS DERIVATIVES. . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF TABLES

Table

1 Thermal Design S e n s i t i v i t y Analysis f o r Compression Molding ....................................................

A1 Comparisons o f Design S e n s i t i v i t y Calculat ions of Example 1 a t b = 400 .................................................

A2 Perturbat ion o f Cost Funct ion .............................. (a) Exact I n teg ra t i on based on t h e given c r i t i c a l t ime €. . (b) Design S e n s i t i v i t y by Using DE Program ................ (c ) Design S e n s i t i v i t y by Using Simpson's Rule ............ Effect o f f Misca lcu la t ion on Design S e n s i t i v i t y Ca lcu la t ion ................................................ (a) DE Program. ........ ............... .......... .......... (b) Simpson's Rule... .. .. .. . . . . . ..... . . .. . . . .. .. . . .. .. . .. .

A3

A4 Design S e n s i t i v i t y Analysis o f Example 2 a t T=475"K and 6 T = 1°K. .............................................

Ad jo in t va r iab le method with jump condi t ion. . . . . . . . . . . Ad jo in t va r iab le method with l o g i c a l funct ion. . . . . . . . .

LIST OF FIGURES

F igure

1 Temperature P r o f i l e a t t he Center o f Laminate S o l i d L ine -- Data i n Loos' Report D iscre te Points -- Calculated Data. .. . . . . . . . . . . . . . . . . . . . . . .

2 Temperature P r o f i l e s f o r 10-mm Thick Sheet... .............. 3 Cure P r o f i l e s f o r 1O-mm Thick Sheet...... ..................

ii

Page

1

6

6

14

Page

7

31

32 32 33 34

35 35 35

36 36 36

Page

8

9

10

Page 4: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

TABLE OF CONTENTS - continued

LIST OF FIGURES - continued Figure

4 Profile of the Change of Temperature Uniformitry by R i s i n g 1" K Mold Temperature .................................

5 Profiles of Thermal Design Derivatives of Temperature w i t h Resepect t o Mold Temperature ............................

6 Profiles of Thermal Design Derivatives of Percent Cure w i t h Respect t o rvlold Temperfature .......................

A 1 State Variable and Adjo in t Variable for Example 1 ............ A2 State Variable and Adjoint Variable for the

C u r i n g Process.. .............................................

i i i

Page

11

1 2

13

37

38

Page 5: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

I INTRODUCTION

The research progress i n the p ro jec t "Optimal Cure Cycle Design f o r

Autoclave Processing of Thick Composite Laminates: A F e a s i b i l i t y Study,"

dur ing the per iod o f January t o October, may be repor ted separately i n th ree

aspects; namely:

1. design s e n s i t i v i t y ana lys is f o r the chemical-k inet ic reac t i on dur ing prepreg processing, wh i le the temperature i s considered

as a design var iable,

2. f i n i t e element ana lys i s for the thermal system o f heat conduction coupled w i t h the chemical-k inet ic reac t i on dur ing

prepreg processing,

3. design s e n s i t i v i t y ana lys is for the thermal system o f heat conduction coupled w i t h the chemical-k inet ic reac t i on dur ing prepreg processing, wh i le the temperature o f cure cycle i s

considered as a design var iable.

The chemical-k inet ic reac t i on o f Hercules 3501 dur ing autoclave

processing has been modelled and expressed i n terms o f an equation of degree

of cure:

0 (K1 + K2 a) (1 - a) (B - a)

a = K3 (1 - a) a < 0.3 a > 0.3 (1)

where B i s constant, and K1, K2 and K3 are func t ions o f temperature. Note

t h a t the r a t e o f cure presents d i scon t inu i t y a t a = 0.3. The design

s e n s i t i v i t y c a l c u l a t i o n o f t r a n s i e n t problems w i t h discontinuous d e r i v a t i v e i s

t h e o r e t i c a l l y d i f f i c u l t . I n add i t ion , i t i s numerical ly d i f f i c u l t t o

p rec i se l y monitor the c r i t i c a l time a t which the d i s c o n t i n u i t y occurs. The

research r e s u l t s i n t h i s regard have been documented i n Appendix A. I n a

Page 6: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

2

sensi t ivi ty numerically. Two approaches were developed. One maintains

jump condition. The other uses a logic function t o smoothly approximate

d i scon ti n u i t y

Never the1 ess , that the a

numeri ca 1 ly d

position.

0

summary, one f i r s t studied the effect of the accuracy of the c r i t i ca l time

* evaluation on the accuracy of the thermal d e s i g n sensi t ivi ty analysis. I t

showed that the design sensit ivity calculated by the adjoint variable

technique is n o t sensitive to the accuracy of the c r i t i ca l time evaluation.

Next, the adjoint variable technique was employed to f i n d the thermal design

the

the

ts.

the l a t t e r one i s to be used for further study. The reason i s

i s a function of time as well as position; therefore, i t is

f f i c u l t to keep track of the a discontinuity a t every spatial 0

w i t h i n a small1 region. Both approaches showed good resu

The second stage of research i s devoted to the computer code development

for the simulation of a heat conduction model coupled w i t h a chemical-kinetic

model d u r i n g prepreg processing. The equation for the chemical-kinetic model

i s already given i n equation 1. In addition, the heat condction equation i s

given as

where p is the mass density, c i s the coefficient of heat capacity, k i s the

heat conduction coefficient, and HR i s the heat generated by cured resin.

The f in i t e element discretization i s introduced to convert the i n i t i a l -

boundary value equations (1) and ( 2 ) i n t o a s e t of f i rs t order different ia l

equations. T h i s s e t of equations are then solved simultaneously by a

numerical integration code called DE. To preserve analysis accuracy, the

temperature and the degree of cure are subjected to the same numerical error

control d u r i n g the numerical integration.

