peering into moore’s crystal ball:crystal...

55
Peering into Moore’s Crystal Ball: Crystal Ball: Transistor Scaling beyond beyond the 15nm node Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology Portland Technology Development Intel Corporation Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 1

Upload: others

Post on 10-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Peering into Moore’s Crystal Ball:Crystal Ball:

Transistor Scaling beyondbeyond

the 15nm node

Kelin J. KuhnIntel Fellow

Director of Advanced Device TechnologygyPortland Technology Development

Intel Corporation

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 1

Page 2: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

AGENDA• Scaling • Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 1

Page 3: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Consistent 2-year scaling

22nm WIDE

90nm – TALL

65nm – WIDE - 0.57 m245nm – WIDE

0.346 m2

32nm – WIDE 0.171 m2

22nm – WIDE0.092 m2

90nm TALL1.0 m2 90 nm

200390 nm2003

45 nm200745 nm2007

65 nm200565 nm2005

22 nm2011

projected

22 nm2011

projected

32 nm200932 nm2009

90: 765: 8

32: 945: 9

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 2

Page 4: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Changes in ScalingTHEN

• Scaling drove down costNOW

• Scaling drives down costScaling drove down cost• Scaling drove performance• Performance constrained

Scaling drives down cost• Materials drive performance• Power constrained

• Active power dominates• Independent design-process

• Standby power dominates• Collaborative design-process

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

130nm 90nm 65nm 45nm 32nm

3

Page 5: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Consistent SRAM Density Scaling

10.00

m2 )

rea

(m

1.00

tcel

l Ar

2X bitcell area

0.10

Bit 2X bitcell area

scaling

90nm 65nm 45nm 32nm

Process generation22nm

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

K. Zhang, ISCC, 2009; M. Bohr IDF 2010

g

4

Page 6: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

AGENDA• Scaling

G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 5

Page 7: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Short Channel Control: HiK-MG

45 nm High-k/MG enabled 0.7X T E li hil d iHK+MG ToxE scaling while reducing Ig >> 25X for NMOS and 1000X for PMOS

e 2 02 0

1000X for PMOS

0 1

1

10

100

te L

eaka

ge SiON/Poly 65nm

SiON/Poly 1.5

2.0

1.5

2.01.0 V, 100 nA IOFF

45nm32nm

65nm

mA

/um

)0 0001

0.001

0.01

0.1

mal

ized

Gat

HiK+MG 45nm

HiK+MG45nm

65nm

0.5

1.0

0.5

1.090nm

NMOS

130nme

curr

ent (

65nm: Bai 2004 IEDM

0.00001

0.0001

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

VGS (V)

Nor

m NMOS PMOS

0.0

0.5

1001000 Gate Pitch (nm)

0.0

0.5

PMOSDriv

e

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

VGS (V) Gate Pitch (nm)

6

Page 8: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Ultra-thin bodyith RSD

Benefitswith RSD

Extension of l t h lplanar technology

(less disruptive to manufacturing)

Improved RDF (low doped

channel)

C tibl

channel)

Compatible with RSD

technology

Excellent channel

Potential for body bias

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

controly

7

Page 9: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

ChallengesUltra-thin bodyith RSD

V i ti

with RSDCapacitance

(Increased fringe to Variation:(film thickness changes affect VT and DIBL)

(Increased fringe to contact/facet)

Rext: (Xj/Tsi

limitations)

VT and DIBL)

limitations)

Strain:(strain transfer from

Manufacturing:

(strain transfer from S/D into the channel) Performance:

(transport challenges with thin Tsi)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

g(requires both thin Tsi and thin BOX)

with thin Tsi)

8

Page 10: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Ultra-thin bodyBarral – CEA-LETI / L2MP / SOITEC – IEDM 2007

