pharmacokinetics-pharmacodynamics of antiviral …...most agents. in general, the total daily dose...

55
Pharmacokinetics-pharmacodynamics of antiviral agents used to treat SARS-CoV-2 and their potential interaction with drugs and other supportive measures: A comprehensive review by the PK/PD of Anti-Infectives Study Group of the European Society of Antimicrobial Agents Markus Zeitlinger, Department of Clinical Pharmacology, Medical University of Vienna, Austria Birgit CP Koch, Hospital Pharmacy, Erasmusmc, Rotterdam, The Netherlands Roger Bruggemann, Radboud University Medical Center, Nijmegen, The Netherlands Pieter De Cock, Ghent University Hospital, Department of Pharmacy 2, Ghent University, Heymans Institute of Pharmacology, Belgium Timothy Felton, 1. Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK, 2. Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK. Maya Hites, Clinic of Infectious Diseases, CUB-Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium Jennifer Le, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, US Sonia Luque, 1. Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain 2. Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.

Upload: others

Post on 04-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Pharmacokinetics-pharmacodynamics of antiviral agents used to treat SARS-CoV-2 and

their potential interaction with drugs and other supportive measures: A comprehensive

review by the PK/PD of Anti-Infectives Study Group of the European Society of

Antimicrobial Agents

Markus Zeitlinger, Department of Clinical Pharmacology, Medical University of Vienna,

Austria

Birgit CP Koch, Hospital Pharmacy, Erasmusmc, Rotterdam, The Netherlands

Roger Bruggemann, Radboud University Medical Center, Nijmegen, The Netherlands

Pieter De Cock, Ghent University Hospital, Department of Pharmacy 2, Ghent University,

Heymans Institute of Pharmacology, Belgium

Timothy Felton, 1. Division of Infection, Immunity & Respiratory Medicine, Faculty of

Biology, Medicine and Health, The University of Manchester, Manchester, UK, 2.

Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust,

Manchester, UK.

Maya Hites, Clinic of Infectious Diseases, CUB-Erasme Hospital, Université Libre de

Bruxelles, Brussels, Belgium

Jennifer Le, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of

California San Diego, San Diego, US

Sonia Luque, 1. Pharmacy Department, Hospital del Mar, Parc de Salut Mar, Barcelona,

Spain 2. Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital

del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.

Page 2: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Alasdair P MacGowan, Bristol Centre for Antimicrobial Research and Evaluation, Infection

Sciences, Severn Pathology Partnership, North Bristol NHS Trust, Southmead Hospital,

Westbury-on-Trym, Bristol, UK

Deborah JE Marriott, 1. St. Vincent's Hospital, Darlinghurst, New South Wales, Australia, 2.

University of New South Wales, Sydney, Australia

Anouk E Muller, HaaglandenMC, The Hague and ErasmusMC, Rotterdam, The Netherlands

Kristina Nadrah, 1. Department of Infectious Diseases, University Medical Centre Ljubljana,

Ljubljana, Slovenia, 2. Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

David Paterson, 1. University of Queensland Centre for Clinical Research, Faculty of

Medicine, The University of Queensland, Brisbane, Australia 2. Department of Infectious

Diseases, Royal Brisbane and Women’s Hospital, Brisbane, Australia

Joseph F Standing, 1. Infection, Inflammation and Immunity, Great Ormond Street Institute

of Child Health, University College London, UK, 2. Department of Pharmacy, Great Ormond

Street Hospital for Children, London, UK

João P Telles, AC Camargo Cancer Center, Department of Infectious Diseases, São Paulo-SP,

Brazil

Michael Wölfl-Duchek, Department of Clinical Pharmacology, Medical University of Vienna,

Austria

Michael Thy, 1. Infectious diseases department and Intensive care unit, Hospital Bichat, Paris,

France 2. EA7323, Evaluation of perinatal and paediatric therapeutics and pharmacology,

University Paris Descartes, Paris, France

Jason A Roberts, 1. University of Queensland Centre for Clinical Research, Faculty of

Medicine & Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy,

Page 3: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

The University of Queensland, Brisbane, Australia, 2. Departments of Pharmacy and

Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia, 3.

Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University

Hospital, University of Montpellier, Nîmes France

On behalf of the PK/PD of Anti-Infectives Study Group - EPASG of the European Society of

Antimicrobial Agents (ESCMID), all authors are affiliated with this group.

Key words:

Coronavirus, DDI, Intensive Care, repurposing, off-label, PK/PD, SARS-CoV-2

Running title (40 characters and spaces):

Drugs, PK/PD and DDI for SARS-CoV-2 therapy

Corresponding author: Markus Zeitlinger, Dept. of Clinical Pharmacology, Medical

University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria,

[email protected]

Alternative corresponding author: Jason A. Roberts, The University of Queensland Centre

for Clinical Research, The University of Queensland, Royal Brisbane and Women’s Hospital,

Butterfield St, Herston, Queensland, Australia 4029; [email protected]

Page 4: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

40-word summary of the article’s main point:

This review summarizes the current knowledge of available antiviral agents and dosing

considerations for monotherapy and combination treatment of SARS-CoV-2, including

pharmacokinetic and pharmacodynamic data, drug-drug interactions and in vitro and clinical

data.

Page 5: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Abstract:

There is an urgent need to identify optimal antiviral therapies for COVID-19 caused by

SARS-CoV-2. We have conducted a rapid comprehensive review to examine antiviral

pharmacology evidence, focussing on i) the pharmacokinetics (PK) of available or proposed

therapies; ii) coronavirus-specific pharmacodynamics (PD); iii) PK and PD interactions

between proposed combination therapies; iv) a review of the pharmacology of major

supportive therapies; and v) a summary of anticipated drug-drug interactions (DDIs). We

found promising in vitro evidence for remdesivir, (hydroxy)chloroquine and favipiravir

against SARS-CoV-2; potential clinical benefit in SARS-CoV-2 with the combination of

lopinavir-ritonavir (LPV/r) plus ribavirin; and strong evidence for LPV/r plus ribavirin against

MERS for post-exposure prophylaxis in healthcare workers. Despite these emerging data,

robust controlled clinical trials remain imperative. These antiviral therapies should be used

with caution in the light of the significant drug interactions and the need to evaluate optimal

doses for treating mild versus serious infections.

Page 6: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Drug active against SARS-CoV-2

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared a global

pandemic on March 11 2020 and is currently triggering enormous, unrelenting and ever-

increasing demands on health systems in many countries. The number of patients infected

with this novel coronavirus is escalating daily with the first clinical trial for a vaccine initiated

in the United States on March 16, 2020. Meanwhile, the immediate need is to optimize

treatment for infected patients; however, the evidence for therapies against SARS-CoV-2 is

inadequate, leading many medical teams to prescribe drugs based on limited data supporting

their activity, dose or proposed duration of therapy. It is also noteworthy that many drugs are

not uniformly available throughout the world; a therapeutic option for COVID-19 in one

country may not be available in another. Invariably, this heterogeneity of practice and

accessibility may lead to patients receiving sub-optimal therapy because of a lack of

appropriate and readily available data for drugs that are obtainable in a particular country.

Coronaviruses commonly cause infection in non-human animal hosts and, as such, there are

some data available for drugs that may be applicable for use in humans. Along with pre-

clinical data from animal models, there are emerging reports from in vitro cell culture models

which provide information on the mechanism of action and anti-viral effects of tested

compounds. [1] Application of in silico modelling and simulation techniques can then

advance infection model-defined exposure targets to identify doses appropriate for human

use. While this process provides highly valuable direction for anti-viral therapeutic selection

when there is an emergent need for such drugs, these methods are analogous to those applied

in the drug development process. The clinical utility of pre-clinically validated dosing

regimens relies heavily on the available pharmacokinetic (PK) data used in the simulation

process for the particular drug. That is, PK data obtained from healthy volunteers rather than

the population of interest (i.e. severely ill patients with acute respiratory dysfunction

Page 7: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

syndrome [ARDS]) may not be applicable due to differences in bioavailability for orally or

subcutaneously administered drugs, and alterations in the drug’s volume of distribution (Vd)

and clearance (Cl) that may result in sub- or supra-optimal exposure; therefore careful

interpretation for clinical use is essential.[2]

Therapeutic agents available for COVID-19 can introduce other treatment challenges,

particularly drug interactions. Various compounds that have been proposed for the treatment

of SARS-CoV-2 are affected by the CYP450-metabolizing system as either substrates,

enzyme inhibitors or enzyme inducers and consideration of these interactions on dosing

requirements of concomitant SARS-CoV-2 or other supportive drug therapies is essential. For

instance, lopinavir/ritonavir (LPV/r) combination has strong inhibitory effects on CYP3A4

and CYP2D6, which also metabolize hydroxychloroquine (another probable agent active

against SARS-CoV-2); this may result in an increase in potential toxic effects. such as

torsades de pointes.[3]

With the significant uncertainty concerning the choice and dose of drug therapy for patients

with active COVID-19 disease, there is a clear need for a review of potential treatments and

interpretation of dosing considerations to optimize treatment based on current evidence. The

aim of this narrative review is to summarize published literature to guide treatment choices in

clinical trials, and to inform local and national policy-makers to enable clinicians to optimize

the treatment regimens for patients outside trials with SARS-CoV-2 infection.

Methods:

Literature regarding the treatment of SARS-CoV-2 is highly dynamic and evolving. Many

results are not yet published in their final form. In order to allow for a fast evaluation of the

most relevant treatment practices at hospitals worldwide, the PK/PD of Anti-Infective Study

Group (EPASG) of the European Society of Clinical Microbiology and Infectious Diseases

Page 8: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

(ESCMID) established an e-mail listserv and WhatsApp group for rapid communication. In

addition, the World Health Organization website was evaluated for reports pertinent to our

review.[4]

Once drugs of interest were identified (Table 1) their PK/PD characteristics were summarized

(Table 2). Subsequently, we searched databases to identify single and combination therapies

being evaluated in clinical trials. PubMed and Embase searches (no date limits) were then

performed with the strategy “(drug name) AND (coronavirus)” to identify clinical trials,

retrospective clinical studies, animal or in vitro studies on the drug therapies (Table 3). In

addition, information on drug-drug interactions (DDI) was extracted.[5] Teams of at least 3

authors extracted and agreed upon data presented in each table.

COVID-19 requires intensive care treatment in um to 10% of infected patients. Table 4

therefore presents most commonly used supportive drugs while Supplementary Table 5

present potential interactions of these drugs with antivirals. Unless specifically stated,

Summary of Product characteristics (SmPC) or package leaflets of medications have been

used as the basis for the assessment of DDI. These interactions are also constantly updated on

online platforms, such as the COVID-19 drug interaction webpage maintained by the

University of Liverpool.[3] Extracorporeal support treatments might become necessary under

intensive care treatment of patients with COVID-19. Influence of extracorporeal support

treatments on PK of antivirals is shown in Table 6.

COVID-19 is characterized by lymphocytopenia in most patients, thus combination with

immunosuppressant drugs may be highly problematic at least in early disease. [6] Since

immunosuppressant drugs are not given for treatment of COVID-19 complications, but rather

as potential adjunctive or concomitant therapy, they were not specifically included in this

review.

Page 9: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Results:

Table 1: Antiviral agents for the treatment of COVID-19

Table 1 contains general information about the key drugs currently suggested for the

treatment of COVID-19. Most agents were originally approved for the treatment of other viral

infections. The exception is (hydroxyl)chloroquine, an immunomodulatory drug with known

antiviral activity but that has been used primarily for over 60 years to treat malaria and, more

recently, autoimmune diseases, such as systemic lupus erythematosus and inflammatory

arthritis. Some of the agents listed have been studied with related viruses, such as Middle East

Respiratory Syndrome coronavirus (MERS). Most agents have unique mechanisms of action

against SARS-CoV-2. As COVID-19 has emerged only recently, all drugs are in various

phases of clinical trials. None of these drugs are approved for COVID-19; the dosing

regimens are based on current knowledge, derived from other indications and may change in

the future when new data become available. Dosing regimens in children are unavailable for

most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to,

or greater than, that used for other indications.

Table 2: PK/PD of antiviral agents for the treatment of COVID-19

Table 2 summarizes the data on the PK/PD properties of the agents recommended for SARS-

CoV-2 and other viruses. The available data are limited and based primarily on in vitro

studies in various cell-lines. The effect is usually presented as the half-maximal effective

concentrations (EC50) which varies between viruses. The EC50 values for other viruses are

included in the table in order to compare the efficacy against SARS-CoV-2, with a lower

EC50 corresponding to increased potency. Data on other coronaviruses have been

summarized; however, where data are unavailable for coronaviruses, other pathogens are

reported. For chloroquine and PegINF-α2β, measured intracellular concentrations are

Page 10: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

correlated with the in vitro EC50 and, as such, serve as the PK/PD index.[7, 8] However,

there are no studies comparing various PK/PD indices for these agents.