Page 7: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

3

Two numerical example have been performed. One simulates the autoclave

processing o f 192 p l y prepregs w i t h 32% Hercules r e s i n content. The r e s i n

f low can be neglected i n t h i s example, because the r e s i n content i s low. To

focus on the heat conduction and the chemical-k inet ic models, the measured

temperature on the surfaces o f the composite laminate are used as boundary

temperature, instead o f the temperature o f cure cycle. Although the heat

f l ux , induced by the heat convection o f autoclave a i r temperature, i s

neglected, the numerical r e s u l t i s i n an exce l l en t agreement w i t h Loo's data,

as shown i n f i g u r e 1. The long CDC computer time (17,056 CPU seconds) i s

requ i red to t o analyze a complete cyc le of autoclave processing. This may be

because the autoclave processing needs a long r e a l t i m e (275 minutes) t o

perform. I n addi t ion, the numerical i n teg ra t i on requ i res small time step s ize

becuase the system equations are q u i t e " s t i f f " .

The second example i s taken from the r e s u l t s o f compression model l ing o f

composite laminates [l]. The research was done i n General Motor Research

Center. The degree o f cure o f r e s i n i n term o f temperature i s given as

where m and n are constants, and K1 and K2 a re funct ions o f temperature. Note

t h a t ne i the r a d i s c o n t i n u i t y nor r e s i n flow are needed to be considered i n

t h i s example. The developed computer code can be used to solve equations 2

and 3 wi thou t d i f f i c u l t i e s . The resu l t s ca lcu la ted are c lose to those

published, as shown i n f i gu res 2 and 3.

0

I n the t h i r d stage, one concentrates on the de r i va t i on o f the thermal

design s e n s i t i v i t i e s o f temperature uni formi ty r e l a t e d t o the change o f

surface temperature. Note t h a t the temperature on the surface o f prepreg i s

c a l l e d the surface temperature which i s cont ro lab le and i s considered as a

Page 8: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

4

design var iab le. Moreover, the goal o f the opt imal design i s t o achieve a

uni form temperature d i s t r i b u t i o n across t h e th ickness o f the laminates. The

performance index o f the temperature uni formi ty . (b. may be def ined as the

l e a s t square o f the dev ia t ion between the pointwise temperature and the

average temperature as:

where T i s the temperature d i s t r i b u t i o n and h i s the th ickness o f the

laminate.

Two methods have been developed t o analyze the thernal design

s e n s i t i v i t y . One i s the a d j o i n t var iab le method. The other i s the approach

o f d i r e c t d i f f e r e n t i a t i o n .

Using the a d j o i n t method, the design d e r i v a t i v e o f the temperature

un i fo rmi ty i s der ived as

where f i s the r i g h t s ide o f equation 3 and the a d j o i n t va r iab le

solved by the fo l l ow ing equations:

A and u are

n

w i t h homogeneous boundary condi t ions and terminal cond i t ions defined a t t =

tf. The above equations are coupled l i nea r equations which can be solved by

the same computer code developed f o r the thermal ana lys is discussed

Page 9: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

5

prev ious ly .

Using the d i r e c t d i f f e ren t i a t i on , equation 4 can be taken for de r i va t i ves

w i t h design var iable, Tc, d i r e c t l y as

*

[j: T T' dz - j! T dz ,," T' dz/h] d t

where T ' : dT/dTc

and 3 as can be obtained by taking the de r i va t i ves o f equations 2

and

w i t h homogeneous boundary and i n i t i a l condi t ions. Again, the f i n the above

equat ions denotes the r i g h t side o f equation 3 and a' da/dTc. The

pe r tu rba t i on of the performance index, A+, due t o the change of the design

var iab le, ATc, can be approximated by the design der iva t ive , d4/dTc, i.e.,

AJ, ATc (7)

where the ac tua l change A4 can be obtained by the f i n i t e d i f f e rence scheme,

1 .e.,

The combination o f the preceding two equations provides a good mean t o check

the accuracy o f the thermal design s e n s i t i v i t y . As l i s t e d i n Table 1, the

ac tua l changes are ca lcu la ted f o r various pe r tu rba t i on o f design var iab le,

ATc, based on equation 8; and the l a s t two columns ind ica ted the change of

J, p red ic ted by methods presented i n equations 5 and 6. Using the

compression molding o f a po lyester [11 as an example, i t i s noted t h a t the

Page 10: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

6

d i r e c t d i f f e r e n t i a t i o n method i s super ior to the a d j o i n t method i n t h i s study.

The d i r e c t d i f f e r e n t i a t i o n method provides a b e t t e r eva lua t ion o f the ac tua l

change o f the performance index. Besides, the approach o f d i r e c t

I d i f f e r e n t i a t i o n provides the time h i s t o r i e s o f design de r i va t i ves d+/dTc,

dT/dTc and da/dTc, as shown i n f igures 4 t o 6, respec t ive ly . It i s o f

g r e a t i n t e r e s t t o observe t h a t the change o f the con t ro i temperature has I

I s i g n i f i c a n t e f f e c t on the temperature un i fo rmi ty on ly when the opera t iona l I

~

t ime of processing i s over 100 seconds. The f i gu res dT/dTc and da/dTc

I conf i rm t h i s observation.

Conclusions

Two goals l i s t e d i n the proposal have been achieved, namely, the thermal

I ana lys is and the ca l cu la t i on o f thermal s e n s i t i v i t y . A f i n i t e element program 1

f o r the thermal ana lys is and design der iva t ives c a l c u l a t i o n f o r temperature I I

I d i s t r i b u t i o n and the degree o f cure has been developed and v e r i f i e d . It i s

found t h a t the d i r e c t d i f f e r e n t i a t i o n i s the best approach f o r the thermal I I

design s e n s i t i v i t y analys is . In addi t ion, the approach of the d i r e c t

d i f f e r e n t i a t i o n provides time h i s t o r i e s o f design de r i va t i ves which a r e o f

g rea t value t o the cure cyc le designers. The approach o f d i r e c t d i f f e r e n t i a -

t i o n i s t o be used f o r f u r t h e r study, i.e., the optimal cyc le design. I'

Ref e re n ce

1. Barone, M. E. and Caulk, 0. A . , "The E f f e c t o f Deformation and Thermoset Cure on Heat Conduction i n a Chopped-Fiber Reinforced Polyester During Compression Molding," I n t . J. Heat Mass Transfer, Vol. 22, pp. 1021-1032, 1979.