Ch IBM VLSI 2009Cheng – IBM – VLSI 2009

Lg=25nmTsi=6nm

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 9

Page 11: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

MuGFET Benefits

Nearly ideal sub-th h ld l

Double-gate relaxes Tsi requirementsFin Wsi > UTB Tsi

threshold slope (gates tied together)

(less scattering, improved VT shift)

Improved RDF (low doped

channel)channel)

Excellent channel controlCan be on

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

controlCan be on bulk or SOI

10

Page 12: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

MuGFET with RSD

Benefitswith RSD

Nearly ideal sub-th h ld l

Double-gate relaxes Tsi requirementsFin Wsi > UTB Tsi

threshold slope (gates tied together)

(less scattering, improved VT shift)

Improved RDF (low doped

channel)channel)

Compatible with RSD

technology

Excellent channel control

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

gy control

10A

Page 13: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

MuGFET Benefits

Possibility for i d d t t

Double-gate relaxes Tsi requirementsFin Wsi > UTB Tsi

independent gate operation

(less scattering, improved VT shift)

Improved RDF (low doped

channel)channel)

Excellent channel control

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

control

10B

Page 14: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

MuGFET ChallengesVariation

(Mitigating RDF but acquiring Gate wraparound

(Endcap coverage)Capacitance Hsi/Wsi/epi) (Endcap coverage)Capacitance (fringe to contact/facet)(Plus, additional “dead

space” elements)

Small fin pitch

space elements)

Small fin pitch (2 generation scale?)

Fin/gate fidelity on 3’D(Patterning/etch)

Rext: (Xj/Wsi

Topology(Polish / etch challenges)

Fin Strain engr.(Effective strain

t f f fi

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

( jlimitations)

challenges)transfer from a fin into the channel)

11

Page 15: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Kawasaki – Toshiba / IBM – IEDM 2009 MuGFET

Sim

Jurczak – IMEC - SOI 2009

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 12

Page 16: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Nanowire Benefits

Nearly ideal sub-th h ld l

Nanowire further

threshold slope (gates tied together)

Nanowire further relaxes Tsi / Wsi

requirementsImproved RDF

(low doped channel)channel)

Excellent channel control

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

control

13

Page 17: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

BenefitsNanowire

Nearly ideal sub-th h ld l

Nanowire further

threshold slope (gates tied together)

Nanowire further relaxes Tsi / Wsi

requirementsImproved RDF

(low doped channel)channel)

Compatible with RSD

technology

Excellent channel control

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

gy control

13A

Page 18: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Nanowire ChallengesGate conformality

Capacitance (fringe to contact/facet)

Gate conformality(dielectric and metal)

(Plus, additional “dead space” elements)

Integrated wire fabrication

Wire stability(bending/warping)

Variation(Mitigating RDF but

wire fabrication (Epitaxy? Other?)

(bending/warping)

acquiring a myriad of new sources)Mobility degradation

(scattering)

Fi / t fid lit 3’D

Rext:

Fin Strain engr.(Effective strain

transfer from wire

Fin/gate fidelity on 3’D(Patterning/etch)

Topology

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

(Xj/Wsi limitations)

into the channel)Topology

(Polish / etch challenges) 14

Page 19: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Nanowire FETsDupre – CEA-LETI – IEDM 2008

Bangsaruntip – IBM – IEDM 2009

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 15

Page 20: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Nanowire FETsHashemi/Hoyt – MIT IEDM 2008 EDL/ESSDRC 2009IEDM 2008 EDL/ESSDRC 2009

Moselund – Ecole Polytechnique, SwitzerlandIEDM 2007

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 16

Page 21: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Vertical Architectures

BenefitsArchitectures

Vertical orientation50% reduction in

“plan view” density

Vertical orientation may enable new circuit concepts

Reduced vertical i t t

Possibility for different N/P materials/orientations

interconnect capacitance

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 17

Page 22: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Vertical Architectures