The EC50 values for remdesivir, chloroquine and ribavirin against SARS-CoV-2 were

compared with those of MERS. For both remdesivir and ribavirin, the EC50 values were

higher than for MERS, indicating that a larger dose may be needed to treat COVID-19. The

EC50 value of chloroquine was within the same range for SARS-CoV-2 and MERS. Yao et

al. compared chloroquine with hydroxychloroquine in an in vitro study and reported that

hydroxychloroquine was more potent than chloroquine [8], although caution interpreting these

results is warranted since different EC50 values were reported depending on whether

experiments were conducted for 24 or 48 hours. Since EC50 is not a time-dependent

parameter, this calls into question how reliable the estimate is and how well it may translate to

an in vivo target. Nevertheless, based on these results and physiologically-based

pharmacokinetic (PBPK) modelling, a loading dose of oral hydroxychloroquine sulfate 400

mg twice daily, followed by a maintenance dose of 200 mg twice daily for 4 days was

recommended for the treatment of COVID-19 [8], and this may at present provide our best

estimate of optimal dose. Several interferons including IFN-α, PegIFN-α2β, IFN-α1β and

IFN-β1β, have been examined for the treatment of COVID-19; however, they are not

administered as monotherapy but as adjuvant therapy with other anti-COVID-19 drugs.

The currently available data on drug efficacy and PK/PD targets for COVID-19 are

inadequate to support therapeutic drug monitoring. However, some data on plasma

concentrations are available in the literature (Table 2). When drug concentrations are

available in the literature, it may be prudent to evaluate individual concentrations in

exceptional patients such as those undergoing extracorporeal membrane oxygenation

[ECMO].

Page 11: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Table 3: Combination SARS-CoV-2 antiviral agents and associated DDI

As there are no approved SARS-CoV-2 therapies, combination therapy with agents utilizing

different modes of action may be administered in an attempt to optimize therapy until clinical

trial data become available. This combination approach is consistent with the management of

many viral, fungal and bacterial infections with sub-optimal treatment options. We aimed to

assess the evidence of repurposed antiviral combinations that were not specifically designed

to treat SARS-CoV-2.

The strongest evidence exists for LPV/r plus ribavirin therapy (retrospective, case-control

study) resulting in a reduction in mortality, acute respiratory distress syndrome (ARDS), and

viral shedding in the treatment of SARS (Table 3). However, extrapolating these data to

SARS-CoV-2 should be undertaken with caution as LPV/r and another HIV protease

inhibitor, nelfinavir, exhibit good activity against SARS [9, 10] but are less effective against

MERS.[11] Of note, we found no clinical data on (hydroxyl)chloroquine combinations;

randomised trials involving these drugs, based on their promising in vitro activity, will

provide important guidance.

We deliberately excluded analysis of combinations with remdesivir since the currently open

trials investigate only monotherapy.

Table 4: Most commonly used supportive agents (ICU, pain, fever, anticoagulation)

Supportive care with other pharmacological agents, including antibiotics, sedatives,

analgesics, and anticoagulants, need to be considered when treating with antiviral and other

re-purposed agents, particularly in the critical care setting. Table 4 lists the major drugs by

class and highlights potential interactions. In particular, caution should be exercised for

CYP3A4 DDIs with narrow therapeutic index drugs, such as anticoagulants (warfarin,

Page 12: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

acenokumarol, dabigatran, rivaroxaban, and apixaban) and immunosuppressant agents in

transplant recipients in whom additional monitoring may be required. For patients sedated

with midazolam, dose reduction should be considered when patients are treated with CYP3A4

inhibitors, such as LPV/r and darunavir/cobicistat as there is a significant risk of over sedation

resulting in unnecessary prolongation of ICU stay.[12] There are multiple potential

interactions resulting in cardiac complications, including prolonged QT interval with

(hydroxyl-) chloroquine combinations, LPV/r and darunavir/cobicistat that necessitates

monitoring. As these DDI are substantial, the balance of risk versus benefit should be

carefully considered prior to drug administration to prevent significant morbidities.

Table 5 a+b: Interaction between antivirals presented in Table 1 and supportive drugs

presented in Table 4.

The relevant interactions are provided for most drugs used for COVID-19 and co-medications

in detail in Supplementary Tables 5a and 5b.

DDI are an important consideration with all therapies used to treat COVID-19. This is

especially the case with repurposed antiretroviral drugs and aminoquinolines, such as

(hydroxy)chloroquine, which have many interactions when administered with other

medications. Since hydroxychloroquine currently seems to be the most frequently used drug

to treat COVID-19 it was separately reviewed in great detail in table 5a while DDI with other

antivirals were concisely summarized in table 5b. Clinicians treating patients infected with

SARS-CoV-2 need to carefully consider the potential for DDIs before commencing therapy.

Many DDIs may be mitigated by simple measures such as continuous ECG monitoring. The

ritonavir component of LPV/r, and similarly the cobicistat component of darunavir/cobicistat,

are deliberately used to inhibit CYP3A4 and thereby increase antiretroviral drug

concentrations. However, this leads to a significant potential to increase concentrations of

other co-administered therapies. Notably, the interaction between (hydroxy)chloroquine and

Page 13: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

other agents that may inhibit drug clearance can result in cardiac toxicity and patients should

be monitored closely. This may be especially problematic in critically-ill patients with pre-

existing cardiovascular morbidity and extreme caution should be observed. The use of

triazoles should be avoided or carefully monitored if administered concurrently with LPV/r or

darunavir/cobicistat due to DDI. Potential DDI are reported between either LPV/r and

darunavir/cobicistat and important drugs commonly used in the critical care setting. including

ketamine, rocuronium and many of the opioid agents. Utmost care is required when

considering the co-administration of these agents with the anti-retroviral drugs in critically-ill

patients. The newer investigational antiviral agents, remdesivir and favipiravir, may have a

lower potential for DDIs. However, the main concern with their use is decreased

concentrations if co-administered with enzyme inducers. Chloroquine and

hydroxychloroquine are known to prolong the QT interval; therefore, ECG monitoring is

required when they are co-administered with agents known to cause QT-interval prolongation.

Co-administration of (hydroxy)chloroquine with drugs which are known to prolong the QT

interval, such as amiodarone and flecanide, is not recommended. However, clinical

experience with these drugs is much less than the repurposed antiretrovirals. A comprehensive

and evolving DDI database has been created by the University of Liverpool and this should be

consulted for potential DDIs not covered in our review.[3]

Table 6: The effect of extracorporeal treatments on the pharmacokinetics of COVID-19

therapies

Generally, the volume of distribution (Vd) is low for hydrophilic drugs and high for lipophilic

drugs. Systemic inflammatory responses (SIRS) may occur with use of extracorporeal

treatments and cause alterations in cytochrome P450 (CYP)‐mediated metabolism. The effect

of CYP activity by SIRS is increased activity for all CYPs, except 3A4 which decreases. In

children, CYP enzymes are commonly immature in neonates and take time to reach similar

Page 14: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

activity levels to adults [13]. In this section, we summarize the principles of PK alterations

that occur with ECMO and renal replacement therapy (RRT) to impact drug exposure and

thereby dose. Although limited studies have been conducted on COVID-19 therapies,

optimized dosing should consider these potential impacts on individual patients.

The impact of ECMO

The most common mechanisms by which ECMO affects PK of drugs are sequestration by the

oxygenator and tubing in the ECMO circuit to result in decreased drug clearance (CL) [13].

While lipophilic drugs and highly protein-bound drugs are more likely to be sequestered in

the circuit, hydrophilic drugs are can be significantly affected by hemodilution and changes in

albumin concentration, potentially leading to altered protein binding and an increased Vd.

Indeed, an increased free fraction means more distribution from the central into the peripheral

compartments (i.e., tissues) leading to an increased apparent Vd [14].

The impact of renal replacement therapy

Sepsis-related acute kidney injury often develops in the context of multiple organ dysfunction

syndrome and leads to relevant modifications of several PK parameters. Moreover, high

volumes of fluid resuscitation, commonly required in critically ill patients [15], may

significantly affect the Vd of several drugs [16]. When Vd of a drug is typically small since

the drug is mostly retained in the intravascular compartment (where protein binding is not

high), clinically significant removal of small drugs by RRT is likely. In this context, the

commencement of RRT adds further complexities for dosing with the associated additional

extracorporeal CL of many antimicrobial agents. Renally excreted drugs are usually affected

by RRT to a much greater extent than hepatically excreted drugs [17]. Only the free (i.e.,

unbound) drug is cleared across the RRT filter. With the exception of a few drugs, the

molecular weight (MW) of most commonly used antimicrobial agents is lower than 1,000 Da

Page 15: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

and plays a key role, especially in diffusive RRT modalities, as the sieving coefficient (SC) of

a molecule is inversely proportional to MW. The SC is generally similar for drugs with MW

around 1,000 to 1,500 Da in convective modalities. However, in diffusive techniques, the

ratio of dialysate to plasma solute concentration (saturation coefficient [SA]) is more strictly

dependent on MW and tends to decrease progressively as MW increases [18]. Whereas

intermittent hemodialysis (IHD) is essentially a diffusive technique and CVVH is a

convective technique, CVVHDF is a combination of both. As a general rule, the efficiency of

drug removal by the different techniques is expected to be CVVHDF > CVVH > IHD, but

this can still vary greatly depending on the physicochemical properties of each drug and the

CRRT’s settings [19]. Dialyzer membrane characteristics (cutoff) may also play a key role.

Pharmacokinetic data of drugs active against SARS-CoV-2

Table 6 extrapolates basic drug physicochemistry and known PK data to predict the likely

effects of ECMO on PK. Data on the hemodialysis clearance of (hydroxy)chloroquine are

available and suggest that the high Vd of (hydroxy)chloroquine limits significant alteration in

drug concentrations.[20] As such, ECMO is predicted to have minimal impact on the drug

concentrations of (hydroxy)chloroquine, although sequestration onto the oxygenator and

circuit tubing cannot be excluded. There is also the hypothesis that (hydroxy)chloroquine

rapidly partitions into the intracellular space, potentially resulting in minor effects overall and

in the vascular compartment.[15] The PK of LPV/r in hemodialysis suggests that dosing

adjustments are unnecessary in treatment-naive patients, in part due to the high protein

binding of these drugs [21]. CVVH has no clinically relevant contribution to total CL of

favipiravir [22]. For ribavirin, CL was reduced by 50% via IHD [23] which is not be

considered significant enough to justify increasing the dose based on increases in dialysate or

RRT filtration flow rate.[24] No significant effect of RRT on IFN concentration is predicted

due to the MW of the IFN compounds which usually exceed 15 kDa. [25, 26]

Page 16: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Discussion:

We have provided an in-depth rapid review on the preclinical and clinical antiviral treatment

options for SARS-CoV-2. It should be emphasized that although the approach in the current

review is pragmatic to allow for real-time assessment of the international practice, it cannot

guarantee that all experimental combinations have been captured. However, the therapeutic

investigations for COVID-19 is highly dynamic and almost daily new treatment options are

empirically tested in clinical practice globally. More importantly, the quality of data regarding

the safe and effective use of treatment options are generally poor and strong recommendations

cannot be provided regarding the superiority of one treatment or combination over another. It

is clear with absolute certainty that robust controlled clinical trials are imperative. These

antiviral therapies should be used with caution due to the significant drug interactions and the

need to evaluate optimal doses for treating mild versus serious infections.

All drugs presented in Table 1 should be seen as possible treatment options for patients

suffering or very likely to develop a critical COVID-19 disease despite no official

recommendations being available. We found that PK/PD indices indicate that many of the

currently used treatment regimens fail to achieve sufficient concentrations when EC50 values

are compared with plasma PK, which might partially explain limited clinical success of these

combinations. Before investigation of any new combination empirically, PK/PD models with

Monte Carlo simulations should be used to predict success and, wherever possible, integrate

an adaptive design to also account for tolerability. Failure to develop these models might lead

to suboptimal drug exposure in patients, resulting in erroneous omission of therapeutic

options before exploring their full potential.

Relevant DDI exist both between combinations of antivirals and also between antivirals and

supportive therapies. Since many of the combinations have not been widely used in ICU,

healthcare providers should be alerted to closely monitor for DDI. With the omnipresent work

Page 17: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

overload related to COVID-19 crisis within hospitals and ICUs, apps or programs should be

developed to support real-time clinical decisions and dose adaption.

A recent study of LPV/r showed no effect against SARS-CoV-2 [27], but this conclusion

should be interpreted with caution. Only 199 patients were randomized and the non-

significant trend showed a 5.8% decrease in mortality with LPV/r versus no treatment. If this

is the true effect size, a larger sample size is required. Furthermore, the high overall mortality

reported in this study suggest that these patients had severe disease and the late initiation of

therapy (i.e., within 12 days after the onset of symptoms) may have affected the results. As

such, the clinical benefit of early initiation of LPV/r monotherapy should be further

investigated. In addition, the clinical trials of SARS or MERS evaluated LPV/r in

combination with ribavirin, rather than as monotherapy. Lopinavir and ribavirin have been

found to be synergistic in vitro against SARS [9], and, more importantly, the combination of

LPV/r and ribavirin reduced mortality and viral shedding when compared with historical

controls [9]. Another study in SARS reported that early initiation of combination therapy

consisting of LPV/r plus ribavirin, as compared with historical controls treated with ribavirin

alone, significantly reduced mortality and the need for ventilation; notably, there was no

effect with delayed or late therapy.[28] LPV/r plus ribavirin also significantly reduced, from

28.6% to zero, the transmission of MERS amongst healthcare workers with unprotected

encounters. Extrapolating these data to SARS-CoV-2 should be taken with caution since LPV

and the protease inhibitor nelfinavir appears to exhibit good activity against SARS [10], but

are less effective against MERS.[11] Nonetheless, LPV/r plus ribavirin should be investigated

for in vitro synergy against SARS-CoV-2 and considered for clinical evaluation if results are

promising. Of note, we found no clinical data on (hydroxy)chloroquine combinations; clinical

trials evaluating these drugs are prudent due to their promising in vitro activity and emerging

monotherapy data.