Page 11: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

7

Table 1 Thermal Design Sensitivity Analysis for Compression Molding

Mold Temp. Cost Func t i on Actual Change $ 1 AT: J, I AT;

423°K

422°K

418°K

413°K

408 " K

403°K

393°K

428°K

433°K

21019.648

20501.695

18157.462

16137.194

14772.308

13479.446

11083.596

23238.107

25042.554

----- 517.95

2862.186

4882.45

6247.34

7540.20

9936.05

2218.46

4022.90

----- 341.97

1720.32

3445.93

5160.96

6881.28

10321.92

1720.32

3440.64

--e--

501.051

2505.257

5010.514

7515.771

10021.028

15031.542

2505.251

5010.514

~ ______ ~~

* Calculated by the adjoint variable method **

Calculated by the direct differentiation

Page 12: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

8

$.I, I 0

aa I

v) 0 0

n

-

I c

(a cd

.- -w

n I

u u

c> I I

I! \.

0 Lc) N

0 0 N

0 0 0 Lc) -

0 0 r9

0 0 c\1

0 0 N

0 Lc) - 0 0 -

0 0

0 0

Page 13: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

9

200

I 6 0

I 2 0

80

-Data in R e f . I --Calculated Da ta

200

40 =

24 I 1 I 8 . I I I I

60

20

80

40 24

DISTANCE FROM MIDPLANECmm)

Figure 2. Temperature Profiles f o r IO-mm Thick Sheet.

Page 14: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

10

W QL 3 V I- z W V QL W a.

I O 0

80

60

40

20

0

1 -- .---

- Data - - Calcu

in Ref . I ated Data

2.. 5

I O 0

8 0

60

40

2 0

0 5.0

DISTANCE FROM MIDPLANE (mm) Figure 3 . Cure Profiles for 10-mm Thick Sheet.

Page 15: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

11

I

8 b r9 nl

e

I 1

8 8 0 cu

d- e -

I 1 -

0 00 6) * d d

0 nl - 0 0

0 00

-

,o (D

0 ,*

,o c\I

0

L 0 , o

(L

0

aJ m E rrJ c . V a J

L aJJ

33NVNUOdU3d 3 H l 3 0 33NVH3 lN33U3d

Page 16: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

,* u \ t-

W > , > U W t3

u

- a -

I

t QL W I: I-

a

DISTANCE FROM MIDPLANE(mm1

Figure 5. Profiles of Thermal Design Derivatives o f Temperature w i t h Respect t o Mold Temperature.

Page 17: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

13

o. 0. 0.

18 17 I O

0.05 4

1

:

see

6 sec

I

“e IO

-0.05

2.5 5.0

DISTANCE FROM MIDPLANECrnm)

Figure 6. Profiles of T.herma1 Design Derivatives o f Percent Cure w i t h Respect t o Mold Temperature.

Page 18: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

APPENDIX A

NUMERICAL STUDIES ON THE DESIGN SENSITIVITY CALCULATION OF TRANSIENT PROBLEMS WITH DISCONTINUOUS DERIVATIVES

Page 19: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

15

SUMMARY

The aim o f t h i s study i s t o f i n d a r e l i a b l e numerical a lgor i thm t o

ca l cu la te design s e n s i t i t i v t y o f t rans ien t problem w i t h d iscont inous

der iva t ives . The f i n i t e d i f ference method and the ad j o i n t va r iab le technique

us ing both Simpson's r u l e and DE program, a p red ica tor - cor rec tor algor i thm,

are invest igated. I t i s shown t h a t the design s e n s i t i v i t y ca lcu la ted by the

f i n i t e d i f f e rence method i s q u i t e sens i t i ve t o the numerical e r ro rs .

Nevertheless, the design sensi t i v i t y ca lcu lated by the a d j o i n t va r iab le

technque i s r e l a t i v e l y s tab le aga ins t various numerical i n teg ra t i ons and time

steps. It i s concluded t h a t the a d j o i n t va r iab le technique i n conjunct ion

w i t h the DE program w i t h appropr ia te t runcat ion e r r o r con t ro l provides very

sa ti s fac tory numerical resu l ts.

I. INTRODUCTION

The d e r i v a t i v e of the thermal response w i t h respect t o the design

va r iab le i s usua l ly c a l l e d thermal design d e r i v a t i v e o r s e n s i t i v i t y . The

in format ion o f design d e r i v a t i v e i s n o t on ly very usefu l for the t rade-o f f

design b u t i t i s a l so requ i red f o r the i t e r a t i v e design opt imizat ion.

The c a l c u l a t i o n o f design der iva t ives i n thermal problems has a t t r a c t e d

research i n t e r e s t i n such areas as design of space s t ruc tu re sub jec t t o

temperature cons t ra in t s [l], and chemical process con t ro l C21.

For the problems o f i n te res t , the s tate equat ion i s usua l ly expressed as

w i t h i n i t i a l cond i t i on

z (b, 01 = zo

Page 20: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

16

where a do t denotes d i f f e r e n t i a t i o n w i t h time, t, b i s the design var iab les

and zo i s prescr ibed i n i t i a l condi t ion. The s ta te funct ion z(b, t ) i s a

func t ion o f time and design var iable. Although the design va r iab le b i s

genera l l y a func t ion o f time, i n the fo l lowing discussion, i t i s l i s t e d as a

constant parameter f o r s i m p l i c i t y .

Four d i f f e r e n t methods [l]; the Green's function, f i n i t e di f ference,

d i r e c t d i f f e r e n t i a t i o n s a n d a d j o i n t var iab le technique, are c u r r e n t l y used i n

the c a l c u l a t i o n of thermal design s e n s i t i v i t y , i.e., dz/db. Haftka [l, 31

t) used t o

e f f i c i e n c y

con ti nuous

ind i ca ted t h a t the numerical i n t e g r a t i o n scheme (expl

so lve i q . 1 i s an impor tant f ac to r i n detemining the

and accuracy of thermal design s e n s i t i v i t y f o r the

d e r i v a t i v e 2.

c i t or i m p l i c

computational

problem w i t h

On the o ther hand i t i s n o t uncommon i n engineering app l i ca t i ons

t h a t o r the func t ion f (b , z, t ) def ined i n Eq. 1 e x h i b i t s d i s c o n t i n u i t i e s .