ChallengesArchitectures

Rext: (Xj/Wsi

Thermal processing (Top layer may need to

Gate conformality(dielectric and metal)(Xj/Wsi

limitations)(Top layer may need to

be processed over existing bottom layer)

(dielectric and metal)

Fin/gate fidelity on 3’DContacts

(Diffusion-diffusion,Gate gate contactsTopology

Fin/gate fidelity on 3 D(Patterning/etch)

Gate-gate contacts extremely challenging)

Topology(Polish / etch challenges)

Lithography(May double the number

of FE critical layers) Capacitance (fringe to contact/facet)

Strain engineering(more challenging

Variation(Mitigating RDF but

(fringe to contact/facet)(Plus, additional “dead

space” elements)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

(more challenging than single layer)

( g gacquiring a myriad

of new sources) 18

Page 23: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

VerticalBatude – CEA LETI - IEDM 2009 – stacked 110/100

Jung – Samsung - IEEE TED 2010 – 3‘D stacked 6T

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 19

Page 24: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

TFET (Tunneling Field-Effect Transistor)

Vd

VgPrinciple of operation• Band-to-band- tunneling through source

barrier, modulated by gate field

Gate

Source Drain

Vd

P+ i-InAs Nbarrier, modulated by gate field

Advantages• Steep (< 60 mV/dec) sub-threshold slope

L I /I ff ti• Large Ion/Ioff ratio

Disadvantages• Low drive currentsLow drive currents• Ambipolar conduction• Unidirectional conduction• Potentially high hot-e- effects

Technology Intercept• Unlikely candidate for Si, Ge, or Si1-xGex

systems (drive currents too low)Tunneling barrierssystems (drive currents too low)

• Probably needs III-V band-gap engineering, perhaps with “broken-gap”

Courtsey M. Luisier (Purdue) M. Luisier and G. Klimeck, EDL, 2009

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 20

M. Luisier and G. Klimeck, EDL, 2009

Page 25: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Sensitivity to Source Doping VariationTFET Source Doping Gradient

1E+20

1E+21

G

TFETTSi = 5nm, Lg = 20nm, Vds = 0.5V

1E-071E-061E-05

TFET behavior is very

1E+16

1E+17

1E+18

1E+19Grad 0Grad 1Grad 2

1E-131E-121E-111E-101E-091E-08

Ids

(A/u

m)

Grad0

TFET behavior is very sensitive to the source

doping “shape”

1E+14

1E+15

1E 16

-4 -2 0 2 4 6X (nm)

1E-171E-161E-151E-141E 13

0.0 0.2 0.4 0.6 0.8 1.0

Grad0Grad1Grad2

Vgs (V)

MOSTSi = 5nm, Lg = 20nm, Vds = 0.5V

1E-02MOS Source Doping Gradient

1E+21

1E-05

1E-04

1E-03

(A/u

m)

1E+19

1E+20 Grad0Grad1Grad2

MOS behavior has little sensitive to the source

doping “shape”

1E 09

1E-08

1E-07

1E-06

Ids

Grad0Grad1Grad21E+17

1E+18

-4 -2 0 2 4 6

p g p

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

1E-090.0 0.2 0.4 0.6 0.8 1.0

Vgs (V)

-4 -2 0 2 4 6X (nm)

21

Page 26: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Best Demonstrated TFETs• Still MUCH lower drive currents

than conventional MOSR i b d i i

1 .0 0 E -0 4

1 .0 0 E -0 3

1 .0 0 E -0 2

32nm MOS@ Vds = 0.8V

• Require band-gap engineering with hetero-junction layers

• Sub-threshold slope still poor1 .0 0 E -0 7

1 .0 0 E -0 6

1 .0 0 E -0 5

[1]

1 .0 0 E -0 8

0 0 .2 0 .4 0 .6 0 .8 1

S. Mookerjea et al., IEDM ‘09

[1] K. Jeon, et al., VLSI (11.4.1.-1) 2010 [2] W. Choi et al., IEEE-EDL vol.28, no.8, p.743 (2007)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

