performance of electromagnetic waves of a wide … · 2018. 12. 10. · specific conductivity of...

11
ELEKTRYKA 2017 Zeszyt 1-2 (241-242) Rok LXIII Andrzej PRZYTULSKI Opole University of Technology PERFORMANCE OF ELECTROMAGNETIC WAVES OF A WIDE FREQUENCY SPECTRUM IN CHOSEN REPRODUCTIVE ORGANS Summary. The electrical conductivity and relative permittivity of chosen reproductive organs versus frequency of electromagnetic wave penetrating these organs have been presented in the paper. They have been used for determining a dielectric loss angle tangent, which constitutes the basis for defining the kind of medium in which the wave may be propagated. The change in the wavelength, the propagation speed and the conventional depth of wave's penetration into different organs were calculated. Keywords: electromagnetic wave parameters, ovaries, testicles, uterus, prostate, uterine cervix ZACHOWANIE SIĘ FAL ELEKTROMAGNETYCZNYCH O SZEROKIM SPEKTRUM CZĘSTOTLIWOŚCI W WYBRANYCH NARZĄDACH PŁCIOWYCH Streszczenie. W artykule przedstawiono przewodności właściwe i względne przenikalności elektryczne wybranych narządów płciowych, w funkcji częstotliwości wnikającej do nich fali elektromagnetycznej. Posłużyły one do wyznaczenia tangensa kąta stratności, który jest podstawą do określenia rodzaju środowiska, w jakim rozprzestrzeniać się będzie fala. Obliczono zmianę długości fali, prędkości jej rozchodzenia się oraz umowną głębokość jej wnikania do poszczególnych narządów. Słowa kluczowe: parametry fali elektromagnetycznej, jajniki, jądra, macica, prostata, szyjka macicy 1. INTRODUCTION The presented research did not aim at proving negative impact of electromagnetic fields on human organisms (or at proving the absence of such impact). The investigation focused on demonstrating, how parameters of electromagnetic wave change, when the wave passes from non-conducting environment (air) to other more or less conducting environments, such as selected sexual organs. The type of new environment is determined by the tangent of dielectric loss angle, which in turn depends on frequency. When tg falls below ten, then we assume that environment is weakly conductive. The most important parameter of the

Upload: others

Post on 19-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • ELEKTRYKA 2017 Zeszyt 1-2 (241-242) Rok LXIII

    Andrzej PRZYTULSKI Opole University of Technology

    PERFORMANCE OF ELECTROMAGNETIC WAVES OF A WIDE FREQUENCY SPECTRUM IN CHOSEN REPRODUCTIVE ORGANS

    Summary. The electrical conductivity and relative permittivity of chosen reproductive organs versus frequency of electromagnetic wave penetrating these organs have been presented in the paper. They have been used for determining a dielectric loss angle tangent, which constitutes the basis for defining the kind of medium in which the wave may be propagated. The change in the wavelength, the propagation speed and the conventional depth of wave's penetration into different organs were calculated.

    Keywords: electromagnetic wave parameters, ovaries, testicles, uterus, prostate, uterine cervix

    ZACHOWANIE SIĘ FAL ELEKTROMAGNETYCZNYCH O SZEROKIM SPEKTRUM CZĘSTOTLIWOŚCI W WYBRANYCH NARZĄDACH PŁCIOWYCH

    Streszczenie. W artykule przedstawiono przewodności właściwe i względne przenikalności elektryczne wybranych narządów płciowych, w funkcji częstotliwości wnikającej do nich fali elektromagnetycznej. Posłużyły one do wyznaczenia tangensa kąta stratności, który jest podstawą do określenia rodzaju środowiska, w jakim rozprzestrzeniać się będzie fala. Obliczono zmianę długości fali, prędkości jej rozchodzenia się oraz umowną głębokość jej wnikania do poszczególnych narządów.