The c r i t i c a l time a t which the d i scon t inu i t y happens i s usua l ly monitored by

the state va r iab le z. Engineering examples can be found i n the mul t i -s tage

con t ro l problem [41, con t ro l o f chemical k i n e t i c s [51 , and the mechanical

system w i t h i n t e r m i t t e n t motion C6, 71. The i n t e r m i t t e n t motion i s

character ized by the occurence o f near ly discont inuous force and v e l o c i t y

caused by impuls ive force, impact, mass capture, and mgss re lease. The I I

I opt imal design problems o f mechanisms w i th i n t e r m i t t e n t motion have been I

discussed by Huang, Huag and Andrews 161. Their method i s based on the

i d e n t i f i c a t i o n o f c r i t i c a l times a t which d i s c o n t i n u i t i e s i n forces o r

v e l o c i t i e s occur. Jump condi t ions o f those d i s c o n t i n u i t i e s are employed i n an

a d j o i n t va r iab le approach f o r the ca l cu la t i on o f design sensi t i v i t y

c o e f f i c i e n t s . Ehle and Haug [7] introduced the " l o g i c a l funct ion" t o smoothly

approximate d i s c o n t i n u i t i e s . An example i n t h e i r work shows t h a t time step and

I

Page 21: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

17

the s ize o f t r a n s i e n t zone used for d i s c o n t i n u i t y approximation have

s i g n i f i c a n t e f f e c t on the accuracy of design s e n s i t i v i t y ca lcu la t ion .

It i s the ob jec t i ve of t h i s study t o i nves t i ga te the numerical accuracy

o f design sensf t i v i t y ca lcu la t ion , focused on the numerical i n t e g r a t i o n

schemes and the approximation o f o f c r i t i c a l time.

I I. Design Sensi t i v i t y Analysis

A f unc t i ona l i s g iven as

7

(4 = g ( z ( t ) , b, t) d t ( 3 ) 0

where z i s the terminal time which i s assumed t o be independent o f the design

va r iab le b. The s ta te var iab le z ( t ) i s governed by the s ta te equations as

fo l lows:

when z ( t ) < C

when z ( t ) 2 c ( 4 )

w i t h i n i t i a l cond i t i on

The constant c o f jump cond i t ion i n Eq. 4 i s assumed again t o be independent

on design var iab le. It i s obvious tha t the s ta te va r iab le z ( t ) and the

c r i t i c a l t ime 5 a t which z (E) = c depend on the design var iab le b because z ( t )

i s the s o l u t i o n of Eq. 4. I n o ther words, z and 5 can be def ined as z ( t , b )

and ?(b), respec t ive ly . The problem o f i n t e r e s t i s t o determine the design

s e n s i t i v i t y o f func t iona l (1,. The va r ia t i on o f func t iona l (1, w i t h respec t t o

the design va r iab le i s def ined as

I I

I

Page 22: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

= +' 6b

where 6b i s the per tu rba t ion o f design va r iab le and +' i s def ined as

d+/db. The v a r i a t i o n o f s ta te function, 62, can be def ined by a s i m i l a r

fashion.

According t o the d e f i n i t i o n o f va r ia t i on and L e i b n i t z ' s ru le , the

v a r i a t i o n o f func t iona l i s der ived as

Note that , because o f the dependence of b, 6z = (az/ab)bb and

6't = (aT/ab)6b. The l a s t term o f above equat ion can be dropped prov ided

t h a t the c o n t i n u i t y assumption o f g a t i i s maintained. The var ia t ions ,

can be determined by using the e q u a l i t y o f Eq. 4 and the jump

cond i t i on z(i) = c. However, by carefu l se lec t i on o f the a d j o i n t equation,

i t i s n o t necessary t o ob ta in e x p l i c i t expressions f o r 6z and 6z i n order t o

ob ta in the v a r i a t i o n 641.

6z and 65

I n accordance w i t h the e q u a l i t y o f Eq. 4, i t i s ev ident t h a t

for an a r b i t r a r y func t ion A ( t ) and the design va r iab le b. The v a r i a t i o n of

the preceding func t iona l y i e l d s :

Page 23: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

19

0 = Io t 6h(;-fl) d t + I,+ z 6h (;-f2) d t t

Note that the summation o f f i r s t two terms should be zero because the

equality o f Eq. 8 i s also true for an arbitrary 6h. Furthermore, i t i s

understood that the c r i t i ca l time 't depends on design variable implicitly

through the relation Thus, employing the Leibnitz's rule, the

variation 65 appears i n the derivation. However, these two boundary terms may

be dropped out because - f 2 are equal t o zero when the time t

approaches t o z- and ?, respectively, according t o Eq. 4. After

simplification and integration by parts, the preceding equation can be

rewritten as

z ( f , b) = C.

- f l and

Note that the operators "6" and " * I ' are exchangable provided t h a t z i s a

continuous function o f b and t in the time domains 0 t < f' and

t < t z. The i n i t i a l condition z(b,O) = zo i s assumed to be independent

on the design variable. Consequently, 6z = 0 a t t = 0. As to the total

-+

Page 24: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

20

v a r i a t i o n of the jump cond i t i on z(b,?) = c,

o r 6z = -bf f o r t approaches to e i t h e r t o r ?+. The boundary terms i n

Eq. 10 can then be rearranged as

i t i s der ived as i6 ' t t 6z = 0 --

+ ( h f 2 ) 3 6 i + h6z( I 'i+ 7 = [-(hfl) I 't-

Adding Eqs. 7 and 10 up, one has the va r ia t i on o f the func t i ona l JI as

Since h s t i l l r e t a i n s i t s a rb i t ra r iness , the only unknowns i n the l a s t

fo rmula t ion are 6z and 65. One may now speci fy the va r iab le h i n such a way

t h a t a l l o f terms associated w i t h Sz and S't are dropped. Def in ing the

f o l l o w i n g ad jo in ' t equations:

afl + ag 5 = - 3 r E ,

5 = - E - a z , af2 + ag

w i t h terminal condi t ions:

O < t < ' t

' t < t < z

(12)

(13)

Page 25: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

h2 (7) = 0 and

(14) I

F i na l l y , the combination of Eqs. 11-15 provides a simple formula f o r 6+,

I f the design var iab le i s a parameter instead of a funct ion, the general

expression of Eq. 16 can be s imp l i f i ed to y i e l d the design s e n s i t i v i t y ,

Example 1 The state equation i s given as

0 < z < 1440 1440 < z

w i t h i n i t i a l cond i t ion z(b,O) = 0.