[ ] , , , p ( )[3] F. Mayer et al., IEDM Tech Dig., p.163 (2008)[4] T. Krishnamohan et al., IEDM Tech Dig., p.947 (2008)

22

Page 27: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

AGENDA• Scaling

G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 23

Page 28: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Transistor Performance Trend1.5

1.0 V, 100 nA I OFF32nm

Strain

Drive1.0

45nm

65nm

Strain

Hi-k-MG

OtherDrive Current (mA/um) 0.5

65nm

90nm

130nm

“Classic” scaling

0.0

PMOS

St i i iti l i di t i d t i t li

1001000Gate Pitch (nm)

Strain is a critical ingredient in modern transistor scalingStrain was first introduced at 90nm, and its contribution has

increased in each subsequent generation

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

q g

24

Page 29: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Strain in modern d i

Stress memorization

devices

Wei, VLSI 2007

Ghani, IEDM 2003

Mayuzumi, IEDM 2007Mayuzumi, IEDM 2007

Auth VLSI 2008

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

Yang, IEDM 2008Auth, VLSI 2008

25

Page 30: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

ORIENTATION(110) surface – top down(100) surface – top down

Non standard<110> <100>

Non-standard

(110) Surface<100> <111>

Standard wafer / direction(100) Surface / <110> channel

(100) Surface / <100>Three possible channel directions<110> <111> and <100>

<110>(100)<110>(110)

(100) Surface / 100 (a “45 degree” wafer)

Both <110> directions are the samesame.

<100><110>

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 26

Page 31: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

ORIENTATION(110) surface – top down(100) surface – top down

Non standard<110> <100>

Non-standard

(110) Surface<100> <111>

Standard wafer / direction(100) Surface / <110> channel

(100) Surface / <100>Three possible channel directions<110> <111> and <100>

<110>(100)<110>(110)

(100) Surface / 100 (a “45 degree” wafer)

Both <110> directions are the samesame.

<100><110>(100) BEST NMOS (110) <110> BEST PMOS

YangAMD/IBM EDST 2007

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 26A

Page 32: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Orientation and Strain:More complex for non-(100) orientations

(001) Surface (k=0) (001) Surface Vg=-1V(001) Surface

Vg=-1V, Sxx=-1GPa(100)

More complex for non (100) orientations

<110>

(110) Surface (k=0) (110) Surface Vg=-1V(110) Surface

Vg=-1V, Sxx=-1GPa(110)

<110>

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 89

BULK 1’D CONFINED 1’D CONFINEDSTRAINED

Kuhn/Packan, Intel, IEDM 2008 27

Page 33: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Si vs Ge MOSFETs

Gate

Drainn-Ge

Gate

Drainn-GeSource

DrainSource

Drain

The introduction of manufacturable HiK-MG

Intel 45nm HiK-MG Si device [43] Intel HiK-MG Ge device

transistors has led to the reconsideration of Ge channels

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 28

Page 34: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Ge Historical Issues: Still critical today

(eV)

Still critical today

4

5

n A

ffini

ty

150

200

V/c

m

Si (no strain)Ge 100%Ge 55%SiGe 25%

2

3

d El

ectr

on

100

ITY

@1M

cm2/

V.s)

SiGe 25%

0

1

ndga

p an

d

0

50

MO

BIL (c

0Si Ge InP GaAs InSbB

an

010 15 20

TOXE (A)

Narrow Bandgap Poor Quality Dielectric

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 29

Page 35: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Narrow Bandgap

1.2

V)

100000

V.s)

BTBTSourceAdapted from Fischetti [7], Krishnamohan [60]

Adapted from Saraswat [59], Krishnamohan [60]

0.6

0.8

1

andg

ap (e

V

10000

ity (c

m^2

/V

Eg

||h

e

Krishnamohan [60]