Page 18: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

In summary, there are promising therapeutic options for COVID-19 and in the absence of a

vaccine at present, it is highly likely that one of the agents mentioned in this review, or more

plausibly a combination, may emerge as a prophylactic or early treatment option with the

potential to decrease viral shedding and transmission and/or reduce disease progression to the

requirement of ventilatory support. While some readers will seek to use information in this

review to choose available therapies to treat patients currently hospitalised with SARS-CoV-

2, perhaps of greater importance is that our data are used to guide treatment regimens in large

scale adaptive trial designs that will provide definitive answers on effect sizes. The prize is to

find an antiviral, or likely as with many other infectious diseases, a combination of antiviral

agents, which limit both transmission and disease progression to a sufficient extent to relax

some of the social restrictions that have been mandated throughout the globe.

Due to the lack of highly effective and sufficiently evaluated treatment options, the most

important strategy currently is avoidance of infection by the implementation of optimal public

health measures that incorporate appropriate handwashing and social distancing. Furthermore,

the use of rapid diagnostic tests to identify silent carriers, along with active disease, and

availability of personal protective equipment to protect from transmission are critical to limit

the massive spread of infection. Lastly, the development of vaccines (in which a clinical trial

has been initiated in the United States) is vital to immediately protect individual immunity

and our global community long-term.

Funding:

No funding was received for this manuscript.

Conflict of Interest

Page 19: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

The authors declare that they have no conflict of interest associated with the content of the

current manuscript.

Acknowledgments

The review was performed by members of the PK/PD of Anti-Infectives Study Group

(EPASG) of the European Society of Clinical Microbiology and Infectious Diseases

(ESCMID)

JFS was funded by a United Kingdom Medical Research Council Fellowship

(MR/M008665/1). JAR would like to acknowledge funding from the Australian National

Health and Medical Research Council for a Centre of Research Excellence (APP1099452)

and a Practitioner Fellowship (APP1117065).

Page 20: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Tables:

Table 1. Antivirals and supportive drugs used to treat COVID-19

 

Substance Generic name

Normal approved indication

Studied virus Study phase for COVID-19a

Antiviral Mode of action

Supplier/ Major countries where available

Currently used dose for approved indication (mg)

Adult dosing in COVID-19 (mg)

Children dosing in COVID-19 (mg)

Route of administrat-ion

Route of elimination

Remdesivir

Antiviral under investigation

COVID-19, MERS-CoVb, SARS-CoVc, HCoV-229Ed, HCoV-OC43e Phase III

Viral RNAf polymerase inhibitor

Gilead® Europe USA

200mg on day 1, followed by 100mg/day (total 10-14 days)

200 mg on day 1 followed by 100mg/day on days 2-10

WT:<40 kg: 5 mg/kg load, then 2.5 mg/kg/24h WT:≥40 kg: 200 mg load, then 100 mg/24h[29] IVg n.a.h

Chloroquine Approved antimalarial

COVID-19, SARS-CoV, HCoV-OC43

Cell cultures/co-cultures; Phase III

Inhibition of endosome-mediated viral entry, and pH dependent steps in viral replication [30]

Sanofi-Aventis® Global 100 mg/24h

600mg/12h on day 1, followed by 300 mg BID on days 2-5; alternative: 500mg/12h during 5 days [8] n.a. ORi or IV

50% renal clearance (excreted unchanged in the urine); metabolized by CYP2C8, CYP3A4 and to lesser extent CYP2D6

Lopinavir Approved antiviral

COVID-19, MERS-CoV Phase IV

HIV protease inhibitor

Abbott® Global 400 mg/12h

LPV/rj 400/100mg/12h OR, 14 days[27]

(a) age:14d-12m: 16 mg/4 mg (LPV/r)/kg/12h

OR metabolized by CYP3A

Ritonavir Approved COVID-19, Phase IV HIV Abbott® 100 mg/12h LPV/r OR CYP3A4 and

Page 21: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

antiviral MERS-CoV protease inhibitor/ Boost of other protease inhibitors.

Global 400/100mg/12h OR, 14 days[27]

(b) age 12m-18y: (i) WT <15 kg: 13 mg/3.25 mg (LPV/r)/ kg/12h; (ii) WT ≥15 to 40 kg: 11 mg/2.75 mg (LPV/r)/kg/12h[31]

to a lesser extent CYP2D6 [32]

Favipiravir Approved antiviral COVID-19 Phase II

Viral RNA polymerase inhibitor

Fujifilm Toyama Chemical ® China, Japan

1600 mg/12h on day 1 then 600 mg/12h on days 2-5 Under study n.a.

OR; IV under development [33]

Genetic variant in digestive transport [P-gpk; ABCB1] and metabolism [aldehyde oxydase] to an inactive M1, urinary excretion; both metabolized by and inhibited byaldehyde oxidase [33]

Ribavirin Approved antiviral COVID-19

Cell cultures/co-cultures

Unclear: Multiple possible mechanismsl

Generic Europe

400-600mg/12h

500 mg/12h or 500mg/8h IV [34] n.a.

aerosol, OR or IV

Renal clearance (30%), some fecal excretion

Arbidol/ Umifenovir

Approved antiviral COVID-19 Phase IV

Inhibits membrane fusion, stimulation

Russian Research Chemical Pharmace 50-200mg/6h 200 mg/8h [34]

Safety unclear [35] OR

Via the feces, metabolized in hepatic and intestinal

Page 22: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

of immune system

utical Institute Russia, China

microsomes (33 metabolites known), CYP3A4[36]

Hydroxy-chloroquine

Approved antimalarial COVID-19

Phase III (NCT04261517)

Inhibition of endosome-mediated viral entry, and pH dependent steps in viral replication [30]

Sanofi-Aventis® Europe 100 mg/24h

400 mg/day for 5 days (NCT04261517) OR 400 mg/12h on day 1 followed by 200 mg/12h on days 2-5 [8] n.a. OR

50% renal clearance (excreted unchanged in the urine); metabolized by CYP2C8, CYP3A4 and to lesser extent CYP2D6

PegIFN-α2β Approved antiviral

COVID-19, MERS-CoV, HCoV

Phase IV (NCT04254874;NCT04291729)

Adjuvant treatment: enhancement of phagocytic/cytotoxic mechanisms

- Europe

1.5 μg/kg/ week SC

45-50 μg/12h (NCT04254874;NCT04291729) n.a.

Nebulized; SC

Renal clearance [37]

IFN-α1β Approved antiviral

COVID-19, MERS-CoV, HCoV

Early phase I (NCT04293887)

Adjuvant treatment: enhancement of phagocytic/cytotoxic mechanisms

- China -

10 μg/12h (NCT04293887) n.a. Nebulized

Renal clearance [37]

IFN-α Approved antiviral

COVID-19, MERS-CoV, HCoV

Not applicable (NCT04251871) [38]

Adjuvant treatment: enhancement of phagocytic/cytotoxic mechanisms

- China -

5 million IU/12h (NCT04251871; [38])

Interferon-α 200,000– 400,000 IU/kg or 2–4 μg/kg in 2 mL sterile water, nebulization Nebulized

Renal clearance [37]

Page 23: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

two times per day for 5–7 days [35]

IFN-β1β Approved antiviral

COVID-19, MERS-CoV, HCoV

Phase II (NCT04276688)

Adjuvant treatment: enhancement of phagocytic/cytotoxic mechanisms

- Europe, China

25 μg SC injection alternate day

25 μg SC injection alternate day for 3 days (NCT04276688) SC

Renal clearance [37]

 aCOVID-19: Coronavirus disease 2019; bMERS-CoV: Middle East Respiratory Syndrome coronavirus; cSARS-CoV: severe acute respiratory syndrome

coronavirus 2; dHCoV-229E: Human coronavirus 229E; eHCoV-OC43: Human coronaviruses Subtype OC43; fRNA: Ribonucleic acid; gIV: intravenous, hn.a.:

not available; iOR: Oral; jLPV/r: Lopinavir/ritonavir; kP-gP: Permeability glycoprotein; lUnclear: Multiple possible mechanisms. 1) immunomodulatory effect 2)

inhibition of inosine monophosphate dehydrogenase 3) inhibition of nucleic acid polymerases thereby inhibiting viral transcription 4) prevention of capping of

mRNA, resulting in inefficient translation of viral transcripts 5) increase of mutation rate of RNA viruses, resulting in ‘error catastrophe’ [39]    

           

                                     

Page 24: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Table 2: PK/PD of antivirals and other drugs used to treat COVID-19

Drug PDa metric (e.g. IC50b)

Type of study used for

COVID-19c experiments

EC50d/EC90e for COVID-19

(μM)

EC50/EC90 for other indications

Blood concentrations

Remdesivir EC50

In vitro (vero E6 cells)

0.77 [40] 0.09 μM (MERS-CoV)f in mice model

[41] 10 μM in nonhuman primates was reached after a dose of 10 mg/kg IV [42]

EC90 In vitro

(vero E6 cells)1.76 [40] n.a.g

Chloroquine EC50

In vitro (vero E6 cells)

1.13-5.47 [8, 40]

0.05 μM (P.vivax) in vitro [43]; 3.1 μM (HIV)h in vitro [44];

3.0 μM (MERS-CoV) in vitro [45]; 4.1 μM (SARS-CoV)i in vitro [45]

A concentration of 6.9 μM is achievable in patients after a 500 mg dose [40, 46]. However, concentrations as low as 0.5-1.0 μM were also demonstrated after 300mg/12h regimen [47]

EC90 In vitro

(vero E6 cells)6.9 [40]

0. 358 μM (P. vivax) in vitro at 30h [43]

Lopinavir/Ritonavir EC50 n.a. n.a.

LPV: 8-11.6 μM (MERS-CoV) in mice/vitro [41, 45];

LPV: 17.1 μM (SARS-CoV) in vitro [45]

Ritonavir: 24.9 μM (MERS-CoV) in mice model [41]

LPV/r: 8.5 μM (MERS-CoV) in mice model [41]

LPV Cmax values average 12.72 μM (with p2.5 of 6.36 μM to p97.5 of 23.85 μM) and ritonavir Cmax values average 0.7 μM (with p2.5 of 0.2

μM to p97.5 of 2.22 μM). [48]HNote: treatment outcomes were no

different from standard of care inhospitalised patients with COVID-19[27]

Favipiravir IC50 In vitro

(vero E6 cells) 61.88 [40] 67 μM for Ebola [49]

Concentrations of 1190 ± 478 μM were achieved 1h after Favipiravir 400mg loading

dose in nonhuman primates [50]. Median total trough (pre-dose) and average concentrations of

360 and 520μM respectively following 1200 mg/12 hours with a loading dose of 6000 mg in

Ebola-infected patients [51] with a fall in average concentration on day 4. Non-linear PK

Ribavirin EC50 In vitro

(vero E6 cells)109.50

[40] 40.94 ± 12.17 μM (MERS-CoV) in

vitro [11]

Concentration range between 25.0-10.65 μM achieved with ribavirin dose regimen of 400-

600mg/12h [52]

Page 25: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Arbidol (Umifenovir)

EC50 n.a. n.a. 24.72 μM (Avian infectious bronchitis

virus as representative for Coronaviridae) [53]

Concentrations of 1.47, 2.60 and 4.53μM achieved after 0.2, 0.4 and 0.8g doses [54]

Hydroxychloroquine EC50 In vitro

(vero E6 cells)0.72 μM [2]

Concentration >1.49 μM (>500 ng/ml) achievable following 6mg/kg/day dosing

regimen [55]

Concentration shown to

reduce viral titers

80 μM (Zika Virus) in vitro [56]

PegINFl-α2β ** EC50 n.a. n.a. 0.04 μg/L (HCVm patients) [7] Cmax of 0.53 μg/L in patients after 1.5 μg/kg

SCn [57]

INF-β1β ** EC50 n.a. n.a. 17.64 ± 1.09 UI/ml (MERS-CoV)[11], 1.37 U/ml (MERS-CoV) [58]

Concentration of 240 UI/ml following 8 Million IUSC [59]

INF-β1β ** EC90 n.a. n.a. 38.8 U/ml (MERS-CoV) [58]

aPD: pharmacodynamics; bIC50: half maximal inhibitory concentration; cCOVID-19: coronavirus disease 2019; dEC50: half maximal effective concentration;

eEC90: 90% effective concentration; fMERS-CoV: Middle East Respiratory Syndrome coronavirus; gn.a.: not available; hHIV: human immunodeficiency viruses;

iSARS-CoV: severe acute respiratory syndrome coronavirus 1; jLPV/r: lopinavir/ritonavir; kCEK: chicken embryo kidney; lINF: interferon; mHCV: hepatitis C

virus; nSC: subcutaneous.

