phase diagrams and constitution of steels€¦ · ws 2017/18 3 open -field asm handbook: volume 3:...

47
Introduction to Ferrous Materials (I) WS 2017/18 1 Lecture 5 Dr. Javad Mola Institute of Iron and Steel Technology (IEST) Tel: 03731 39 2407 E-mail: [email protected] Phase Diagrams and Constitution of Steels

Upload: others

Post on 22-Aug-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

1

Lecture 5

Dr. Javad Mola

Institute of Iron and Steel Technology (IEST)

Tel: 03731 39 2407

E-mail: [email protected]

Phase Diagrams

and

Constitution of Steels

Page 2: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

2

Classification of Binary Phase Diagrams of Iron

Tm

A4

A3Tem

pera

ture

Expanded -field Contracted -field Open -field Closed -field

Classification of iron alloy phase diagrams according to Wever (1929)

Ni, Mn, Co, and some inert metals e.g.

ruthenium, rhodium, palladium, osmium,

iridium and platinum

B and the carbide-forming elements Ta,

Nb and Zr

C, N, Cu, Au Si, Al, Be, P, and the strong carbide-forming elements Ti, V, Mo, and

Cr

H.K.D.H. Bhadeshia, S.R. Honeycombe, Steels, Third Ed., Butterworth-Heinemann, Oxford, 2006.

Page 3: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

3

Open -field

ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.

Page 4: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

4

Expanded -field

ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.

Page 5: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

5

Closed -field

ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.

Page 6: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

6

Contracted -field

ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992.

Page 7: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

7

-Field in Binary Systems

-phase fields formed in binary Fe-X alloys

CNi

Mn

CrWMoSiVAl

Mn NiC

0 2 4 6 8 10 12

Alloy addition, mass-%

Tem

pe

ratu

re, °C

540

760

980

1200

1420

1640

Mehran Maalekian, The Effects of Alloying Elements on Steels (I), Technische Universität Graz, 2007.

Page 8: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

8

Ferrite and Austenite Forming Elements

Ferrite formers

CrSi

Be

AlMoW Nb

V

P

Sn

Ti

Zr(?)

H

=H-

H

(kJ/

mo

l)

0

5

10

15

20

25

30

35

Austenite formers

Zn

CuNi

Mn

N

H

=H-

H

(kJ/

mo

l)

0

-5

-10

-15

-20

-25

-30

-35C

Relative strength of alloying elements as ferrite and austenite formers

H : heat absorbed per unit of solute dissolving in -phaseH : heat absorbed per unit of solute dissolving in -phase

H > HH < H

H.K.D.H. Bhadeshia, S.R. Honeycombe, Steels, Third Ed., Butterworth-Heinemann, Oxford, 2006.

Page 9: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

9

Fe-C Binary Phase Diagram

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

600

700

800

900

1000

1100

1200

1300

1400

1500

1148°C

727°C

6.69%

4.30%2.11%

0.77%

Fe3C

+ L

Tem

pera

ture

, °C

Carbon, mass-%

1495°C

Steel Cast Iron (eutectic reaction occurs)

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 10: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

10

Peritectic Reaction

Liq.

+ Liq.

+ Liq.

+ + Liq.1495 °C , 0.16 wt%C

Peritectic reaction:

1538 °C

1495 °C

1394 °C

Mass-% C

0.1 0.16 0.53

Ferritic solidification Austenitic solidification

Page 11: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

11

0.0 0.5 1.0

500

750

1000

Tem

pera

ture

, °C

C, mass-%

Eutectoid Reaction

723 °C , 0.77 wt%C

α + 𝑭𝒆𝟑𝑪

Eutectoid Reaction:α +

α + Fe3C

Page 12: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

12

Hypo- and Hyper-Eutectoid Steels

0.0 0.5 1.0 1.5 2.0250

500

750

1000

1250

Te

mp

era

ture

, °C

C, mass-%

Eutectoid composition

Hyper-eutectoid

(secondary cementite formation

above eutectoid temperature)

Hypo-eutectoid

( formation above

eutectoid

temperature)

+ + Fe3C

+ Fe3C

Secondary Fe3C

formation in

hyper-eutectoid

steels

(precipitation

from )

Primary Fe3C forms

in hyper-eutectic cast

irons in the liquid state

Tertiary Fe3C

formation

(precipitation

from )

Page 13: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

13

0.0 0.5 1.0

Ae3

Acm

Te

mp

era

ture

, °C

Carbon, w-%

0.10% 0.37% 0.55% 0.81%

Ae1

0.10% C

0.37%

0.55%

0.81%

Carbon Content vs Microstructure

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 14: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