    Słowa kluczowe: parametry fali elektromagnetycznej, jajniki, jądra, macica, prostata, szyjka macicy

    1. INTRODUCTION

    The presented research did not aim at proving negative impact of electromagnetic fields on human organisms (or at proving the absence of such impact). The investigation focused on demonstrating, how parameters of electromagnetic wave change, when the wave passes from non-conducting environment (air) to other more or less conducting environments, such as selected sexual organs. The type of new environment is determined by the tangent of dielectric loss angle, which in turn depends on frequency. When tg falls below ten, then we assume that environment is weakly conductive. The most important parameter of the

  • 8 A. Przytulski

    presented calculations is the depth of penetration of electromagnetic wave into the selected organ. A significant simplification which has been adopted here is that electromagnetic wave penetrates the given organ directly from the air. Wave’s passage through skin, muscles or fatty tissue has not been taken into account. The error of the presented results is therefore slightly higher than it should be, in particular where conventional penetration depth is estimated.

    2. ELECTROMAGNETIC SPECTRUM IN THE ENVIRONMENT

    Electromagnetic waves surrounding us are nowadays characterized by a very wide frequency spectrum. The longest waves, with extremely low frequency and wavelength attaining from several tens to several hundreds of megameters (frequency starting at several hertz) are used e.g. for submarine communication. Transmission of electrical energy in the power grid as well as in electric traction of ac voltage of 16⅔ Hz (western Europe) is accompanied by very long waves. Modern navy transmitters operate at frequencies below 30 kHz (e.g. DHO38 – radio transmitter in German Navy, used for sending coded signals to NATO submarines). Commercial radio waves are characterized by wavelengths from 10 km do 1 m (30 kHz – 300 MHz) for LW, MW, SW and ultra-short ranges. These waves are used for purposes other than radio and television. For instance, the time standard DCF77, located in Mainflingen near to Frankfurt am Main, operates at frequency of 77.5 kHz (longwave). Medium waves are widely used in medicine for so-called surgical knives. The use of short waves is very diverse. The shortwave frequencies listed above are used (among other applications) for High Frequency Active Auroral Research Program (HAARP), i.e. military research programme carried out by the air forces, navy and ministry of defence in USA. According to the words of programme authors: “the goal of the programme is to understand, simulate and control processes taking place in the ionosphere which might influence communication and electronic monitoring systems” [4]. The short waves are also used in diathermy and model-making. Ultra-short waves (UHF) are widely used in different applications. They are utilized e.g. in radio transmitters, TV transmitters, radars, MR (magnetic resonance) imaging. Gigahertz waves are used in numerous devices both military and civilian, such as: GPS, wireless information networks, military radars, meteorological radars etc. Changes of wave parameters in ovaries, testicles, uteri, prostates and uterine cervices in the frequency range of 10 Hz–100 GHz are presented in this paper.

  • Performance of electromagnetic waves... 9

    3. ELECTRICAL PARAMETERS OF SELECTED SEXUAL ORGANS

    Specific conductivity of selected sexual organs versus frequency is presented in Figs.1 and 2. Upper frequency limit is 1 GHz in Fig.1. Within this range, conductivities do not exceed 1.4 S/m. In Fig.2 (microwave range) a significant increase of this parameter may be observed, up to several tens of S/m at frequency equal to 100 GHz. Since there is no major difference between specific conductivity of testicles and prostate, red line coincides with violet one. In Fig.2 this effect relates to testicles and prostate as well as uterus and uterine cervix, hence only three curves are visible.

    Fig. 1. The electrical conductivity of chosen reproductive organs vs. frequency ranging from 10 Hz to 1 GHz. Computations were carried out using applet from reference [6]. This relates to Fig. 2, 3 and 4 as well.

    Rys. 1. Przewodność właściwa wybranych narządów płciowych w funkcji częstotliwości od 10 Hz do 1 GHz. Obliczeń dokonano z wykorzystaniem apletu z pozycji [6] literatury. Dotyczy to również rysunków 2, 3 i 4.

    Figs.3 and 4 show relative electrical permittivity of these organs. Since its variability is

    great (from several units to several ten of millions), logarithmic scale has been used for the y-axis. The differences between values for prostate-testicles and uterus-uterine cervix are practically inexistent.

    Figs.5 and 6 show the ratio of conducting currents to dielectric displacement currents, which are calculated using a well-known relationship ([2], [3]). The calculations were run on the basis of data shown in Figs. 1-4, differences between testicles and prostate do not occur here either. The value of tgδ is determined by the kind of environment where wave is propagated. If it exceeds 10, the formulas for well-conducting environments are used; if it is less than 10, then formulas for weakly-conducting environments are used.