Page 26: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Table 3. Drug-drug interactions of proposed anti-viral combinations against coronavirus

Proposed combination (with clinical trial reference if available)

Pharmacodynamic rationale

Drug-drug interactions with level of severity and therapeutic advice[60]

Level of evidence 1. Clinical trial in a coronavirus 2. Retrospective clinical data 3. In vivo animal or in vitro data

Lopinavir + Ritonavir (LPV/ra) [61]

Inhibition of replication (i.e., ritonavir boosting lopinavir)

Strong inhibition of CYP3A-mediated metabolism of lopinavir (3-fold AUCb increase) for therapeutic boosting Level of severity: wanted interaction

1. Clinical trial: No effect on mortality or viral load in 199 COVID-19c patients randomized 1:1 to LPV/r versus standard of care.[27] A further 8 randomized controlled trials are currently registered for COVID-19 2. Retrospective clinical data: Case reports in 4 patients with SARS-CoV2d receiving LPV/r demonstrated decreased viral load and ¾ patients had symptomatic improvement. No data on LPV/r monotherapy in retrospective comparisons for SARS-CoVe and MERS-CoVf

[62] 3. In vivo animal or in vitro data: a. In vitro antiviral susceptibility testing demonstrated inhibition of cytopathic effects of SARS-CoV at concentrations of 4 µg/ml ( ) and 50 µg/ml of ritonavir after 48 h[9] b. In Vero cell line, the EC50 for plaque reduction of SARS-CoV was 6 µg/ml[63] c. Molecular dynamic simulations indicated that SARS-CoV 3CL pro- enzyme could be inhibited by LPV/r[64] d. Efficacy of lopinavir against SARS-CoV may be poor because 50% of LPV remains outside the catalytic site of the main protease (demonstrated by binding analysis)[65] e. LPV was shown to have poor antiviral activity against MERS-CoV in 2 in vitro studies[11, 41], but effective in another study at 12 µM[45] f. LPV/r treated marmosets with MERS-CoV had better clinical scores, reduced pulmonary infiltrates and lower viral load in the lungs of treated animals vs. controls[66] Theoretical interaction: a. Antiviral activity of LPV/r is similar to that of LPV alone, suggesting effect is driven by LPV[9, 41]

Ribavirin + LPV/r Inhibition of Increased risk of liver 1. Clinical trials: no data

Page 27: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

[67]

replication PLUS inhibition of RNA synthesis

toxicity Level of severity: major Therapeutic advice: monitor for increased liver toxicity

2. Retrospective clinical data: a. Retrospective matched cohort study for SARS-CoV infection: 41 cases treated with LPV/r + ribavirin vs. 111 historical controls treated with ribavirin alone; better clinical outcome (ARDSg and death) at day 21 after onset of symptoms: 2.4% vs. 28.8%; p<0.001. No difference in outcome reported for early vs. delayed treatment[9] b. Multicentre retrospective matched cohort study for SARS-CoV infection: 75 cases treated with LPV/r + ribavirin vs. 977 controls treated with ribavirin. Reduction in death (2.3% vs. 15.6%; p<0.05) and intubation (0% vs. 11%; p<0.05) was evident only in the sub-group of initial treatment with LPV/r; no significant difference in the late treatment group [28] c. MERS-CoV infection: post-exposure prophylaxis with ribavirin + LPV/r in 43 healthcare workers resulted ina 40% reduction in the risk of MERS-CoV infection with no severe adverse events during treatment[68] 3. In vivo animal or in vitro data: In vitro checkerboard assay for synergy on SARS-CoV demonstrated inhibition of the cytopathic effect with a concentration of LPV of 1 μg/ml with ribavirin 6.25 μg/ml when the viral inoculum was < 50 median tissue culture infectious dose [9, 63]

LPV/r + Arbidol [67]

Inhibition of replication PLUS Inhibition of RNA synthesis PLUS Inhibition of viral entry

No clinical data available. CYP3A4 is major pathway of metabolism for arbidol; strong inhibition of CYP3A4-mediated metabolism of arbidol by ritonavir is plausible. Level of severity: unknown Therapeutic advice: monitor for increased

1. Clinical trials: no data 2. Retrospective clinical data: Case series (n=4) of mild or severe COVID-19 pneumonia successfully treated with LPV/r + arbidol + Shufeng Jiedo Capsule (traditional Chinese medicine)[69, 70] 3. In vivo animal or in vitro data: no data

Page 28: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

toxicity of arbidol (17)

Chloroquine + LPV/r Inhibition of replication PLUS Inhibition of viral entry

Increased risk of QTch prolongation (potentially dangerous interaction) Inhibition of CYP3A-mediated metabolism of chloroquine by ritonavir Level of severity: major Therapeutic advice: monitor ECGi and monitor for increased toxicity of chloroquine if used in combination. Dose reduction of chloroquine might be necessary in case of severe toxicity.

1. Clinical trials: no data, but ongoing open-label study currently in China (ChiCTR2000029741)[62] 2. Retrospective clinical data: no data 3. In vivo animal or in vitro data: no data

Darunavir (with Cobicistat) [71]

Inhibition of replication (cobicistat has no antiviral effect, only inhibits darunavir metabolism to increase concentration)

Strong inhibition of CYP3A4-mediated metabolism of darunavir by cobicistat for therapeutic boosting Level of severity: wanted interaction

1. Clinical trials: no data but ongoing trial currently (Phase 3: NCT04252274)[72] 2. Retrospective clinical data: no data 3. In vivo animal or in vitro data no data

Emtricitabine + Tenofovir (Truvada)

Inhibition of RNA synthesis (dual

No data 1. Clinical trials: no data

Page 29: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

therapy) 2. Retrospective clinical data: no data 3. In vivo animal or in vitro data: no data

Emtricitabine + Tenofovir (Truvada) + LPV/r [73]

Inhibition of replication PLUS Inhibition of RNA synthesis

Increased tenofovir absorption (i.e., 32% AUC increase; 51% Cminj increase) through P-glycoprotein inhibition Level of severity: moderate Therapeutic advice: monitor for tenofovir-associated toxicity

1. Clinical trials: no data 2. Retrospective clinical data: no data 3. In vivo animal or in vitro data: no data

Interferon + Ribavirin Immune modulation PLUS Inhibition of RNAk synthesis

No data 1. Clinical trials: no data 2. Retrospective clinical data: Multicenter observational study in critically ill patients with MERS-CoV infection. Of 349 MERS-CoV infected patients, 144 received RBV/rIFNl (rIFN-α2a, rIFN-α2b or rIFN-ß1a). Treatment was not associated with reduction in 90-day mortality, nor faster MERS-CoV RNA clearance[72] b. Retrospective cohort study of patients with MERS-CoV requiring ventilation support who received supportive care (n= 24) vs. oral ribavirin + pegylated IFN-α2a (n=20). Treatment with ribavirin + IFN-α2a was associated with significantly improved survival at 14 days, but not 28 days[74] 3. In vivo animal or in vitro data: (3,14,15) Synergistic antiviral effect between ribavirin and Type I IFN (i.e., IFN-α [63, 75], or IFN-ß[63, 75, 76]) on SARS-CoV was described in 2 studies performed in human and Vero cell lines

LPV/r + Interferon + Ribavirin

Immune modulation PLUS Inhibition of RNA synthesis PLUS Inhibition of

Level of severity: major Therapeutic advice:

1. Clinical trials: no data 2. Retrospective clinical data: case report, patient recovered[77]

Page 30: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

replication monitor for increased risk for hepatotoxicity (for combination protease inhibitor + ribavirin and protease inhibitor + interferon)

3. In vivo animal or in vitro data: no data

Hydroxychloroquine + azithromycin

Immune modulation PLUS Inhibition of viral entry

Increased risk of QTc prolongation (potentially dangerous interaction) Level of severity: Major Therapeutic advice: monitor ECG

1. Clinical trials: One open-label, non- randomized clinical study in 36 patients with confirmed SARS-CoV2 infection (interim analysis of ongoing trial)[78] Of 36 patients, 14 received hydroxychloroquine treatment, 6 received hydroxychloroquine/azithromycin combination treatment and 16 were controls. The proportion of patients with negative PCRm in nasopharyngeal samples was significantly higher in hydroxychloroquine treated patients at day 3-4-5 and 6 post-inclusion versus control patients. If hydroxychloroquine were used in combination with azithromycin, the proportion of patients with negative PCR in nasopharyngeal samples was significantly higher on days 3-4-5 and 6 when compared with patients treated with hydroxychloroquine monotherapy.

2. Retrospective clinical data: no data

3. In vivo animal or in vitro data: no data  

aLPV/r: Lopinavir/ritonavir; bAUC: area under the curve; cCOVID-19: coronavirus disease 2019; dSARS-CoV: severe acute respiratory syndrome coronavirus 2;

eSARS-CoV: severe acute respiratory syndrome coronavirus; fMERS-CoV: Middle East Respiratory Syndrome coronavirus; gARDS: Acute respiratory disease

syndrome; hQTc: corrected QT interval; iECG: electrocardiogram; jCmin: trough concentration; kRNA: Ribonucleic acid; lRDV/rIFN: Ribavirin + Recombinant

Interferon; mPCR: Polymerase chain reaction.

Page 31: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Table 4: Most commonly used supportive drugs  

Generic name Indication CYP substrate CYP inhibitor/inducer

Transporters Other metabolism

Comment Reference

ACE inhibitors

Captopril Arterial hypertension none OAT1 substrate

captopril disulphide and captopril cysteine disulphide in 50%

[79-81]

Enalapril Arterial hypertension none OATP1a1 substrate

hydrolysed to enalaprilate

[81-83]

Perindopril Arterial hypertension none hydrolysed to perindoprilate by hepatic esterase

Some ACEI undergo CYP3A4 bioactivation (animal studies), but no interactions known.

[81, 84]

Angiotensin II receptor antagonists

Irbesartan Arterial hypertension CYP2C9 CYP2C9 inhibitor

[81]

Losartan Arterial hypertension CYP2C9, CYP3A4 (minor)

CYP2C9 inhibitor

[81]

Valsartan Arterial hypertension none

substrate of OATP1B1/OATP1B3, hepatic efflux transporter MRP2 and OAT1

substrate for OATP1B1/OATP1B3, hepatic efflux transporter MRP2

[80, 85]

Anticoagulants

Acenokumarol Anticoagulation CYP2C9 (major), CYP1A2 and CYP2C19

Inhibitors of CYP2C9 may potentiate, inducers of CYP2C9, CYP2C19 or CYP3A4 may diminish the anticoagulant effect. Monitoring INR recommended.

[86, 87]

Page 32: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Apixaban Anticoagulation

CYP3A4/5 (main), CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2J2 (minor).

substrate of P-gp and BCRP

Inducers of CYP3A4 diminish, inhibitors of CYP3A4 and P-gp increase exposure; not recommended only with strong inhibitors of CYP3A4 or P-gp, others: no dose reduction necessary. Strong inducers of CYP3A4 decrease exposure by half, thus not for treatment of vital indications (PE, DVT).

[88]

Dabigatran Anticoagulation none substrate for P-gp

20% glucuronidation, 80% eliminated unchanged

[88]

Dalteparin Anticoagulation none [89, 90] Nadroparin Anticoagulation none [90, 91]

Rivaroxaban Anticoagulation CYP3A4, CYP2J2 substrate of P-gp and BCRP

CYP independent as well

Inducers of CYP3A4 diminish, inhibitors of CYP3A4 and P-gp increase exposure - interaction significant with strong inhibitors.

[88]

Unfractionated heparin

Anticoagulation none via RES [90, 92]

Warfarin Anticoagulation

CYP1A2 and CYP3A4 (R enantiomer), CYP2C9 (S enantiomer)

The efficacy of warfarin is affected primarily when the metabolism of S-warfarin is altered. Competing substrates increase, inducers decrease concentration. Monitoring INR recommended.

[93]

Anticonvulsants

Page 33: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Clonazepam Anticonvulsant/Sedation

CYP3A

CYP P450 inducers reduce concentration by 30%, inhibitors reduce BZD clearance

[94]

Diazepam Anticonvulsant/Sedation

CYP2C19, CYP3A4/5

Inhibitors of CYP3A4 and/or CYP2C19 increase, inducers of CYP3A4 reduce plasma concentration

[95]

Lamotrigin Anticonvulsant none

(major) glucuronidation via glucuronyl transferase 1A4

[96, 97]

Levetiracetam Anticonvulsant none

enzymatic hydrolysis of the acetamide group in the blood

[98, 99]

Lorazepam Anticonvulsant/Sedation

none mainly glucuronidation

[100]

Phenytoin Anticonvulsant CYP2C9, CYP2C19

inducer CYP1A2, CYP2C19 and CYP3A

[96, 101-103]

Valproic acid Anticonvulsant (minor) CYP2C9, CYP2A6, CYP2B6

inhibitor CYP2C9, CYP2C19

glucuronidation via UGT1A6, UGT1A9, and UGT2B7 (30-40%), beta-oxydation in mitochondria

Inhibits metabolism of CYP2C9 and UGT substrates, extensively bound to plasma proteins - possible displacement.

[96, 101, 104, 105]

Antimicrobial treatment

Acyclovir antiviral (herpes viruses)

none weak inhibitor CYP1A2

substrate of OAT1, possibly OAT2

Competition for OAT1. Nephrotoxicity and myelosuppression can be enhanced.

[80, 102, 104, 106]

Amikacin Antibiotic none none None, >90% Caution with other

Page 34: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

eliminated unchanged

nephrotoxic and ototoxic drugs due to potential for additive effects, neuromuscular blockade may be potentiated with neuromuscular blocking agents.

[104, 107]

Amoxicillin-Clavulanate

Antibiotic none none substrate of OAT3

[108, 109]

Ampicillin Antibiotic none none [104] Ampicillin-Sulbactam

Antibiotic none none

Anidulafungin Antifungal none chemical degradation

[110]

Azithromycin Antibiotic CYP3A4 (weak)

No significant influence on CYP3A4. QT prolongation, Darunavir/cobicistat could potentially increase azithromycin exposure (inhibition of P-gp and MRP2).

