pet thin line

9
PET Thin Line Collimator Thin Cone Pinhole Thin Cone Coded Aperture Thin Cones Compton Cone Surface Resolution (R) =2 w L d+ L 2 Efficiency w L 2 Resolution =w Resolution =w Efficiency n w d 2 Efficiency w d 2 better res. small FOV lower eff. w w w - results similar to pinhole - higher efficiency > L < d changing L,d efficiency vs sp.res. 0 – 20 mm 1 – 0.009 %

Upload: zeroun

Post on 12-Jan-2016

22 views

Category:

Documents


1 download

DESCRIPTION

w. w. d. w. > L

TRANSCRIPT

Page 1: PET Thin Line

PETThin Line

CollimatorThin Cone

PinholeThin Cone

CodedApertureThin Cones

ComptonCone Surface

Resolution (R)=2

wL

d+L2

⎛ ⎝ ⎜ ⎞

⎠ ⎟

Efficiency ∝w

L

⎝ ⎜

⎠ ⎟2

Resolution=w Resolution=w

Efficiency∝ n

wd

⎝ ⎜

⎠ ⎟ 2

Efficiency∝wd

⎝ ⎜

⎠ ⎟ 2

better res. small FOVlower eff.

w

ww

- results similar to pinhole- higher efficiency

> L <

d

changing L,defficiency vs sp.res.

0 – 20 mm1 – 0.009 %

Page 2: PET Thin Line

New Detector (Pin hole 0.7 mm tungsten, H8500 64 ch)

(1.8 x 1.8 mm2) (1.0 x 1.0 mm2)

Good pixel identification For 1.8 x 1.8 not so good for 1.0 x 1.0-> better anode sampling is needed --> H8500 256 channels

QuickTime™ and aTIFF (PackBits) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Flood Field irradiation

E = 122 keV

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600

Page 3: PET Thin Line

Read-out electronics

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

now the chip VA-HDR11 is used

Page 4: PET Thin Line

Reconstruction of a 122 keV point-like source using the coded apertures

FWHM=0.93 mm

Sensitivity=145 cps /MBq

5 cps/MBq with pinhole

Submillimeter spatial

resolution

High sensitivity

(factor ~ 30)

Page 5: PET Thin Line

cm

cm

0.5 0.9 1.4 1.8

0.2

0.5

0.7

0.9

1.1

1.4

1.6

1.8

NTHT MURA 22x22

10 20 30 40

5

10

15

20

25

30

35

40

cm

cm

0.5 0.9 1.4 1.8

0.2

0.5

0.7

0.9

1.1

1.4

1.6

1.8

10Ci in 10 s

4444 pixels

1.25 x 1.25 mm2

FoV 22 cm2.

Mask NTHT MURA 2222, =2, 1% transparent, thickness 1.5 mm W. Pitch 0.68 mm.

Line source10Ci in 10 s

cm

cm

0.5 0.9 1.4 1.8

0.2

0.5

0.7

0.9

1.1

1.4

1.6

1.8

2D source10Ci in 10 s

simulation for our desktop detector

sensitivity improved by a factor 30!

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

coded aperture

collimators

Page 6: PET Thin Line

High resolution preserving high SNR ?

Ideal pinhole +perfect resolution -zero transmitted power

Total source counts: 350k

Ideal Pinhole

Real pinhole +some signal through -degraded resolution

Total source counts: 35M

Real Pinhole

Total source counts: 35M

Coded Aperture

Coded Aperture +signal of finite pinhole +resolution of ideal pinhole

coded apertures

Page 7: PET Thin Line

0

50

100

150

200

250

300

350

400

450

50 70 90 110 130 150 170 190

image pixel

counts

0

10

20

30

40

50

60

70

80

90

100

150 170 190 210 230 250 270 290 310 330 350image pixel

counts

Peak

Valley

catene resistive vs multiwire

Page 8: PET Thin Line

Read-out electronics

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Page 9: PET Thin Line

Coded apertures

I (Image) = O (object) x A (aperture)

There are decoding patterns G allowing:

A G = then A G = Ô, in fact

Ô = R G = ( O × A ) G = O * (A G) = O * PSF

MURA 79 x 79

20 40 60

20

40

60

Product array 77 x 77

20 40 60

20

40

60

No Two Holes Touching MURA 62 x 62

20 40 60

10

20

30

40

50

60

m sequence 63 x 65

20 40 60

10

20

30

40

50

60

Example of apertures with known decoding pattern

Figure adapted from:Fenimore and Cannon, Optical Engineering, 19, 3, 283-289, 1980.