1 E 05

1.E-04

1.E-03

m]0.2

0.4

0.6

Ener

gy B

a

1000

Hol

e m

obiliEg

Eg

Drain

DRAIN

1.E-07

1.E-06

1.E-05

Id, I

s [A

/um DRAIN

High Junction Leakage

00 20 40 60 80 100

SiGe (PERCENTAGE)

100

HSource

1.E-09

1.E-08

-1.5 -0.5 0.5 1.5Vg - Vt [V]

SourceS Ge ( C G )

Band-to-band tunneling: challenge for low Eg materials

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 30

Page 36: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Dielectric Quality

GeGe to

GeGe/GeGeOO22

GeGeOO22(110)

sub‐oxide oxide transition

GeGe(111)

Heynes, 2008 [9]

Since HiK-MG dielectrics typically form with a bilayer (the HiK + yp y y (an interface layer) the challenge of germanium oxide still exists.Germanium oxide exists in several morphologies, unfortunately,

most are hydroscopic and/or volatile

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

most are hydroscopic and/or volatile.

31

Page 37: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Ge Benchmarking

B t il

Irisawa2005

Romanjek2008

1.E-04

1.E-03Yamamoto

2007

Batail2009

Nicholas 2007

1.E-06

1.E-05

ff (A

/um

)

Wang

1.E-08

1.E-07IofWang

2007 Zimmerman2006

1.E-090 200 400 600 800 1000

Ion (mA/um)

Tezuka2006

A d i

Hellings2009

Andrieu2005

Harris2007

Mitard2009

Liao2008

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

2007

32

Page 38: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

III-V: The Lure of High Mobility

nd

ty (

eV)

ctro

n2-

V.s)

4

5 1000000

ndga

pa

on A

ffini

and

Elec

ity (c

m2

2

3

4

1000

Ban

Elec

tro

Hol

e a

Mob

il

0

1

Si Ge InP GaAs InSb1

Ad t d f J K li I t l VLSI SC 2007

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

Adapted from J. Kavalieros – Intel - VLSI SC 2007K. Kuhn – ECS 2010

33

Page 39: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

III-V MOSFETs:“D it f t t b ttl k”

From R. Kim

“Density-of-states bottleneck”

O t f MOSFET• On-current of a MOSFET

• Velocity υ

I Q

y– Diffusive : mobility μ, υ = μE– Ballistic: injection velocity υinj

– Light m* → high μ, high υinj

• Charge Q G hQ C V V g Q– MOS limit (CQ » Cox), C ≈ Cox

– Light m* → less D (CQ), less C, less QM i f hi id (l )

1 1 1

G th

Q

Q C V V

C C C

– More important for thin oxide (large Cox),

“DOS bottleneck”2

ox Q

Q

C C C

C q D

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 34

Page 40: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Use of L-valleys: GaAs From R. Kim

• GaAs 4 nmkyy

[001][011]

single band from Γ

Small DOS with high vinjHigh DOS with low vinj

8 L-valleys

kx[010]

Γ

(100)

ky[ 1 12]

( )

[-1-12][-211] Multiple bands from

Γ and LMore DOS with high vinj

kx[-110]

(111)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

( )

35

Page 41: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Different body thicknesses (EOT=1.0 nm)

4 nm2 nm 8 nm

GaAs>InGaAs>GaSb>Ge>Si GaSb,InGaAs>Ge,GaAs>Si InGaAs>GaSb>Ge,GaAs>Si

Diff t b d thi k (EOT 0 5 )Different body thicknesses (EOT=0.5 nm)

42 84 nm2 nm 8 nm

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

GaSb>GaAs>Ge>Si>InGaAs GaSb>Ge>GaAs>Si,InGaAs GaSb>Ge>GaAs, InGaAs>Si

From R. Kim

Page 42: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

AGENDA• Scaling

G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 37

Page 43: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Planar Resistive Elements