[111]

Aztreonam Antibiotic none none [112]

Benzylpenicillin Antibiotic none none substrate of OAT3

[80, 104]

Caspofungin Antifungal none

spontaneous degradation, peptide hydrolysis, N-Acetylation

When co-administering inducers of CYP P450, an increase in the daily dose of caspofungin to 70 mg, following the 70 mg loading dose, should be considered in adult patients (since exposure is 30% lower with inducer co-administration)

[113]

Cefepime Antibiotic none none [114]

Cefotaxime Antibiotic none none substrate and mild inhibitor of OAT1 and

[80, 115]

Page 35: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

OAT3 Ceftaroline Antibiotic none none [116]

Ceftazidim-avibactam

Antibiotic none none

substrate of OAT1 and OAT3 (avibactam)

none (both) [117]

Ceftazidime Antibiotic none none none [118]

Ceftolozane-tazobactam

Antibiotic none none

substrate and inhibitor of OAT1 and OAT3 (tazobactam)

tazobactam ring hydrolised

Tazobactam is a substrate and inhibitor for OAT1 and OAT3,but does not influence exposure of furosemide (as OAT1,3 substrate). Minimal potential for clinically relevant drug interactions with substrates of OAT1/3, CYP3A4, and CYP1A2.

[117, 119]

Ceftriaxone Antibiotic none none

substrate and mild inhibitor of OAT1 and OAT3

[80, 120]

Ciprofloxacin Antibiotic none inhibitor CYP1A2, CYP3A4

QT prolongation. [102, 121]

Clarithromycin Antibiotic CYP3A4 CYP3A4 inhibitor

P-gp, OATP1B1 and OATP1B3 inhibitor

Increases exposure of CYP3A4 substrates. QT prolongation.

[102, 111]

Clindamycin Antibiotic CYP3A4

Inducers of CYP P450 lower concentration, CYP P450 inhibitors increase concentration; neuromuscular blockade may be enhanced with neuromuscular blocking agents.

[122]

Colistin Antibiotic none not well Caution with other [123]

Page 36: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

characterised nephrotoxic drugs due to potential for additive effects.

Daptomycin Antibiotic none none

80% eliminated unchanged, site of metabolism not identified

Possible enhanced nephrotoxicity with nephrotoxic agents, possible enhanced myotoxicity with statins.

[124]

Doxycycline Antibiotic none none some hepatic metabolism, but not significant

CYP P450 inducers can lower concentrations (eg. rifampicin, antiepileptics).

[125]

Ertapenem Antibiotic none none

dehydropeptidase-I-mediated hydrolysis of the beta-lactam ring

[126]

Flucloxacillin Antibiotic likely CYP3A4, but no clinical relevance

none Partly secreted by active secretion via OAT1.

[127, 128]

Fluconazole Antifungal none

inhibitor CYP3A4, CYP2C9, CYP2C19

mostly eliminated unchanged

[102, 129-131]

Gancyclovir antiviral (CMV) none Nephrotoxicity and myelosuppression can be enhanced.

[104, 132]

Gentamicin Antibiotic none none

Caution with other nephrotoxic and ototoxic drugs due to potential for additive effects, neuromuscular blockade may be potentiated with neuromuscular blocking agents.

[104, 133]

Imipenem Antibiotic none none

dehydropeptidase-I-mediated hydrolysis of the beta-lactam ring

[134]

Isovuconasole Antifungal CYP3A4/5 moderate inhibitor of CYP3A4/5,

mild Pgp inhibitor

uridine diphosphate-glucuronosyltrans

Shortening of QT interval (concentration-dependant)).

[129, 135]

Page 37: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

mild CYP2B6 inducer

ferases

Levofloxacin Antibiotic none weak inhibitor CYP2C9

QT prolongation. [121]

Linezolid Antibiotic none none nonenzymatic oxydation

MAOI- interactions likely with other MAOI; increases hypertensive action - careful titration of vasopressors necessary (dopaminergic as well); with SSRI possible serotonin syndrome, thus contraindicated combination.

[136, 137]

Liposomal amphotericin B

Antifungal none [138]

Meropenem Antibiotic none none [139]

Metronidazole Antibiotic possibly CYP P450 inhibitor of CYP2C9

liver hydroxylation, oxidation and glucuronidation

Disulfiram-like reaction with alcohol.

[131, 140]

Micafungin Antifungal CYP3A4 (minor) arylsulfatase, catechol-O-methyltransferase,

Possible CYP3A4 inhibition, but not clinically relevant.

[141]

Moxifloxacin Antibiotic none

glucuronide via UGT1A1, UGT1A3 and UGT1A9 and sulphate conjugation

QT prolongation. [121, 142]

Oseltamivir Antiviral (influenza) none liver esterases [143]

Piperacillin-Tazobactam

Antibiotic none none

substrate and inhibitor of OAT1 and OAT3 (tazobactam)

Tazobactam is a substrate and inhibitor for OAT1 and OAT3, but does not influence exposure of furosemide (as OAT1,3 substrate). Minimal potential for clinically relevant drug

[109, 119, 144]

Page 38: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

interactions with substrates of OAT1/3, CYP3A4, and CYP1A2.

Rifampicin Antibiotic none

inducer of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4

inducer of P-gp and MRP2

Inducer of UGT, sulfotransferases, carboxylesterases as well.

[102, 145-147]

Tigecycline Antibiotic none none P-gp substrate not extensively metabolized

Potential interaction with P-gp inhibitors.

[148]

TMP/SMX Antibiotic CYP2C9 inhibitor CYP2C9, CYP2C8

[131]

Vancomycin Antibiotic none none None, >90% eliminated unchanged

Caution with other nephrotoxic drugs due to potential for additive effects.

[149]

Voriconazole Antifungal CYP2C19

inhibitor CYP3A4, CYP2C9, CYP2C19, CYP2B6

QT prolongation. [102, 129, 130, 150]

ARDS treatment

Atracurium/Cisatracurium

ARDS none

plasma esterases and Hoffman degradation (amide to amine)

[151]

Nitric Oxide Gas ARDS none reaction with O2, ROS and haemoglobin

[152]

Rocuronium ARDS and rapid sequence intubation

none liver esterases [151]

Immunosuppressors

Azathioprine Solid organ graft, autoimmune

none by xanthine oxidase,

Xanthine oxidase inhibitors decrease metabolism.

[104, 153, 154]

Page 39: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

conditions thiopurine methyltransferase, and hypoxanthine phosphoribosyltransferase

Cyclosporine Solid organ graft CYP3A4 inhibitor CYP 3A4

inhibitor of P-gp, BCRP, OATP1B1 and OATP1B3

[102, 155, 156]

Everolimus Solid organ graft CYP3A4 substrate and inhibitor of P-gp

Co-administration with strong CYP3A4 or P-gp inducers or inhibitors is not recommended.

[157]

Methylprednisolone

Immunosuppressant CYP3A4

CYP3A4 inhibitors increase, inducers decrease, substrates can either increase or reduce exposure.

[158]

Mycophenolate Mofetil

Solid organ graft none inhibition of OAT1 and OAT3

glucuronidation with UGT1A9 - enterohepatic recycling to mycophenolic acid (major), and (minor) acylglucuronide formation

Drugs affecting glucuronidation of MPA may change MPA exposure.

[80, 104, 159]

Tacrolimus Solid organ graft CYP3A4 inhibitor CYP3A4

P-gp inhibitor

Inhibitors of CYP3A4 increase, inducers decrease concentration; extensively bound to plasma proteins - possible displacement, tacrolimus inhibits CYP3A4, possible enhanced neuro-and nephrotoxicity in combination with neuro-or nephrotoxic agents; ECG monitoring advised in combination with drugs which prolong QT and

[102, 104, 156, 160, 161]

Page 40: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

CYP3A4 inhibitors.

Intubation Etomidate Intubation none none liver esterase [162]

Suxamethonium Intubation none none

pseudocholinesterase, butyrylcholinesterase

[163]

Vecuronium Intubation none none deacetylation in the liver

[151, 164]

Other cardiovascular treatments

Acetylsalicylic acid

platelet aggregation inhibitor

none substrate of OAT2

deacetylation [165]

Amiodarone Antiarrhythmic CYP3A4

inhibitor CYP1A2, CYP2C9, CYP2D6, CYP3A4

P-gp inhibitor QT prolongation. [102, 166, 167]

Atorvastatin Dyslipidemia CYP3A4

substrate of OATP1B1, OATP1B3 and P-gp

[102, 168]

Bisoprolol Beta blocker CYP3A4, CYP2D6 CYP2D6 inhibitors increase concentration.

Carvedilol Beta blocker CYP1A2, CYP2E1, CYP2C9, CYP3A4, CYP2D6

P-gp inhibitor CYP2D6 inhibitors increase concentration.

[81, 102]

Page 41: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Clopidogrel platelet aggregation inhibitor

CYP2C19 (main), CYP1A2, CYP2B6, CYP3A4

weak inhibitor CYP2B6, inhibitor CYP2C8 (metabolite)

esterases [169]

Digoxin Antiarrhythmic none P-gp substrate, substrate for OATP4C1

[170]

Esmolol Beta blocker none RBC esterases [171]

Furosemide Henle loop diuretic none substrate for OAT1 and OAT3

glucuronidation Electrolyte disturbances can enhance toxicity of drugs that prolong QT.

[172]

Landiolol Beta blocker none (in vitro)

hydrolysis of ester moiety by pseudocholinesterases and carboxylesterases, beta-oxydation

[173]

Levosimendan Inotropic none N-acetyl transferase-2

[174, 175]

Nicardipin Antihypertensive CYP3A4 [102, 176]

Pravastatin Dyslipidemia none substrate OATP1B3, OATP1B1

[102, 168]

Rosuvastatin Dyslipidemia

CYP2C9 (main, 10%), CYP2C19, CYP3A4 and CYP2D6

substrate of OATP1B1, OATP1B3 and BCRP

[102, 168]

Sildenafil Phosphodiesterase 5 inhibitor

CYP3A4, CYP2C9

weak inhibitor of CYP1A2, CYP2C9, CYP2C19, CYP2D6,

[177]

Page 42: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

CYP2E1 and CYP3A4, but not clinically relevant

Simvastatin Dyslipidemia CYP3A4

substrate of OATP1B1, OATP1B3 and P-gp

[102, 168]

Ticagrelor platelet aggregation inhibitor

CYP3A4 mild CYP3A4 inhibitor

P-gp substrate and weak inhibitor

[178]

Uradipil Antihypertensive likely CYP P450 substrate

[179]

Verapamil Antiarrhythmic substrate CYP3A4, CYP3A5, CYP2C8, CYP2E1

CYP3A4 and CYP1A2 (weak) inhibitor

Pgp and OCT1 inhibitor

CYP3A4 inhibitors reduce clearance.

[81, 102]

Other supportive treatment

Hydrocortisone immunosuppressive (under study for COVID-19)

CYP3A4

CYP3A4 inhibitors increase, inducers decrease concentration; substrates can either increase or reduce exposure

[180]

Lansoprazole Proton-pump inhibitors

CYP2C19, CYP3A4 (minor)

in vitro inducer CYP1A2

Inducers affecting CYP2C19 and CYP3A4 reduce exposure

[102, 181, 182]

Omeprazole Proton-pump inhibitors

CYP2C19, CYP3A4

CYP2C19 inhibitor, in vitro inducer CYP1A2

CYP2C19 and CYP3A4 inducers/inhibitors can reduce/increase exposure. Esomeprazol - S-enantiomere of omeprazole with similar CYP profile.

[102, 181, 182]

Pantoprazole Proton-pump inhibitors

CYP2C19, CYP3A4

CYP2C19 and CYP3A4 inducers/inhibitors can reduce/increase exposure

[181, 182]

Page 43: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Sedatives

Clonidin sedative and antihypertensive

CYP2D6 (mostly), CYP1A1/2, CYP3A4/5

[183]

Dexmedetomidine sedation

CYP2A6 (mainly), CYP1A2, CYP2E1, CYP2D6, CYP2C19

In vitro inhibition of CYP2C9, CYP3A4 and CYP1A2, but due to much lower concentrations than IC50 of inhibition (10-50x lower), probably no clinical relevance probably none.

[184-186]

Haloperidol Neuroleptic CYP3A4, CYP2D6 inhibitor of CYP2D6

Inhibition of metabolic enzymes increases exposure, inducers reduce exposure. Prolongation of QT interval.

[187, 188]

Ketamine Sedation CYP3A4, CYP2B6, CYP2C9

[189]

Midazolam Sedation CYP3A4 glucuronidation CYP3A4 inhibitors increase exposure

[164]

Propofol Sedation CYP2B6, CYP2C9

weak CYP3A4 inhibitor

liver glucuronidation

CYP3A4 inhibitors reduce clearance

[164, 190]

Risperidon Neuroleptic CYP2D6, CYP3A4 P-gp substrate

P-gp inhibition increases exposure, P-gp inducers reduce exposure, inhibition of metabolic enzymes increases exposure, inducers reduce exposure. Prolongation of QT interval.

[191-193]

Treatment of pain

Alfentanil Analgesia CYP3A4 [164, 194]

Diclofenac Analgesia, antipyretic

CYP2C9 inhibition of OAT1 and OAT4

UGT2B7 glucuronidation

Strong CYP2C9 inhibitors can increase concentration, 99% bound to plasma

[80, 104, 195]

Page 44: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

proteins, possibility of displacement.