  • 10 A. Przytulski

    Fig. 2. The electrical conductivity of chosen reproductive organs vs. frequency ranging from

    1 GHz to 100 GHz Rys. 2. Przewodność właściwa wybranych narządów płciowych w funkcji częstotliwości od

    1 GHz do 100 GHz

    Fig. 3. The relative permittivity of chosen reproductive organs vs. frequency ranging from 10

    Hz to 1 GHz Rys. 3. Względna przenikalność elektryczna wybranych narządów płciowych, w funkcji

    częstotliwościod od 10 Hz do 1 GHz

  • Performance of electromagnetic waves... 11

    Fig. 4. The relative permittivity of chosen reproductive organs vs. frequency ranging from 1

    GHz to 100 GHz Rys. 4. Względna przenikalność elektryczna wybranych narządów płciowych, w funkcji

    częstotliwości od 1 GHz do 100 GHz

    Fig. 5. The dielectric loss angle tangent (the ratio of conductive currents to dielectric

    displacement currents) of chosen reproductive organs vs. frequency ranging from 10 Hz to 1 GHz

    Rys. 5. Tangens kąta stratności (stosunek prądów przewodzenia do prądów przesunięcia dielektrycznego) wybranych narządów płciowych, w funkcji częstotliwości od 10 Hz do 1 GHz

  • 12 A. Przytulski

    Fig. 6. The dielectric loss angle tangent (the ratio of conductive currents to dielectric

    displacement currents) of chosen reproductive organs vs. frequency ranging from 1 GHz do 100 GHz

    Rys. 6. Tangens kąta stratności (stosunek prądów przewodzenia do prądów przesunięcia dielektrycznego) wybranych narządów płciowych, w funkcji częstotliwości od 1 GHz to 100 GHz

    4. CHANGES IN WAVE PARAMETERS

    The wavelengths of electromagnetic waves penetrating chosen sexual organs are shown in Figs. 7 and 8. The wave propagated in air is characterized by wavelength of 30000 km for 10 hertz frequency, while for 100 GHz frequency its length is equal to 3 mm. For all sexual organs the wavelengths attain 1-2 km at the start of frequency range, while at the other end of frequency range the wavelength attains c. 0.1 mm (see any curve in the diagram). The wave propagation speeds for different organs are shown in Figs. 9 and 10. The conventional depth of wave penetration is shown in Figs. 11 and 12. It has been assumed that electromagnetic wave penetrates these organs directly from the air [2] (this is a simplification, since impact of tissues surrounding the organs is neglected).

  • Performance of electromagnetic waves... 13

    Fig. 7. Electromagnetic wave length in chosen reproductive organs vs. frequency ranging

    from 10 Hz to 10 kHz Rys. 7. Długość fali elektromagnetycznej w wybranych narządach płciowych, w funkcji

    częstotliwości od 10 Hz do 10 kHz

    Fig. 8. Electromagnetic wave length in chosen reproductive organs vs. frequency ranging

    from 10 kHz to 100 GHz Rys. 8. Długość fali elektromagnetycznej w wybranych narządach płciowych, w funkcji

    częstotliwości od 10 kHz do 100 GHz

  • 14 A. Przytulski

    Fig. 9. Wave propagation speed in chosen reproductive organs vs. frequency ranging from 10

    Hz to 10 kHz Rys. 9. Prędkość rozchodzenia się fali w wybranych narządach płciowych, w funkcji

    częstotliwości od 10 Hz do 10 kHz

    Fig. 10. Wave propagation speed in chosen reproductive organs vs. frequency ranging from

    10 kHz to 100 GHz Rys. 10. Prędkość rozchodzenia się fali w wybranych narządach płciowych, w funkcji

    częstotliwości od 10 kHz do 100 GHz

  • Performance of electromagnetic waves... 15

    Fig. 11. The conventional depth of penetration of the electromagnetic wave into chosen

    reproductive organs vs. frequency ranging from 10 Hz to 10 kHz Rys. 11. Umowna głębokość wnikania fal elektromagnetycznych do wybranych narządów

    płciowych, w funkcji częstotliwości od 10 Hz do 10 kHz

    Fig. 12. The conventional depth of penetration of the electromagnetic wave into chosen

    reproductive organs vs. frequency ranging from 10 kHz to 100 GHz Rys. 12. Umowna głębokość wnikania fal elektromagnetycznych do wybranych narządów

    płciowych, w funkcji częstotliwości od 10 kHz do 100 GHz

  • 16 A. Przytulski

    4. CONCLUSIONS

    Conductivities of ovaries, testicles, prostate and uterine cervix vary from several tenths of S/m to values not greater than 1.4 S/m in the frequency range of 10 Hz to 1 GHz. Rapid increase of this parameter is observed when 10 GHz frequency is exceeded. At the upper limit of investigated frequency range (100 GHz), conductivity of prostate attains more than 60 S/m, and for remaining organs it is not less than 45 S/m.