RCONTACTRCONTACTRCONTACT

RSILICIDE

RCONTACT

RSILICIDE

RINTERFACERINTERFACE

RACCUMULATION

R

REPI RACCUMULATION

R

REPI

RSPREADINGRSPREADING

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38

Page 44: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Planar Resistive ElementsRacc: Sub-melt Laser Anneal

1E+19

1E+20

1E+21

1E+22

trat

ion

(ato

ms/

cm3)

#0 - No Laser#4 - 91%, 60us#5 - 88%, 60us#6 - 85%, 60us#7 - 54%, 200us

q

RCONTACTRCONTACT

1E+17

1E+18

0 10 20 30 40 50 60

Depth (nm)

Con

cent

Phosphorus

Depth (nm)

Kuhn IWJT 20010RCONTACT

RSILICIDE

RCONTACT

RSILICIDE

Kuhn, IWJT 20010

RINTERFACERINTERFACE1E+20

1E+21

(cm

-3)

Racc: Solid-phase Epi Regrowth

RACCUMULATION

R

REPI RACCUMULATION

R

REPI

1E+17

1E+18

1E+19

Con

cent

ratio

n

B in Si

RSPREADINGRSPREADINGKuhn, IWJT 20010

0 40 80 120Depth (nm)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38A

Page 45: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Planar Resistive ElementsRacc: Sub-melt Laser AnnealRinterface: Reduction inS h ttk B i H i ht

B

NqR expinterface

1E+19

1E+20

1E+21

1E+22

trat

ion

(ato

ms/

cm3)

#0 - No Laser#4 - 91%, 60us#5 - 88%, 60us#6 - 85%, 60us#7 - 54%, 200us

q

1.1

1.3Schottky theoryExperiment

4th period transition 6th period transition 5th period transition metals

Pt78;6

Ir

Schottky Barrier Height

DNinterface

RCONTACTRCONTACT

1E+17

1E+18

0 10 20 30 40 50 60

Depth (nm)

Con

cent

Phosphorus

Depth (nm)

Kuhn IWJT 20010i(e.

v.)

0.7

0.9

metals metalsmetals

Ti22;4

V23;4

Cr

Nb41;5

Ni28;4

Co27;4Fe

26;4Mn25;4

Ir77;6

Os76;4

Re75;6

W74;6

Ta

Pd46;5

Rh45;5Ru

44;5Mo42;5

Desired for PMOS

RCONTACT

RSILICIDE

RCONTACT

RSILICIDE

Kuhn, IWJT 20010

nS

Si Mid-Gap

0.3

0.5Lanthanides

Cr24;4 Zr

40;5

Y39;5

73;6Hf72;6

Er68;6

Dy66;6

Gd64;6

Yb70;6

RINTERFACERINTERFACE1E+20

1E+21

(cm

-3)

Racc: Solid-phase Epi Regrowth

0.1

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Desired for NMOS

RACCUMULATION

R

REPI RACCUMULATION

R

REPI

1E+17

1E+18

1E+19

Con

cent

ratio

n

B in Si

Schottky Barrier Height Reduction is a critical area for development. Techniques under investigation include

exotic alloys, implants, and Fermi-unpinning layersRSPREADINGRSPREADING

Kuhn, IWJT 20010

0 40 80 120Depth (nm)

y , p , p g y

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38B

Page 46: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Planar Resistive Elements

Rcontact: Decreased Resistance of the Contact Metal

RCONTACTRCONTACT Kuhn IWJT 20010

of the Contact Metal

RCONTACT

RSILICIDE

RCONTACT

RSILICIDE

Kuhn, IWJT 20010

RINTERFACERINTERFACE

RACCUMULATION

R

REPI RACCUMULATION

R

REPI Topol, VLSI 2006Copper Contacts

RSPREADINGRSPREADINGKuhn, IWJT 20010

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 38C

Page 47: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Schottky barrier S/D – an option? Electron leakage set by Eg-SBH • In a metal SB MOS S/D• In a metal SB-MOS, S/D

forms an atomically abrupt Schottky-barrier having the height bheight b.