Given the func t iona l J, as

G1 = ,," z 2 d t ,

the d e r i v a t i v e dJ,/db i s simply obtained as

- dJ,l ,: 2hl b t 2 d t + ,I A,$ d t ,

t db=

where the a d j o i n t var iab les hl and h2 are determined by the a d j o i n t equations

Page 26: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

hl = - 2z, {Az = - 22,

22

w i t h terminal condi t ions,

I f the design va r iab le and the t o t a l t ime i n t e r v a l are assigned as b =

400 and z = 2, i t fo l lows t h a t the c r i t i c a l time f i s exac t l y equal

t o i = 0.3 f o r jump cond i t i on z (5 ) = 1440 and the design s e n s i t i v i t y i s

obtained as dJl/db = 5598.3. The state var iab le and a d j o i n t var iab le can be

solved a n a l y t i c a l l y . They are p l o t t e d i n Fig. 1. The jumps o f and h are

ind icated.

Example 2 A model o f chemical k i n e t i c s i s inves t iga ted here. The r e l a t i o n

between the degree o f cure a and the react ion o r cure r a t e dur ing the cu r ing

process o f Graphi te/Epoxy composite i s determined exper imenta l ly as [51,

0 fl(as T, t ) = (K1+Kza) (1-a) (B -a ) , 0 < a < 0.3

a = ‘f2(a, T, t ) = K3(1-a) S 0.3 < a

w i t h i n i t i a l cond i t i on a(0) = 0 and the fo l low ing d e f i n i t i o n s

(17)

K1 = AA1 Exp (-AE1/RT)

K2 = AA2 Exp (-AE2/RT)

K3 = AA3 Exp (-AE3/RT)

where MI, AAzs AA3, AE1, AEz, A E 3 , R and B are mater ia l constants C53,and T

i s O K temperature. The problem i s t o analyze the s e n s i t i v i t y o f a fgnct ional

of a w i t h respect t o the temperature, i.e., dJl/dT where (1, i s def ined as

Page 27: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

23

2 G2 = a d t

The a d j o i n t equation i s der ived as

2 k , = 2a t hl (K1 + KIB - K2B 't 2K Ba t K a - 2Kla - K 2 a ), 2 2

o c t c t t c t c z k2 = 2a - K + ~ ,

(18)

w i t h terminal condi t ions,

-h2(E) K3 hl (a = -

Kla2 - KIB + K2aZ + B K,a2 - 2KZa5 , a t t = t .

I n add i t ion , the v a r i a t i o n o f func t iona l J12, d+2/dT, i s given as

a f 1 af 2 -

d+2 t - - I ( - A, TI d t + I" ( - A -) d t 2 aT - t

dT 0 (19)

I t i s no t easy t o solve Eqs. 17 and 18 a n a l y t i c a l l y . Instead, they are

And dG2/dT i n Eq. 19 i s evaluated by solved numer ica l ly i n the next section.

a numerical i n t e g r a t i o n method.

i

As mentioned e a r l i e r , the discontinuous d e r i v a t i v e can be replaced by a

l o g i c a l f unc t i on L(z ,E ) which smoothly approximates a Heaviside step func t i on

~

1 " I ,

Page 28: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

24

w i t h i n a given reg ion O<Z<E for a small number E . The l o g i c a l func-

t i o n L(z,E) i s def ined as C71:

2n+l (20)

1 1z12n+1 + z L(Z,E) = - 2

( Z p + l + 1 [ ( Z ' E J 2n+l - ( P E ) 2n+l 3 2

where n i s an i n tege r selected so as t o ensure the c o n t i n u i t y o f the

d e r i v a t i v e up t o order d, i.e., 2n+l >d . The n i s taken as 1 i n t h i s

study. Note t h a t the values of l o g i c a l funct ion L(z,E) are 0, l/2 and 1 f o r

z=O,~/2 and E. , respec t ive ly . The d i f f e ren t i a l equation, equat ion "4, can be

combined i n t o a s ing le funct ion by us ing the l o g i c a l f unc t i on L(z,E) as

Since L i s a smooth funct ion, there i s no d i s c o n t i n u i t y i n the o f the

preceding equation. Thus, the formulat ion of the design s e n s i t i v i t y ana lys i s

can be s i m p l i f i e d a g rea t deal.

The design d e r i v a t i v e o f func t ion +2 , def ined i n the example 2, can be

e a s i l y obtained by using the standard a d j o i n t va r iab le technique:

a f a f d% 1 2 - = I"[ - - (1-L)h - - LA] d t dT 0 aT aT

(21)

~ where the a d j o i n t va r iab le h s a t i f i e s the fo l l ow ing a d j o i n t equation:

3 A + 2a=o af2 aL L + f 2 E aL + + aa ( 1 4 ) - fl 2f 1

w i t h terminal cond i t i on

h ( z ) = 0 . With the d e f i n i t i o n o f L(a-0.3,~) Eq, 20, the de r i va t i ve aL/2a i s n o t

Page 29: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

25

d i f f i c u l t to calculate.

A 1 though using a logical function t o smooth the derivative d i scon t inu i ty ,

one may avoid the need to identify the cr i t ical time of jump condition, y e t

the selection o f e , the domain where t h e logical function i s defined,

introduces a new difficulty. The numerical resul ts l is ted i n Table 4.b are

obtained by i n t e g r a t i n g Eqs. 20 - 22. To o b t a i n these results, the report

time step required i n DE program is given as AT=0.05 .

I

Page 30: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

I 11. Numerical Considerations

The c a l c u l a t i o n o f the design s e n s i t i v i t y o f thermal system w i t h

discont inous de r i va t i ves encounters i n numerical d i f f i c u l t i e s as expected.