Fentanyl Analgesia CYP3A4 CYP3A4 inhibitors can inhibit up to 90% fentanyl metabolism.

[164, 196, 197]

Morphine Analgesia none glucuronide Severe CNS excitation or depression with MAOI.

[164, 198]

Naproxen Analgesia, antipyretic

CYP2C9, CYP1A2 inhibition of OAT1 and OAT3

99% bound to plasma proteins, possibility of displacement.

[80, 199, 200]

Nefopam Analgesia likely CYP P450 substrate

glucuronidation Anticholinergic adverse effects.

[201]

Paracetamol/Acetaminophen

Analgesia, antipyretic

CYP2E1 and possibly CYP1A2 and CYP3A4

major route: conjugation to glucuronide and sulphate

[104, 202, 203]

Vasoactive drugs

Dobutamine Inotropic none none COMT, glucuronidation

Proarrhythmic. [104, 204]

Epinephrine Vasopressor/inotropic

none none MAO, COMT, sulphotransferases

Reuptake a major mechanism for terminating action. Proarrhythmic.

[104]

Norepinephrine Vasopressor none none MAO, COMT, sulphotransferases

Reuptake a major mechanism for terminating action. Proarrhythmic.

[104, 205]

Vasopressin (argipresin)

Vasopressor none none rapid enyzmatic breakdown in plasma

[206]

ACEI: ACE inhibitor; MAO: monoamine oxidase; COMT: catechol-O-methyltransferase; P-gp: P-glycoprotein; UGT: UDP-glucuronosyltransferase;

CNS: central nervous system, MAOI: monoamine oxidase inhibitor, ROS: reactive oxygen species, RES: reticuloendothelial system; OAT: organic

anion transporter, OATP: organic anion transporting polypeptides; MRP: multidrug resistance-associated protein; MPA: mycophenolic acid; BCRP:

Page 45: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Breast Cancer Resistance Protein; PE: pulmonary embolism; DVT: deep vein thrombosis; SSRI: selective serotonin reuptake inhibitors; INR:

international normalised ratio

   

Page 46: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

Table 6. Expected PK of the antivirals used to treat COVID-19 with extracorporeal support treatments Effects on pharmacokinetic parameters Protein binding

(%) Name of antiviral RRTa ECMOb

Extracorporeal systemic inflammatory responseg

Remdesivir n.a.c n.a. n.a. n.a.

Chloroquine - likelyh Alterations in cytochrome metabolism

40-60 [15, 21]

Lopinavir - likelyh Alterations in cytochrome metabolism

98-99 [207]

Ritonavir - likelyh Alterations in cytochrome metabolism

99 [208]

Favipiravir - Increases Vde Alterations in cytochrome metabolism

54 [22]

Ribavirin - Increases Vd - 0 [16]

Arbidol (Umifenovir) - - Alterations in cytochrome metabolism

n.a.

Hydroxychloroquine - likelyh Alterations in cytochrome metabolism

40-60 [15, 21]

PegIFNf-α2β - - - n.a.

IFN-α1β - - - n.a.

IFN-α - - - n.a.

aRRT: renal replacement therapies; bECMO: extracorporeal membrane oxygenation; cn.a.: not available; dCL: clearance; eVd: volume of distribution; fIFN:

interferon, g: for example systemic inflammatory response syndrome (SIRS) caused by extracorporeal life support system (ECLS), h: sequestration of drug to

ECMO oxygenator is likely, but is unlikely to affect dosing needs

Page 47: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

References:

1.  Totura, A.L. and S. Bavari, Broad‐spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov, 2019. 14(4): p. 397‐412. 

2.  Roberts, J.A., et al., Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis, 2014. 14(6): p. 498‐509. 

3.  Liverpool, U.o., Covid‐19 Drug Interactions. http://www.covid19‐druginteractions.org/. 4.  (WHO), W.H.O., Global research on coronavirus disease (COVID‐19). 

https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019/global‐research‐on‐novel‐coronavirus‐2019‐ncov. 

5.  Elsevier, Clinical Pharmacology http://www.clinicalpharmacology.com/. 6.  Guan, W.J., et al., Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 

2020. 7.  Talal, A.H., et al., Pharmacodynamics of PEG‐IFN alpha differentiate HIV/HCV coinfected 

sustained virological responders from nonresponders. Hepatology, 2006. 43(5): p. 943‐53. 8.  Yao, X., et al., In Vitro Antiviral Activity and Projection of Optimized Dosing Design of 

Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2). Clin Infect Dis, 2020. 

9.  Chu, C.M., et al., Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004. 59(3): p. 252‐6. 

10.  Yamamoto, N., et al., HIV protease inhibitor nelfinavir inhibits replication of SARS‐associated coronavirus. Biochem Biophys Res Commun, 2004. 318(3): p. 719‐25. 

11.  Chan, J.F., et al., Broad‐spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect, 2013. 67(6): p. 606‐16. 

12.  Pea, F. and M. Furlanut, Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet, 2001. 40(11): p. 833‐68. 

13.  Hahn, J., J.H. Choi, and M.J. Chang, Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J Clin Pharm Ther, 2017. 42(6): p. 661‐671. 

14.  Shekar, K., et al., Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care, 2012. 27(6): p. 741.e9‐18. 

15.  Van Stone, J.C., Hemodialysis and chloroquine poisoning. J Lab Clin Med, 1976. 88(1): p. 87‐90. 

16.  Eyler, R.F. and B.A. Mueller, Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol, 2011. 7(4): p. 226‐35. 

17.  Vossen, M.G. and F. Thalhammer, Effects of renal replacement therapy on antimicrobial therapy. Curr Clin Pharmacol, 2013. 8(1): p. 39‐45. 

18.  Vincent, H.H., et al., Drug clearance by continuous haemodiafiltration. Analysis of sieving coefficients and mass transfer coefficients of diffusion. Blood Purif, 1993. 11(2): p. 99‐107. 

19.  Pea, F., et al., Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin Pharmacokinet, 2007. 46(12): p. 997‐1038. 

20.  Akintonwa, A., et al., Hemodialysis clearance of chloroquine in uremic patients. Ther Drug Monit, 1986. 8(3): p. 285‐7. 

21.  Gupta, S.K., et al., The pharmacokinetics and pharmacogenomics of efavirenz and lopinavir/ritonavir in HIV‐infected persons requiring hemodialysis. Aids, 2008. 22(15): p. 1919‐27. 

22.  Favie, L.M., et al., Pharmacokinetics of favipiravir during continuous venovenous haemofiltration in a critically ill patient with influenza. Antivir Ther, 2018. 23(5): p. 457‐461. 

23.  Shuster, D.L., et al., Effects of chronic kidney disease stage 4, end‐stage renal disease, or dialysis on the plasma concentrations of ombitasvir, paritaprevir, ritonavir, and dasabuvir in 

Page 48: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

patients with chronic HCV infection: pharmacokinetic analysis of the phase 3 RUBY‐I and RUBY‐II trials. Eur J Clin Pharmacol, 2019. 75(2): p. 207‐216. 

24.  Gupta, S.K., B. Kantesaria, and P. Glue, Pharmacokinetics, safety, and tolerability of ribavirin in hemodialysis‐dependent patients. Eur J Clin Pharmacol, 2012. 68(4): p. 415‐8. 

25.  Gotoh, A., et al., Pharmacokinetics of natural human IFN‐alpha in hemodialysis patients. J Interferon Cytokine Res, 1999. 19(10): p. 1117‐23. 

26.  Serra, D.B., et al., Single‐dose pharmacokinetics, safety, and tolerability of albinterferon alfa‐2b in subjects with end‐stage renal disease on hemodialysis compared to those in matched healthy volunteers. Antimicrob Agents Chemother, 2011. 55(2): p. 473‐7. 

27.  Cao, B., et al., A Trial of Lopinavir‐Ritonavir in Adults Hospitalized with Severe Covid‐19. N Engl J Med, 2020. 

28.  Chan, K.S., et al., Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J, 2003. 9(6): p. 399‐406. 

29.  WHO, Summaries of evidence from selected experimental therapeutics. https://www.who.int/ebola/drc‐2018/summaries‐of‐evidence‐experimental‐therapeutics.pdf?ua=1. 

30.  Savarino, A., et al., Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis, 2003. 3(11): p. 722‐7. 

31.  Aidsinfo.nih, Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection. https://aidsinfo.nih.gov/guidelines/html/2/pediatric‐arv/132/lopinavir‐ritonavir. 

32.  Hsu, A., G.R. Granneman, and R.J. Bertz, Ritonavir. Clinical pharmacokinetics and interactions with other anti‐HIV agents. Clin Pharmacokinet, 1998. 35(4): p. 275‐91. 

33.  Hayden, F.G. and N. Shindo, Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis, 2019. 32(2): p. 176‐186. 

34.  Dong, L., S. Hu, and J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID‐19). Drug Discov Ther, 2020. 14(1): p. 58‐60. 

35.  Shen, K., et al., Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts' consensus statement. World J Pediatr, 2020. 

36.  Deng, P., et al., Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother, 2013. 57(4): p. 1743‐55. 

37.  Wills, R.J., Clinical pharmacokinetics of interferons. Clin Pharmacokinet, 1990. 19(5): p. 390‐9. 38.  Jin, Y.H., et al., A rapid advice guideline for the diagnosis and treatment of 2019 novel 

coronavirus (2019‐nCoV) infected pneumonia (standard version). Mil Med Res, 2020. 7(1): p. 4. 

39.  Kucer, A., The Use of Antibiotics. Chapter 259. 40.  Wang, M., et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel 

coronavirus (2019‐nCoV) in vitro. Cell Res, 2020. 30(3): p. 269‐271. 41.  Sheahan, T.P., et al., Comparative therapeutic efficacy of remdesivir and combination 

lopinavir, ritonavir, and interferon beta against MERS‐CoV. Nat Commun, 2020. 11(1): p. 222. 42.  Warren, T.K., et al., Therapeutic efficacy of the small molecule GS‐5734 against Ebola virus in 

rhesus monkeys. Nature, 2016. 531(7594): p. 381‐5. 43.  Tasanor, O., et al., An in vitro system for assessing the sensitivity of Plasmodium vivax to 

chloroquine. Acta Trop, 2002. 83(1): p. 49‐61. 44.  Savarino, A., et al., Anti‐HIV effects of chloroquine: mechanisms of inhibition and spectrum of 

activity. Aids, 2001. 15(17): p. 2221‐9. 45.  de Wilde, A.H., et al., Screening of an FDA‐approved compound library identifies four small‐

molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother, 2014. 58(8): p. 4875‐84. 

46.  Mackenzie, A.H., Dose refinements in long‐term therapy of rheumatoid arthritis with antimalarials. Am J Med, 1983. 75(1a): p. 40‐5. 

47.  Bruggemann R.J.M.; ter Heine R.;, v.R.F., Data unpublished. 

Page 49: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

48.  Dickinson, L., et al., Sequential population pharmacokinetic modeling of lopinavir and ritonavir in healthy volunteers and assessment of different dosing strategies. Antimicrob Agents Chemother, 2011. 55(6): p. 2775‐82. 

49.  Oestereich, L., et al., Successful treatment of advanced Ebola virus infection with T‐705 (favipiravir) in a small animal model. Antiviral Res, 2014. 105: p. 17‐21. 

50.  Bixler, S.L., et al., Efficacy of favipiravir (T‐705) in nonhuman primates infected with Ebola virus or Marburg virus. Antiviral Res, 2018. 151: p. 97‐104. 

51.  Nguyen, T.H., et al., Favipiravir pharmacokinetics in Ebola‐Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis, 2017. 11(2): p. e0005389. 

52.  Fuchs, E.J., et al., Plasma and intracellular ribavirin concentrations are not significantly altered by abacavir in hepatitis C virus‐infected patients. J Antimicrob Chemother, 2016. 71(6): p. 1597‐600. 

53.  Brooks, M.J., et al., Antiviral activity of arbidol, a broad‐spectrum drug for use against respiratory viruses, varies according to test conditions. J Med Virol, 2012. 84(1): p. 170‐81. 

54.  Sun, Y., et al., Pharmacokinetics of single and multiple oral doses of arbidol in healthy Chinese volunteers. Int J Clin Pharmacol Ther, 2013. 51(5): p. 423‐32. 

55.  Mok, C.C., et al., Hydroxychloroquine Serum Concentrations and Flares of Systemic Lupus Erythematosus: A Longitudinal Cohort Analysis. Arthritis Care Res (Hoboken), 2016. 68(9): p. 1295‐302. 

56.  Kumar, A., et al., Hydroxychloroquine Inhibits Zika Virus NS2B‐NS3 Protease. ACS Omega, 2018. 3(12): p. 18132‐18141. 

57.  Zheng, L., et al., A pharmacokinetic and pharmacodynamic comparison of a novel pegylated recombinant consensus interferon‐alpha variant with peginterferon‐alpha‐2a in healthy subjects. Br J Clin Pharmacol, 2015. 79(4): p. 650‐9. 

58.  Hart, B.J., et al., Interferon‐beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell‐based assays. J Gen Virol, 2014. 95(Pt 3): p. 571‐577. 

59.  Hegen, H., M. Auer, and F. Deisenhammer, Pharmacokinetic considerations in the treatment of multiple sclerosis with interferon‐beta. Expert Opin Drug Metab Toxicol, 2015. 11(12): p. 1803‐19. 