• The extreme limit for metal in the S/D regions (with

i t d i t iassociated improvements in Rext)

• Unconventional operation

Metallic SD Conventional

p(field emission device in the ON state)

• Needs complementaryLarson – Spinnaker

TED 2006Hole barrier set by SBH

Needs complementary devices (midgap silicide or two silicides)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 47

y

39

Page 48: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Schottky barrier S/D – an option? Zh IEEE TED M 2009

• In a metal SB MOS S/D

Electron leakage set by Eg-SBH

Zhu IEEE TED May 2009

• In a metal SB-MOS, S/D forms an atomically abrupt Schottky-barrier having the height bheight b.

• The extreme limit for metal in the S/D regions (with

i t d i t i Two possible conduction paths:

Thermionic over the barrier good SS slopeassociated improvements in Rext)

• Unconventional operation

Thermionic – over the barrier – good SS slope Tunneling – through the barrier – poor SS slope

p(field emission device in the ON state)

• Needs complementaryMetallic SD Conventional

Needs complementary devices (midgap silicide or two silicides)

Larson – SpinnakerTED 2006Hole barrier

set by SBH

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 48

y

39A

Page 49: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Schottky barrier S/D – an option? Electron leakage set by Eg-SBH

Benefits

• Low bulk resistance contacts to the channelLow bulk resistance contacts to the channel• Very abrupt junctions • No random s/d dopant fluctuation effects• Minimize s/d carrier-carrier scattering effects

Challenges

g

• Poor experimental drive currents• Requires bandedge Schottky barriers • Ambipolar conduction

Metallic SD Conventional

Ambipolar conduction (high drain-body leakage for bulk devices)

• Early contact formation limits midsection process temperatures

Larson – SpinnakerTED 2006Hole barrier

set by SBH

p p• Need alternative approach for s/d stressors

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

y

39B

Page 50: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

AGENDA• Scaling

G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 40

Page 51: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Planar Capacitive Elements

Cfringe to Contact

CjunctionCfringe to

facet

Cfringe to diffusion (of/if)

Gated-edge junction Cxud - device

component of Cov

( )

Cchannel component

(XUD-based)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

Area junction of Cgate

Kuhn, Intel, IEDM SC 2008 41

Page 52: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Planar Capacitive Elements

Cfringe to Contact

CjunctionCfringe to

facet SiBCN (Low-K) SPACERKo –TSMC

Cfringe to diffusion (of/if)

VLSI 2008

Gated-edge junction Cxud - device

component of Cov

( )

Cchannel component

(XUD-based)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010

Area junction of Cgate

Kuhn, Intel, IEDM SC 2008 41A

SPACER REMOVALLiow – NUS Singapore

EDL 2008

Page 53: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

AGENDA• Scaling

G l• Gate control• Mobility• Resistance• CapacitanceCapacitance• Summary

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 42

Page 54: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Looking ForwardLooking ForwardLow risk

E h t i t i t h lEnhancements in strain technologyEnhancements in HiK/MG technology

Medium RiskOptimized substrate and channel orientation

Reduction in MOS parasitic resistanceReduction in MOS parasitic resistanceReduction in MOS parasitic capacitance

High riskUTB devices / MuGFETS

NanowiresNanowires3’D Stacked Devices

Advanced materials (Ge/III-V)

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 43

Page 55: Peering into Moore’s Crystal Ball:Crystal Balldownload.intel.com/pressroom/pdf/kkuhn/Kuhn...2010/09/29  · AGENDA • Scaling • Gate control • Mobility • Resistance • Capacitance

Q&AQ&A

Kelin Kuhn / Int’l Symp. on Adv. Gate Stack Technology/ Sept. 29th, 2010 44