Numerical e r r o r s a r i s e n o t only i n so lv ing the s t a t e equation b u t a l so i n

i d e n t i f y i n g the c r i t i c a l t i m e of jump condi t ion.

There are two numerical i n t e g r a t i o n schemes employed here t o solve the

s ta te and a d j o i n t equations discussed i n the preceding sect ion. One i s the

Simpson's method, the o ther i s DE program C81 using the Adam fami ly o f

formulas. .,

Since the t runcat ion e r r o r o f Simpson's method i s p ropor t iona l t o the

f o u r t h order de r i va t i ve of unknown function, i t provides exact i n t e g r a t i o n f o r

so l v ing equat ion i n the f i r s t example.

The DE program i s one o f predic tor -corrector i n t e g r a t i o n a lgor i thm us ing

Adams fami ly o f formulas. The t runcat ion e r r o r i s con t ro l l ed by vary ing both

the step s i ze and the order o f the method. The t runcat ion e r r o r a t time step

tn+l i s requ i red to s a t i s f y

I t runc I < ABSERR + RELERR 1zn1 I

where the zn i s the s o l u t i o n o f d i f f e r e n t i a l equat ion a t tn and the values

ABSERR and RELERR are suppl ied by the user. The DE program i s q u i t e easy t o

be used and has c a p a b i l i t y to manage moderate s t i f f equation which happens

commonly i n the problem o f chemical k ine t ics .

The c r i t i c a l time t a t which the jump cond i t i on occurs i s determined by

se lec t i ng the time g r i d p o i n t c loses t t o the cond i t ion z(?) = c f o r a given

constant c and s ta te var iab le z. Thus, the accuracy of t s t rong ly depends on

the step size.

-

\

I

Page 31: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

27

The cost function and design derivative obtained by the adjoint variable

The comparisons between technique of the f i r s t example are examined f i r s t .

different numerical integrations used to solve equat

and bounds of errors are l i s ted i n Table 1. I t is

provide satisfactory results. Since b is taken as

ons, as well as time step

ndicated that a l l o f them

400 i n this calculation,

t i s exactly 0.3. Therefore, there is no approximation error a t a l l on the

c r i t i ca l time i . Note that when the DE program i s used for solving the

s ta te and adjoint equations, the cost function 447) = ,," a2 d t i s solved by an 2 additional differential equation (t = a

-

. ..

To investigate possible sources of errors i n the numerical calculations

of thermal design derivatives, the change of c o s t functional w i t h respect t o

different perturbation size of design variables are l i s ted i n Table 2. The

design derivatives, $', i n Table 2 are obtained by u s i n g the f i n i t e

difference method and adjoint variable techniques w i t h different numerical

integration algorithms. I t shows that the f i n i t e difference method, the

adjoint variable techniques w i t h Simpson's rule and w i t h DE program

introducing error bounds less than 10E-4 exhibit quite a deviation a g a i n s t the

exact calculation. The major source o f error m i g h t be the miscalculation

of 't i n the analysis.

! As an example, when b is reduced t o 399.9 (0.025% change) the difference

I between cost functions evaluated exactly, 5293504.6, and evaluated by the

Simpson's rule, 6194664.7, soars up t o 901160 ( 1 7 % ) . T h i s b i g discrepency

resul ts from the numerical prediction of cr i t ical time ? which should be 0.299

analytically instead of 0.3 numerically. Although the error of f i s small, i t

happens i n a neighborhood of steep which causes significant error of z.

Moreover, t h i s error i s squared and accumulated through t = 0.3 to t = 2.0.

I

Page 32: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

28

It has been shown i n Table 2 t h a t the accuracy o f the design s e n s i t i v i t y

ca lcu la ted by the a d j o i n t var iab le technique i s l ess sens i t i ve t o d i f f e r e n t

numerical i n t e g r a t i o n schemes than the accuracy of the cos t f unc t i ona l

eva lua t ion does. To see the e f f e c t of the misca lcu la t ion o f 't on the accuracy

o f the design s e n s i t i v i t y ca lcu la ted by the a d j o i n t var iab le technique,

var ious i ' s , which i s supposed to be 0.3 a n a l y t i c a l l y , are used f o r the design

s e n s i t i v i t y ca lcu la t ion . The r e s u l t s are l i s t e d i n Table 3. It i s c l e a r l y

shown t h a t the a d j o i n t va r iab le approach i s q u i t e i nsens i t i ve , compared to the

f i n i t e d i f f e rence method, t o the numerical e r r o r s a r i s i n g i n the ana lys is and

i n the est imat ion of 't a t the jump conditions.

..

I n example 2, ne i the r s t a t e var iab le z nor c r i t i c a l time 5 has a n a l y t i c a l

so lu t ion . The design s e n s i t i v i t i e s l i s t e d i n Table 4.a are ca lcu la ted by the

f i n i t e d i f fe rence method and the a d j o i n t va r iab le technique w i t h DE program.

It i s again shown t h a t the a d j o i n t var iab le technique provides a more s tab le

s o l u t i o n than the f i n i t e d i f f e rence method does, aga ins t numerical e r ro rs .

The jumps o f state va r iab le and a d j o i n t var iab le for example 2 a re i nd i ca ted

c l e a r l y i n Fig. 2.

Furthermore, the numerical r e s u l t s l i s t e d i n Table 4.b are obtained by

us ing the l o g i c funct ion approximation and by i n t e g r a t i n g Eqs. 20-22. The

accuracy o f the approach i s a l so q u i t e sa t is fac to ry .

I V . Conclusions and Remarks

The c a l c u l a t i o n o f design s e n s i t i v i t y i s discussed f o r the thermal

t r a n s i e n t problem w i t h discont inuous der iva t ive . The numerical d i f f i c u l t i e s

depend on the approximation e r r o r o f i n teg ra t i on and the evaluat ion o f the

c r i t i c a l t ime o f jump condi t ion.