60.  Elsevier, Clinical Pharmacology Interaction Report.  Accessed March 13, 2020 at http://www.clinicalpharmacology‐ip.com/Forms/Reports/intereport.aspx. 

61.  ClinicalTrials.gov, A Prospective/Retrospective,Randomized Controlled Clinical Study of Antiviral Therapy in the 2019‐nCoV Pneumonia. https://clinicaltrials.gov/ct2/show/NCT04255017?draw=2. 

62.  Yao, T.T., et al., A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus‐A possible reference for coronavirus disease‐19 treatment option. J Med Virol, 2020. 

63.  Chen, F., et al., In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol, 2004. 31(1): p. 69‐75. 

64.  Nukoolkarn, V., et al., Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS‐CoV 3CL(pro) inhibitors. J Theor Biol, 2008. 254(4): p. 861‐7. 

65.  Zhang, X.W. and Y.L. Yap, Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem, 2004. 12(10): p. 2517‐21. 

66.  Chan, J.F., et al., Treatment With Lopinavir/Ritonavir or Interferon‐beta1b Improves Outcome of MERS‐CoV Infection in a Nonhuman Primate Model of Common Marmoset. J Infect Dis, 2015. 212(12): p. 1904‐13. 

67.  ClinicalTrials.gov, The Efficacy of Lopinavir Plus Ritonavir and Arbidol Against Novel Coronavirus Infection (ELACOI). https://clinicaltrials.gov/ct2/show/NCT04252885?cond=Coronavirus&draw=3&rank=12. 

68.  Park, S.Y., et al., Post‐exposure prophylaxis for Middle East respiratory syndrome in healthcare workers. J Hosp Infect, 2019. 101(1): p. 42‐46. 

Page 50: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

69.  Wang, Z., et al., Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends, 2020. 

70.  Xia, J., et al., Shufeng Jiedu Capsule and its active ingredients induce apoptosis, inhibit migration and invasion, and enhances doxorubicin therapeutic efficacy in hepatocellular carcinoma. Biomed Pharmacother, 2018. 99: p. 921‐930. 

71.  ClinicalTrials.gov, Efficacy and Safety of Darunavir and Cobicistat for Treatment of Pneumonia Caused by 2019‐nCoV (DACO‐nCoV). https://clinicaltrials.gov/ct2/show/NCT04252274?term=darunavir&cond=Coronavirus&draw=2&rank=1. 

72.  Arabi, Y.M., et al., Ribavirin and Interferon Therapy for Critically Ill Patients With Middle East Respiratory Syndrome: A Multicenter Observational Study. Clin Infect Dis, 2019. 

73.  Registry, C.C.T., A real‐world study for lopinavir/ritonavir (LPV/r) and emtritabine (FTC) / Tenofovir alafenamide Fumarate tablets (TAF) regimen in the treatment of novel coronavirus pneumonia (COVID‐19) http://www.chictr.org.cn/showprojen.aspx?proj=48919. 

74.  Omrani, A.S., et al., Ribavirin and interferon alfa‐2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis, 2014. 14(11): p. 1090‐1095. 

75.  Stockman, L.J., R. Bellamy, and P. Garner, SARS: systematic review of treatment effects. PLoS Med, 2006. 3(9): p. e343. 

76.  Morgenstern, B., et al., Ribavirin and interferon‐beta synergistically inhibit SARS‐associated coronavirus replication in animal and human cell lines. Biochem Biophys Res Commun, 2005. 326(4): p. 905‐8. 

77.  Kim, U.J., et al., Combination therapy with lopinavir/ritonavir, ribavirin and interferon‐alpha for Middle East respiratory syndrome. Antivir Ther, 2016. 21(5): p. 455‐9. 

78.  Gautret P, L.P., Parola P, Hoang V, Meddeb L, Mailhe M, et al, Hydroxychloroquine and azithromycin as a treatment of COVID‐19: results of an open‐label non‐randomized clinical trial. IJAA, in press. 

79.  Captopril 12.5 mg Tablets. Summary of Product Characteristics. 2017. 80.  Burckhardt, G., Drug transport by Organic Anion Transporters (OATs). Pharmacology & 

Therapeutics, 2012. 136(1): p. 106‐130. 81.  Flockhart, D.A. and J.E. Tanus‐Santos, Implications of Cytochrome P450 Interactions When 

Prescribing Medication for Hypertension. Archives of Internal Medicine, 2002. 162(4): p. 405. 82.  Enalapril Maleate 20mg tablets. Summary of Product Characteristics. 2019. 83.  Sekine, T., H. Miyazaki, and H. Endou, Molecular physiology of renal organic anion 

transporters. American Journal of Physiology‐Renal Physiology, 2006. 290(2): p. F251‐F261. 84.  ACEON® (perindopril erbumine) Tablets. Summary of Product Characteristics. 2005. 85.  Valsartan 40 mg, 80 mg, 160 mg Capsules. Summary of Product Characteristics. 2017. 86.  Thijssen, H., Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. 

Clinical Pharmacology & Therapeutics, 2003. 74(1): p. 61‐68. 87.  Thijssen, H.H., J.P. Flinois, and P.H. Beaune, Cytochrome P4502C9 is the principal catalyst of 

racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 2000. 28(11): p. 1284‐1290. 

88.  Hellwig, T. and M. Gulseth, Pharmacokinetic and Pharmacodynamic Drug Interactions With New Oral Anticoagulants: What Do They Mean for Patients With Atrial Fibrillation? Annals of Pharmacotherapy, 2013. 47(11): p. 1478‐1487. 

89.  Fragmin® 10,000 IU/0.4ml solution for injection . Summary of Product Characteristics. 2016. 90.  Garcia, D.A., et al., Parenteral Anticoagulants. Chest, 2012. 141(2): p. e24S‐e43S. 91.  Hartmann, G., H. Kim, and M. Piquette‐Miller, Regulation of the hepatic multidrug resistance 

gene expression by endotoxin and inflammatory cytokines in mice. Int Immunopharmacol, 2001. 1(2): p. 189‐99. 

Page 51: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

92.  Monoparin 5,000 I.U./ml Solution for injection or concentrate for solution for infusion or Heparin sodium 5,000 I.U./ml Solution for injection or concentrate for solution for infusion. Summary of Product Characteristics. 2018. 

93.  Kaminsky, L.S. and Z.‐Y. Zhang, Human P450 metabolism of warfarin. Pharmacology & Therapeutics, 1997. 73(1): p. 67‐74. 

94.  KLONOPIN® TABLETS (clonazepam). KLONOPIN® WAFERS(clonazepam orally disintegrating tablets). Summary of Product Characteristics. 2009. 

95.  Lynch, T. and A. Price, The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician, 2007. 76(3): p. 391‐396. 

96.  Perucca, E., Clinically relevant drug interactions with antiepileptic drugs. British Journal of Clinical Pharmacology, 2006. 61(3): p. 246‐255. 

97.  Lamotrigine Accord 100 mg Tablets. Summary of Product Characteristics. 2018. 98.  Patsalos, P.N., Clinical Pharmacokinetics of Levetiracetam. Clinical Pharmacokinetics, 2004. 

43(11): p. 707‐724. 99.  Keppra 100 mg/ml concentrate for solution for infusion. Summary of Product Characteristics. 

2019. 100.  Ativan 4mg/ml Solution for injection. Summary of Product Characteristics. 2019. 101.  Patsalos, P.N. and E. Perucca, Clinically important drug interactions in epilepsy: interactions 

between antiepileptic drugs and other drugs. The Lancet Neurology, 2003. 2(8): p. 473‐481. 102.  Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers.  Food 

and Drug Administration, Silver Spring, MD. 2020 10.3.2020. 103.  Phenytoin Hikma 50 mg / ml solution for injection. Summary of Product Characteristics. 2018. 104.  Goodman & Gilman's the pharmacological basis of therapeutics. 11th ed. 2006, New York: 

McGraw‐Hill. 105.  Ghodke‐Puranik, Y., et al., Valproic acid pathway: pharmacokinetics and pharmacodynamics. 

Pharmacogenetics and Genomics, 2013. 23(4): p. 236‐241. 106.  Aciclovir 250mg Powder for Solution for Infusion. Summary of Product Characteristics. 2018. 107.  Amikacin 250 mg/ml Injection. Summary of Product Characteristics. 2015. 108.  Brogden, R.N., et al., Amoxycillin/Clavulanic Acid: A Review of its Antibacterial Activity, 

Pharmacokinetics and Therapeutic Use. Drugs, 1981. 22(5): p. 337‐362. 109.  Ivanyuk, A., et al., Renal Drug Transporters and Drug Interactions. Clinical Pharmacokinetics, 

2017. 56(8): p. 825‐892. 110.  Vazquez, J.A. and J.D. Sobel, Reviews Of Anti‐infective Agents: Anidulafungin: A Novel 

Echinocandin. Clinical Infectious Diseases, 2006. 43(2): p. 215‐222. 111.  Fohner, A.E., et al., PharmGKB summary: Macrolide antibiotic pathway, 

pharmacokinetics/pharmacodynamics. Pharmacogenetics and Genomics, 2017. 27(4): p. 164‐167. 

112.  Swabb, E.A., et al., Metabolism and pharmacokinetics of aztreonam in healthy subjects. Antimicrobial Agents and Chemotherapy, 1983. 24(3): p. 394‐400. 

113.  Kofla, G. and M. Ruhnke, Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis ‐ review of the literature. European Journal of Medical Research, 2011. 16(4): p. 159. 

114.  Okamoto, M.P., et al., Cefepime Clinical Pharmacokinetics. Clinical Pharmacokinetics, 1993. 25(2): p. 88‐102. 

115.  Jones, R.N., A review of cephalosporin metabolism: A lesson to be learned for future chemotherapy. Diagnostic Microbiology and Infectious Disease, 1989. 12(1): p. 25‐31. 

116.  Merker, A., et al., Pharmacokinetic and pharmacodynamic evaluation of ceftaroline fosamil. Expert Opinion on Drug Metabolism & Toxicology, 2014. 10(12): p. 1741‐1750. 

117.  van Duin, D. and R.A. Bonomo, Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second‐generation β‐Lactam/β‐Lactamase Inhibitor Combinations. Clinical Infectious Diseases, 2016. 63(2): p. 234‐241. 

118.  Ceftazidime 1 g powder for solution for injection/infusion. 2017. 

Page 52: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

119.  Wooley, M., et al. Evaluation of the Potential for Drug–Drug Interactions Between Ceftolozane/Tazobactam and Drugs Metabolized by CYP1A2 or CYP3A4 or Transported by OAT1 and OAT3. Poster # eP450. in 24th ECCMID. 2014. 

120.  Regamey, C., Pharmacokinetics of Ceftriaxone and Its Relation to Concentrations in Extravascular Compartments. Chemotherapy, 1985. 31(2): p. 85‐94. 

121.  Zhang, L., et al., Determination of the inhibitory potential of 6 fluoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacologica Sinica, 2008. 29(12): p. 1507‐1514. 

122.  Curis, E., et al., Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentration in patients with bone and joint infections. Infection, 2015. 43(4): p. 473‐481. 

123.  Grégoire, N., et al., Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clinical Pharmacokinetics, 2017. 56(12): p. 1441‐1460. 

124.  Dvorchik, B.H., et al., Daptomycin Pharmacokinetics and Safety following Administration of Escalating Doses Once Daily to Healthy Subjects. Antimicrobial Agents and Chemotherapy, 2003. 47(4): p. 1318‐1323. 

125.  Agwuh, K.N., Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. Journal of Antimicrobial Chemotherapy, 2006. 58(2): p. 256‐265. 

126.  Zhanel, G.G., et al., Ertapenem: review of a new carbapenem. Expert Review of Anti‐infective Therapy, 2005. 3(1): p. 23‐39. 

127.  Dekker, S.J., et al., Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A‐catalysed hydroxylation by sulfaphenazole: Bioactivation of flucloxacillin by human CYPs. British Journal of Pharmacology, 2019. 176(3): p. 466‐477. 

128.  Smith, J., Isoxazolyl Penicillins: Oxacillin, Cloxacillin, Dicloxacillin, and Flucloxacillin., in Kucers' the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs, M.L. Grayson, Editor. 2017, CRC Press: Boca Raton. 

129.  Brüggemann, Roger J.M., et al., Clinical Relevance of the Pharmacokinetic Interactions of Azole Antifungal Drugs with Other Coadministered Agents. Clinical Infectious Diseases, 2009. 48(10): p. 1441‐1458. 

130.  Niwa, T., T. Shiraga, and A. Takagi, Effect of Antifungal Drugs on Cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 Activities in Human Liver Microsomes. Biological & Pharmaceutical Bulletin, 2005. 28(9): p. 1805‐1808. 

131.  Tirkkonen, T., et al., Potential CYP2C9‐mediated drug‐drug interactions in hospitalized type 2 diabetes mellitus patients treated with the sulphonylureas glibenclamide, glimepiride or glipizide: Sulphonylurea interactions. Journal of Internal Medicine, 2010. 268(4): p. 359‐366. 

132.  Cymevene 500 mg powder for concentrate for solution for infusion. Summary of Product Characteristics. 2019. 

133.  Gentamicin 40 mg/ml Injection. Summary of Product Characteristics. 2018. 134.  Drusano, G.L., An overview of the pharmacology of imipenem/cilastatin. Journal of 

Antimicrobial Chemotherapy, 1986. 18(Supplement_E): p. 79‐92. 135.  CRESEMBA 200mg powder for concentrate for solution for infusion. Summary of Product 

Characteristics. 2019. 136.  Linezolid 600 mg film‐coated tablets. Summary of Product Characteristics. 2017. 137.  Dryden, M.S., Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. 