    The relative permittivity of the discussed sexual organs varies in the investigated frequency range even seven-fold. For example, in case of uterine cervix εr decreases from almost forty million for f = 10 Hz to several units at frequency equal to 100 GHz. If frequency is higher than 1000 GHz, then relative permittivity of all investigated organs does not exceed several tens.

    The changes of specific conductivity versus frequency are described by monotonic and non-decreasing functions; the relative electric permittivity is described by monotonic and non-increasing functions (strongly decreasing functions). However, the dielectric loss coefficient tgδ (ratio of conducting current to dielectric displacement current) is not monotonic; it exhibits maxima attaining even several hundreds, in particular for ovaries, testicles and prostate (at frequency c. 250 Hz) and for uterus and uterine cervix at frequency c. 100 kHz. When frequency exceeds 1 MHz, only the uterine cervix displays properties characteristic of well-conducting environment, the remaining organs must be treated as weakly-conducting environments. The cited uterine cervix exhibits these properties as soon as frequency exceeds 4 MHz. This means that rest of the organs may be classified as weakly-conducting environments even in ultra-short frequency range.

    When wave penetrates the discussed organs, its wavelength rapidly decreases by a few orders. For instance, a wave with length of 30 000 km (at f=10 Hz) becomes shortened to c. 1.5 km in the testicles and prostate, and to c. 2 km in case of uterus. Differences in length reduction for different organs are very small, that is why practically one curve only is visible in the diagrams. When the wave is shorter (and frequency is higher), then reduction in the wavelength in comparison to wave propagated in air is less (e.g. for f = 100 GHz wavelength in all organs is c. 1 mm, while wavelength in the air is 3 mm).

    In accordance with the equation relating propagation speed, frequency and wave length, the highest speed reduction takes place for extremely long waves. At frequency f = 10 Hz and for each organ the speed is equal to c. 15 km/s as opposed to 300000 km/s in the air. Similarly, the least reduction in wave propagation speed occurs at the limits of investigated frequency range and it fluctuates between 90-100 thousand km/s.

    One parameter which might be used to assess risk of electromagnetic waves’ influence on selected sexual organs as well as entire human organism (this was not discussed in the paper) is stipulated penetration depth. At frequencies below 1 MHz this parameter is

  • Performance of electromagnetic waves... 17

    contained in the range from several hundred meters to one meter. Practically, there is no attenuation of waves in this range. The stipulated wave penetration depth for the investigated organs decreases to millimetres only when frequency exceeds 40 GHz. The appropriate relationships must be used to determine this parameter depending on type of environment. If equations for highly conductive environments are used instead of those for poorly conducting ones, the result is usually underestimated by almost 30 % [3].

    REFERENCES

    1. Luczak H.: Arbeitswissenschaft 2, vollständig bearbeitete Auflage. Springer-Verlag Berlin und Heidelberg 1998.

    2. Piątek Z., Jabłoński P.: Podstawy teorii pola elektro-magnetycznego. Wydawnictwo Naukowo-Techniczne Warszawa 2010.

    3. Przytulski A.: Własności elektryczne wybranych tkanek, narządów i płynów ustrojowych w zakresie długich i ultrakrótkich fal radiowych. Napędy i Sterowanie nr 4/2015 s. 100-103.

    4. https://de.wikipedia.org/wiki/High_Frequency_Active_Auroral_Research_Program 5. http://www.femu.rwth-aachen.de/pdf/02_Gewebeeigenschaften.pdf 6. http://www.niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.htm Dr inż. Andrzej PRZYTULSKI Opole University of Technology Faculty of Electrical Engineering Automatic Control and Informatics ul. Prószkowska 76 45-758 Opole e-mail: [email protected]

    ng3