Because o f the s i m p l i c i t y , i t i s a very common p rac t i ce i n the opt imal

Page 33: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

29

design community t h a t the f i n i t e d i f fe rence approach i s used as a standard

reference t o check the accuracy of design s e n s i t i v i t y ca lcu la t ions . However,

i t i s revealed i n t h i s i nves t i ga t i on that the f i n i t e d i f f e rence method may

prov ide very un re l i ab le in format ion o f design s e n s i t i v i t y . On the other hand,

the ad j o i n t var iab le technique using numerical i n t e g r a t i o n a lgor i thm w i t h

var ied step s ize and e r r o r con t ro l performs s a t i s f a c t o r i l y i n the design

s e n s i t i v i t y analysis. F ina l l y , i t i s also suggested i n t h i s i n v e s t i g a t i o n

t h a t the design s e n s i t i v i t y analys is can be used as an accuracy i n d i c a t o r f o r

analyz ing the t r a n s i e n t problems w i t h discontinuous der iva t ives . .I

Acknowledgment

Research sponsored by NASA Langley Research Center, NASA Grant NAG-1-561.

Page 34: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

References of Appendix

1. R. T. Haftka, "Technique fo r Thermal S e n s i t i v i t y Analysis," I n t . J. Num. Meth. Engng., 17, 71-80 (1981)

2. L. t. Biegler , "Solut ion of Dynamic Opt imizat ion Problems by Successive Quadrat ic Programming and Orthogonal Collocation," Design Research Center, Carnegie-Mellon Un ive rs i t y , P i t t sbu rgh (1983)

3. R. T. Haftka and D. S. Malkus, "Calcu lat ion of S e n s i t i v i t y Der i va t i ves i n Thermal Problems by F i n i t e Differences," I n t . J. Num. Meth. Engng. 17, 1811-1821 (1981)

4. A. E. Bryson and Y. C. Ho, Applied Optimal Control, Ginn and Co., Massachusetts , 1969

5. A. C. Loos and G. S. Springer," Curing o f Epoxy Ma t r i x CompositesIn J. .* Composite Mater ia ls , 17, 135-169 (1983)

6. R. C. Huang, E. J. Haug, and J. G. Andrews, " S e n s i t i v i t y Analysis and Optimal Design o f a Mechanical System w i t h I n t e r m i t t e n t Motion," ASME J. Mech. Design, 100 (31, 492-499, (1978)

7. P. E. Ehle and E. J. Haug, "A Logical Function Method f o r Dynamic and Design S e n s i t i v i t y Analysis o f Mechanical System w i t h I n t e r m i t t e n t Motion," ASME J. Mech. Design, 104(1), 90-100 (1982)

8. L. Shampine and M. Gordon, Computer So lu t i on o f Ordinary D i f f e r e n t i a l , Equations W. H. Freeman and Co., San hancisco, ( 1 9 / n

Page 35: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

31

E CT, .C

Y- O

v) E 0 v)

L a E 0 V

.r

n c, V (d X W

c, E aJ .C

QI d 0 d QI N In

m h 0 d m (v In

m h 0 -9. QI (v m

co h u) d m N In

N h 0 d Q, N m

3

(u

10 m 0 ro

. W m 0 W

h

;n m 0 rD

W d 0 ro

h

4 d 0 W

-3

Page 36: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

32

Table A2. Per turbat ion o f Cost Funct ion

(a) Exact I n teg ra t i on based on the given c r i t i c a l t ime

0.1

1

4

10

20

40

-0.1

-1

-4

-10

- 20

-40

5294641.

5299760.

5316879.7

5351383.7

5409692.

5530494.8

5293504.6

5283205.2

5265617.6

5230743.3

5168474.0

5047690.4

568.2

5687.2

22807.

57311.

115619.2

236422.1

-568.1

- 10867.5

-28455.0

-63329.4

-125598.6

-246382.3

604.1

6041.7

24166.8

60417.

120834.

241668.

-604.1

-6041.7

-24166.8

-60417.

-120834.

-241668.

0.3

0.3

0.3

0.3

0.3

0.29

0.3

0.31

0.31

0.31

0.32

0.33

* by the f i n i t e d i f f e rence method

by us ing the a d j o i n t va r iab le technique

I

I

I **

Page 37: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

m 0 .

L n

m 0 W

.

. m 0 W

W h W d m N v)

m 0 .

W

d 0 W

. 4 m 4 N

m W h W m N v)

4 . 0

m 0 .

h

v) m d W

.

. W m 0 W

ul 0 4 0 0 m v)

m 0 .

'9 d 0 W

h W d W

. v) W 0 rl 0 m v)

4

m 0

rl

m

d N

. z

. 0 d 4 d cu

m 4 N co 4 m v)

(3

0

d Q) 4 d N

W v) h 0 d

. d m m v) m m v)

d

. h v) m 0 W

. v) m m 0 W

. W 0 d d Ln m v)

m 0 .

0 W d 0 W

. 0 W 0 m W

. co v) W h v) m v)

E:

(3

0 .

. v) 4 h 0 N 4

4 m W 0 N rl

d 0 h d 4 d v)

m 0

0 N cn 0 N 4

. h m W (u (u 4

Ln 4 N h rl

b,

0 (u

Q! N

0

N

4 m d 4 d N

.

e m cn 4 4 d (u

W W N v) m v) v)

m cu 0 . . 0 d W 4 d N

. W 4 (u W v) (3

W ul h O v) W Ln

0 d

m 0

v)

m 0 W I

d 0 W I

. cn w d m m (u v)

m 0 .

10

d 0 W I

.

00 0 h

W W (v v) ul cu v)

l-l . 0 I

d m 0 .

h

Ln m 0 rD I

. b m 0 W I

. rD m 0 aJ co N v)

rl m 0

W d 0 W I

. AI m m v) I

. W d rD a3 aJ N v)

d I

4 m 0

rl

m

d N I

2

rl v) rl d N I

N (v ul m W N ln

4 m 0

. d W rl d N I

. N ul d d N I

. W W 0 0 h N Ln

d I

rl m 0

W

h v) m 0 W I

. m ul m 0 W I

. e h W m m N v)

4 m 0

0 W d 0 W I

. d v) W 0 W I

. d cy h m m N v)

$: I

N m 0

W

v) l-l h 0 N 4 I

. h W W 0 cy 4 I

W W 4 m h 4 v?