Journal of Antimicrobial Chemotherapy, 2011. 66(Supplement 4): p. iv7‐iv15. 138.  Stone, N.R.H., et al., Liposomal Amphotericin B (AmBisome®): A Review of the 

Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs, 2016. 76(4): p. 485‐500. 

139.  Moon, Y.S.K., K.C. Chung, and M.A. Gill, Pharmacokinetics of Meropenem in Animals, Healthy Volunteers, and Patients. Clinical Infectious Diseases, 1997. 24(Supplement 2): p. S249‐S255. 

Page 53: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

140.  Roedler, R., M.M. Neuhauser, and S.R. Penzak, Does Metronidazole Interact with CYP3A Substrates by Inhibiting Their Metabolism Through This Metabolic Pathway? Or Should Other Mechanisms Be Considered? Annals of Pharmacotherapy, 2007. 41(4): p. 653‐658. 

141.  Wasmann, R.E., et al., Clinical Pharmacokinetics and Pharmacodynamics of Micafungin. Clinical Pharmacokinetics, 2018. 57(3): p. 267‐286. 

142.  Naidoo, A., et al., A Review of Moxifloxacin for the Treatment of Drug‐Susceptible Tuberculosis: Journal of Clinical Pharmacology. The Journal of Clinical Pharmacology, 2017. 57(11): p. 1369‐1386. 

143.  He, G., J. Massarella, and P. Ward, Clinical Pharmacokinetics of the Prodrug Oseltamivir and its Active Metabolite Ro 64‐0802:. Clinical Pharmacokinetics, 1999. 37(6): p. 471‐484. 

144.  UNASYN® (ampicillin sodium/sulbactam sodium). Summary of product characteristics. 2007, Food and Drug Administration, Silver Spring, MD. 

145.  Rifampicin 300 mg Capsules. Summary of Product Characteristics. 2019. 146.  Maslow, J. and C. Portal‐Celhay, Rifamycins., in Mandell, Douglas, and Bennett’s principles 

and practice of infectious diseases., J. Bennett, R. Dolin, and J. Blaser, Editors. 2020, Elsevier: Philadelphia, PA. 

147.  Baciewicz, A.M., et al., Update on Rifampin and Rifabutin Drug Interactions. The American Journal of the Medical Sciences, 2008. 335(2): p. 126‐136. 

148.  Meagher, Alison K., et al., The Pharmacokinetic and Pharmacodynamic Profile of Tigecycline. Clinical Infectious Diseases, 2005. 41(s5): p. S333‐S340. 

149.  Matzke, G.R., G.G. Zhanel, and D.R.P. Guay, Clinical Pharmacokinetics of Vancomycin:. Clinical Pharmacokinetics, 1986. 11(4): p. 257‐282. 

150.  VFEND 50mg and 200mg film‐coated tablets. Summary of Product Characteristics. 2020. 151.  Appiah‐Ankam, J. and J.M. Hunter, Pharmacology of neuromuscular blocking drugs. 

Continuing Education in Anaesthesia Critical Care & Pain, 2004. 4(1): p. 2‐7. 152.  Kelm, M., Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta (BBA) ‐ 

Bioenergetics, 1999. 1411(2‐3): p. 273‐289. 153.  Azathioprine 25 mg film‐coated tablets. Summary of Product Characteristics. 2020. 154.  Wright, S., Clinical significance of azathioprine active metabolite concentrations in 

inflammatory bowel disease. Gut, 2004. 53(8): p. 1123‐1128. 155.  Deximune 100 mg soft capsules. Summary of Product Characteristics. 2017. 156.  Niwa, T., et al., Effect of Cyclosporine and Tacrolimus on Cytochrome P450 Activities in 

Human Liver Microsomes. YAKUGAKU ZASSHI, 2007. 127(1): p. 209‐216. 157.  Everolimus 10mg Tablets. Summary of Product Characteristics. 2020. 158.  Methylprednisolone 1000 mg powder and solvent for solution for injection/infusion. Summary 

of Product Characteristics. 2017. 159.  Myfenax 250 mg hard capsules. Summary of Product Characteristics. 2019. 160.  Adoport 2 mg Capsules, hard. Summary of Product Characteristics. 2020. 161.  Ikitimur, B., et al., Long‐Term Impact of Different Immunosuppressive Drugs on QT and PR 

Intervals in Renal Transplant Patients: Impact of Different Immunosuppressive Drugs. Annals of Noninvasive Electrocardiology, 2015. 20(5): p. 426‐432. 

162.  Forman, S.A., Clinical and Molecular Pharmacology of Etomidate:. Anesthesiology, 2011. 114(3): p. 695‐707. 

163.  Davis, L., J.J. Britten, and M. Morgan, Cholinesterase Its significance in anaesthetic practice. Anaesthesia, 1997. 52(3): p. 244‐260. 

164.  Sweeney, B.P. and J. Bromilow, Liver enzyme induction and inhibition: implications for anaesthesia. Anaesthesia, 2006. 61(2): p. 159‐177. 

165.  Aspirin 75mg Gastro‐Resistant Tablets. Summary of Product Characteristics. 2018. 166.  McDonald, M.G., N.T. Au, and A.E. Rettie, P450‐Based Drug‐Drug Interactions of Amiodarone 

and its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metabolism and Disposition, 2015. 43(11): p. 1661‐1669. 

167.  Yamreudeewong, W., et al., Potentially Significant Drug Interactions of Class III Antiarrhythmic Drugs:. Drug Safety, 2003. 26(6): p. 421‐438. 

Page 54: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

168.  Wiggins, B.S., et al., Recommendations for Management of Clinically Significant Drug‐Drug Interactions With Statins and Select Agents Used in Patients With Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation, 2016. 134(21). 

169.  Sangkuhl, K., T.E. Klein, and R.B. Altman, Clopidogrel pathway:. Pharmacogenetics and Genomics, 2010: p. 1. 

170.  Iisalo, E., Clinical Pharmacokinetics of Digoxin:. Clinical Pharmacokinetics, 1977. 2(1): p. 1‐16. 171.  Zisaki, A., L. Miskovic, and V. Hatzimanikatis, Antihypertensive Drugs Metabolism: An Update 

to Pharmacokinetic Profiles and Computational Approaches. Current Pharmaceutical Design, 2014. 21(6): p. 806‐822. 

172.  Ellison, D.H., Clinical Pharmacology in Diuretic Use. Clinical Journal of the American Society of Nephrology, 2019. 14(8): p. 1248‐1257. 

173.  Barza, M., E. Lynch, and J.L. Baum, Pharmacokinetics of newer cephalosporins after subconjunctival and intravitreal injection in rabbits. Arch Ophthalmol, 1993. 111(1): p. 121‐5. 

174.  Antila, S., S. Sundberg, and L.A. Lehtonen, Clinical Pharmacology of Levosimendan:. Clinical Pharmacokinetics, 2007. 46(7): p. 535‐552. 

175.  Simdax 2.5 mg/ml concentrate for solution for infusion. Summary of Product Characteristics. 2010. 

176.  Nicardipine 10 mg/10 ml solution for injection. Summary of Product Characteristics. 2018. 177.  Muirhead, G.J., et al., Comparative human pharmacokinetics and metabolism of single‐dose 

oral and intravenous sildenafil. British Journal of Clinical Pharmacology, 2002. 53 Suppl 1: p. 13S‐20S. 

178.  Teng, R., et al., Absorption, Distribution, Metabolism, and Excretion of Ticagrelor in Healthy Subjects. Drug Metabolism and Disposition, 2010. 38(9): p. 1514‐1521. 

179.  Boelsma, E., et al., Microdialysis technique as a method to study the percutaneous penetration of methyl nicotinate through excised human skin, reconstructed epidermis, and human skin in vivo. Pharm Res, 2000. 17(2): p. 141‐7. 

180.  Hydrocortisone 100 mg, powder for solution for injection/infusion. Summary of Product Characteristics. 2018. 

181.  El Rouby, N., J.J. Lima, and J.A. Johnson, Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opinion on Drug Metabolism & Toxicology, 2018. 14(4): p. 447‐460. 

182.  Shin, J.M. and N. Kim, Pharmacokinetics and Pharmacodynamics of the Proton Pump Inhibitors. Journal of Neurogastroenterology and Motility, 2013. 19(1): p. 25‐35. 

183.  Claessens, A.J., et al., CYP2D6 Mediates 4‐Hydroxylation of Clonidine In Vitro: Implication for Pregnancy‐Induced Changes in Clonidine Clearance. Drug Metabolism and Disposition, 2010. 38(9): p. 1393‐1396. 

184.  Weerink, M.A.S., et al., Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clinical Pharmacokinetics, 2017. 56(8): p. 893‐913. 

185.  Burkhardt, O., et al., Single‐ and multiple‐dose pharmacokinetics of oral moxifloxacin and clarithromycin, and concentrations in serum, saliva and faeces. Scand J Infect Dis, 2002. 34(12): p. 898‐903. 

186.  Rodrigues, A.D. and E.M. Roberts, The in vitro interaction of dexmedetomidine with human liver microsomal cytochrome P4502D6 (CYP2D6). Drug Metabolism and Disposition: The Biological Fate of Chemicals, 1997. 25(5): p. 651‐655. 

187.  HALDOL 2 mg/ml oral solution. Summary of Product Characteristics. 2019. 188.  Kudo, S. and T. Ishizaki, Pharmacokinetics of Haloperidol: An Update. Clinical 

Pharmacokinetics, 1999. 37(6): p. 435‐456. 189.  Dinis‐Oliveira, R.J., Metabolism and metabolomics of ketamine: a toxicological approach. 

Forensic Sciences Research, 2017. 2(1): p. 2‐10. 190.  Sahinovic, M.M., M.M.R.F. Struys, and A.R. Absalom, Clinical Pharmacokinetics and 

Pharmacodynamics of Propofol. Clinical Pharmacokinetics, 2018. 57(12): p. 1539‐1558. 

Page 55: Pharmacokinetics-pharmacodynamics of antiviral …...most agents. In general, the total daily dose of the regimens used for COVID-19 is similar to, or greater than, that used for other

191.  Fang, J., M. Bourin, and G.B. Baker, Metabolism of risperidone to 9‐hydroxyrisperidone by human cytochromes P450 2D6 and 3A4:. Naunyn‐Schmiedeberg's Archives of Pharmacology, 1999. 359(2): p. 147‐151. 

192.  Prior, T.I. and G.B. Baker, Interactions between the cytochrome P450 system and the second‐generation antipsychotics. Journal of psychiatry & neuroscience: JPN, 2003. 28(2): p. 99‐112. 

193.  Vandenberghe, F., et al., Genetics‐Based Population Pharmacokinetics and Pharmacodynamics of Risperidone in a Psychiatric Cohort. Clinical Pharmacokinetics, 2015. 54(12): p. 1259‐1272. 

194.  Opioid Analgesic Choices Based On Pharmacokinetics. Journal of Anesthesia & Pain Medicine, 2016. 1(2). 

195.  Diclofenac Potassium 25 mg Tablets. Summary of Product Characteristics. 2019. 196.  Fentanyl 50 micrograms/ml Solution for Injection/Infusion. Summary of Product 

Characteristics. 2019. 197.  Labroo, R.B., et al., Fentanyl metabolism by human hepatic and intestinal cytochrome P450 

3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 1997. 25(9): p. 1072‐1080. 

198.  Morphine Sulfate 1 mg/ml solution for injection. Summary of Product Characteristics. 2020. 199.  Naproxen 375mg Gastro‐resistant Tablets. Summary of Product Characteristics. 2019. 200.  Miners, J.O., et al., Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O‐

demethylation of R‐ and S‐naproxen. Biochemical Pharmacology, 1996. 51(8): p. 1003‐1008. 201.  Heel, R.C., et al., Nefopam: A Review of its Pharmacological Properties and Therapeutic 

Efficacy. Drugs, 1980. 19(4): p. 249‐267. 202.  Alvedon Suppositories 60 mg, 125 mg and 250 mg. Summary of Product Characteristics. 2018. 203.  McGill, M.R. and H. Jaeschke, Metabolism and Disposition of Acetaminophen: Recent 

Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical Research, 2013. 30(9): p. 2174‐2187. 

204.  Veber, B., et al., Correlation between macrolide lung pharmacokinetics and therapeutic efficacy in a mouse model of pneumococcal pneumonia. J Antimicrob Chemother, 1993. 32(3): p. 473‐82. 

205.  Ballow, C.H. and G.W. Amsden, Azithromycin: the first azalide antibiotic. Ann Pharmacother, 1992. 26(10): p. 1253‐61. 

206.  Baumann, G. and J.F. Dingman, Distribution, blood transport, and degradation of antidiuretic hormone in man. Journal of Clinical Investigation, 1976. 57(5): p. 1109‐1116. 

207.  Bugge, J.F., Pharmacokinetics and drug dosing adjustments during continuous venovenous hemofiltration or hemodiafiltration in critically ill patients. Acta Anaesthesiol Scand, 2001. 45(8): p. 929‐34. 

208.  Toutain, P.L. and A. Bousquet‐Melou, Volumes of distribution. J Vet Pharmacol Ther, 2004. 27(6): p. 441‐53.