N m 0 .

0 (v m 0 N 4 I

. 0 QI W 4 4 I

. W W W Ln h 4 v)

0 N

I

m (3

0 .

cu 4 (3 e- 4 d (u I

.

. (v Ln (v (v d (u I

l-l cy W 4 u) 0 u)

m m 0

. 0 d a0 4 d (u I

. Qo (u m N d (u I

. 0 In N cu v) 0 v)

0 d I

Page 38: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

al c

J w v) - c 0 v) n E .C

h c, w c,

.r

-r

.- v) c al v)

h

V Y

4 0

0 II

c,

9

a

4 0 0

11

c, a

c,

n ro 3

3 a

3

c,

n rg

3

3 a

3

n 10

0 0 m 0 .

W

m 0 W

.

m m m co d

.

m co co co co m N v)

m . W

m 0 ID

.

0 d d co d

(v

d co 03 a3 m N v)

.

d . 0

0 0 m 0 .

(v

W m 0 W

.

v) m m 00 d

9 d co m (v d m v)

m

W m 0 W

. h 0 m co d

9 4 co m (v d m v)

4

co m (v

0

v)

d (v

z

4

m co m OD 0 4

4

(v m d (v 0 d v)

1

. d d d d (v

v)

v) (v (v v) m 4

W

co m (v m co d rn

.

d

v) m (v

0

v)

(v W m 0 W

.

v)

m 0 m co m 4

.

v)

co v) m (v m d v)

.

m

0 W m 0 W

h

00

co m d

2

m 4 W (v (v m h m

E:

0 m (v

0

. v) cu h 0 (v 4

d

(v m m m h 4

.

d 4 co Q, h W d v)

.

m (v

0 (v h 0 N 4

co v) m v) 0 m E:

m co 0 u d (v m W

.

0 (v

(v co cu 0

0 In d 4 d (v

0 v) m W d Q) cu

.

9 d a0 rD 00 h v) In

co (v . 0 d d 4 d cu

9 4 h v) v) h

2

4

d d W m W m W

0 d

0 0 m 0

W

m 0 W I

W

0 h Q, m I-

.

W

m d 0 d h m v)

.

1

W m 0 W I

v)

d m v) 0 0 m

.

I-

d W W d m 4 W

4

0 I

4 0 m 0

(v

W m 0 W I

v)

cu W 0 W m

v)

4 d 4 0 m m v)

m . W m 0 W I

h

0 (v W m d a3

co m m W m d 4 W

4 1

(v 0 m 0

v) d 4 d (v I

W

co h d co v)

W

h (v v) (v v) m v)

1

d d d d (v I

d 4 h m 4 co W

.

W

d d 0 W h m v)

.

d I

v) 0 m 0

v)

cu W m 0 W I

h

0 Ln v) m 4

h

m m v) h 0 m v)

.

4 m . 0 W m 0 W I

h

h W m W v) m

.

el

0 d 0 4 v) W v)

52 I

2 m 0 .

v) (v h 0 (v d I

0 W CI) d v) h I

Q,

(v 4 rn co d (v v)

4 m

. 0 (v h 0 (v d I

m W m v) m m W

.

d . 0 h W m m m v)

0 (v I

(v (v m 0

0 v) d 4 d (v I

d

02 d (v m (v (v I

? 0 0 a2 d 10 0 la

(v m

0 d d

d (v I

v) W v) W 4 d

43 . 3 W 0 4 h v)

0 d I

Page 39: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

35

E m L m 0 L

CL.

W 3

0

m Y

-I n 3

3 3

3

n N 3

-.(

3

3 3

3

n N 3

c,

4 0 0 0

I1

2

4

3

t;

0

II

c P

03 In 0 W

In (v

W m 0 W

m l-4

z 0 W

Q) 4

N r- (v W

m m W m 0 W

(u m m m a3 In

*

Page 40: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

36

Y 0 Ln h * II I- c, 4

(v

aJ n E

- 4 X W

y. 0 v) *I- v)

h c 4 r U h c, w - .-

* 4 aJ

c ro

3 -

* ++ a

I- a

p: 0 p: p: W

h h rT) m m 4

0 I

00 d 0 m d

0 I

4

Ln 0 0 0

00 I

W

4

w 4 m m m 4

0 I

co * 0 m d 4

0 I

In 0 0

a I

W

4

s 00 m m

0 t

d

(v W c3 In Ln 4

0 I

Ln 0 0 0

d I

W

4

m 4 00 d m 4

0 I

4 4 d 4 4 4

0 I

ln 0 0

d

I

W

4

* 5

* 3 a

* *Id

E 0 p: p: W

(v 0 (v v) 4

0 I

4 (v m d

0 I

4

h 4 0 0 0 0

co I

W

4

4 Ln 4

0 I

4 (v m d

0 I

4

m 0 0 0 0

00 I

W

4

QI c3 4 Ln 4

0 I

m 4 4 4

0 I

m 0 0 0 0 0

d

1

W

4

Y

d h * 0 w Y

In h *

0

0

E L Y-

U aJ 0, E 4 r V

v)

aJ L J c, 4 L aJ p. E aJ c,

al r I-

.r

* * *

Page 41: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

16

0

CI

- x Y

n

0.5- 0

o - a - Y-

e

0

..

F

0 0.5 I .o g u r e A l . S t a t e V a r i a b l e and A d j o i n t V a r i a b

2;O Time (Min.)

e f o r Example 1.

Page 42: f +#PPM .*d'/-C 2 rJ--& - ntrs.nasa.gov Materi a1 s Branch Submitted by the ... sensitivity calculation of transient problems with discontinuous derivative is theoretically difficult

38

n a U U t

I .6

0.8

0 I I I 1 0 4 8 12 16 Time ( M i d

1.0 -

0.5 -

0 I I I 1

0 4 8 12 16 Time (Min.)

20 -

IO-

0-/

-10 I I I t 16 Time ( M i d 0 4 8 12

Figure A2. State Variable and Ad jo in t Variable for the C u r i n g Process.