14

Fe-1.5%C steel air-cooled from 1150 °C

100 m

Gradient of carbon concentration due to decarburizationLow-carbon,

hypo-eutectoid High-carbon,

hyper-eutectoid

Pro-eutectoid α Pro-eutectoid Fe3C

Carbon Content vs Microstructure

Page 15: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

15

Equilibrium Transformation Temperatures

0.0 0.5 1.0 1.5 2.0250

500

750

1000

1250

T

em

pe

ratu

re,

°C

C, mass-%

+ + Fe3C

+ Fe3C

Ae3

Aecm

Ae1

Page 16: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

16

Transformation Temperatures

Transformationon cooling

(refroidissement)

on heating

(chauffage)

equilibrium

(équilibre)

Liquid -iron Ar Ac Ae

-iron -iron Ar4 Ac4 Ae4

-iron - or -iron Ar3 Ac3 Ae3

-iron (paramagnetic) -iron

(ferromagnetic)Ar2 Ac2 Ae2

Austenite pearlite Ar1 Ac1 Ae1

Precipitation-start or dissolution-

finish of secondary cementiteArcm Accm Aecm

0 0.4 0.8 1.2

Carbon, mass-%

Te

mp

era

ture

, °C

740

820

900

Ac3Ar3

Ae3

Ac1

Ar1Ae1

Aecm

Arcm

Accm

Transformation temperatures in Fe-C binary alloys during heating andcooling at a rate of 7.5°C per hour

Page 17: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

17

Lever Rule

In the case of binary systems, the equilibrium weight fraction of each

phase at any point within the two-phase region can be calculated from

the equilibrium phase diagram by drawing a tie line (horizontal line) and

determining where it intersects the single-phase boundaries on either side

of the tie line:

0.0 0.1 0.2 0.3 0.4 0.5650

700

750

800

850

900

950

Tem

per

atu

re,

°C

Carbon, wt.-%

A B

f=B/(A+B)

f=A/(A+B)

Page 18: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

18

0.0 0.5 1.0 1.5 2.0250

500

750

1000

1250

Tem

pera

ture

, °C

C, mass-%

Lever Rule

+ + Fe3C

+ Fe3C

Example:

Fe-0.45C

AB

C

A

B

C

Pro-eutectoid forms

Upon further cooling, any remaining at B will transform to pearlite

via eutectoid reaction:

% = 𝟎.𝟕𝟕−𝟎.𝟒𝟓

𝟎.𝟕𝟕−𝟎.𝟎𝟐× 𝟏𝟎𝟎

= 42.7% pro-eutectoid

% = 100-42.7=57.3%

% pro-eutectoid = 42.7%

% pearlite = % just above the eutectoid temperature= 57.3%

% in pearlite=𝟔.𝟔𝟗−𝟎.𝟕𝟕

𝟔.𝟔𝟗−𝟎.𝟎𝟐× 𝟏𝟎𝟎 = 88.6% %Fe3C in pearlite = 11.4%

% total = 42.7+(0.88657.3)= 93.5% %Fe3Ctotal = 6.5%

Alternatively: %Fe3Ctotal= 𝟎.𝟒𝟓−𝟎.𝟎𝟐

𝟔.𝟔𝟗−𝟎.𝟎𝟐×100= 6.5%

𝜸𝟕𝟐𝟑 °𝑪 , 𝟎.𝟕𝟕 𝒘𝒕%𝑪

𝑷𝒆𝒂𝒓𝒍𝒊𝒕𝒆 (𝜶 + 𝑭𝒆𝟑𝑪)

Fe3C

Page 19: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

19

Time, sec

0 1 10 100 1000 10000

Te

mp

era

ture

, °C

800

700

600

500

400

300

200

Fe-0.4%C-2%Mn

Pearlite

Bainite

Martensite

Cooling rateLow High

Moderate

Bainite

MartensitePearlite

Ms

Pro-eutectoid

(kinetics not shown)

Austenite Decomposition Products

Page 20: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

20

Parent

Displacive /

Military

Reconstructive /

Civilian Parent

Product

Product

Example:

Austenite decomposition

to martensite

Example:

Austenite decomposition

to pro-eutectoid ferrite

Migration of a glissile interface by dislocation glide which results in

shearing of the parent lattice into the product

Nearest neighbor atoms are unchanged

Migration of a non-glissile interface by jumps of individual atoms across the

interface

Nearest neighbor atoms might change

Transformation Mechanisms

http://www.msm.cam.ac.uk/phase-trans/2008/Steel_Microstructure/SM.html

Page 21: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

21

Isothermal Transformation Kinetics

Johnson-Mehl-Avrami-Kolkogorov (JMAK) equation, also known as Avrami equation is

used to describe the kinetics of isothermal diffusional transformations:

𝒇 𝒕, 𝑻 = 𝟏 − 𝒆𝒙𝒑(−𝒌𝒕𝒏)Transformed fraction

time temperature varies with nucleation and growth rates (temperature-dependent)

temperature-independent (if there is no change in the nucleation mechanism)

time

Tra

nsfo

rmed

fracti

on

(f)

0

1

Small number of nuclei

Growth of many nuclei

Particle impingement

Sigmoidal shape:

D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992.

Page 22: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

22

Isothermal Transformation Kinetics

Spherical growth (3D)

Plate (disk-shaped) growth (2D)

Needle (rod-shaped) growth (1D)

n in JMAK equation

N.R.=constant

4

3

2

3

2

1

N.R.=0

Nucleation occurs

concurrently with

growth

𝒇 𝒕, 𝑻 = 𝟏 − 𝒆𝒙𝒑(−𝒌𝒕𝒏) No new nuclei

formation during

growth

(N.R.: nucleation rate)

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 23: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

23

Isothermal Transformation Kinetics

1% 99%

Log t

time

T1

T2

T2 T1

Tem

pera

ture

Tra

nsfo

rmed

fracti

on

(f)

0

1

Equilibrium transformation

temperatureTe

D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992.

Page 24: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

24

Isothermal Transformation Kinetics

Rate

Tem

pera

ture

Growth rate

Overall

transformation

rate

Nucleation rate

Te

1% 99%

Log t

Tem

pe

ratu

re

Nucleation rate

High diffusivity

Low thermodynamic driving force

Low diffusivity

High thermodynamic driving force

Maximum nucleation rate at

intermediate temperatures

Rate

Page 25: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

25

Pro-Eutectoid in Hypo-eutectoid Steels

Grain boundary

Grain boundary

allotriomorphs

Secondary

Widmanstätten

ferrite plates

Primary

Widmanstätten

ferrite plate

Intragranular

idiomorphs

Intragranular

Widmanstätten

plates

Page 26: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

26

Allotriomorphs and Widmanstätten

Widmanstätten plates grow along well-defined planes of austenite

Grain boundary allotriomorphs nucleate while developing an orientation relationship with one of the neighbor austenite grains. They maintain a semicoherent interface with the austenite grain on which they nucleate but the interface with the other austenite grain is incoherent.

Semicoherentside

Incoherent side

Grain

boundary

100 m

20 m

http://www.msm.cam.ac.uk/phase-trans/2008/Steel_Microstructure/SM.html

Page 27: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

27

Log t

Widmanstätten(displacive but diffusional involving C diffusion out of

growing plates)

A3

Twid.

Grain boundary allotriomorphs

Tem

pera

ture

At small undercoolings below A3 , ferrite nucleates on austenite grain boundaries and grows in a blocky manner to form grain boundary allotriomorphs. At larger undercoolings, there is an increasing tendency for the ferrite to grow from grain boundaries as plates, the so-called Widmanstätten side-plates, which become increasingly finer as the undercooling increases.

Widmanstätten

Tw : Widmanstätten start temperature

Tilting of initially straight surface scratches due to the

Widmanstätten ferrite formation

http://www.msm.cam.ac.uk/phase-trans/2008/Steel_Microstructure/SM.html

Page 28: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

28

Austenite/Ferrite Orientation Relationship(𝟏𝟏𝟏)𝜸 // (𝟏𝟏𝟎)𝛂 & [𝟏ഥ𝟏𝟎]𝛄 // [𝟏ഥ𝟏𝟏]𝛂Kurdjumov-Sachs (KS) O.R.:

{110}

<111><110>

{111}

<111>{110}<110>

{111}

H.K.D.H. Bhadeshia, S.R. Honeycombe, Steels, Third Ed., Butterworth-Heinemann, Oxford, 2006.

Page 29: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

29

Widmanstätten Morphology for

Allotriomorphic

(allotriomorphic

at high temp.)

Widmanstätten

(Widmanstätten at

high temp.)40 m

Widmanstätten and allotriomorphic morphologies for martensite (austenite at the annealing temperature)

Ferritic Matrix

200 m

Bright Widmanstätten austenite in a dark ferritic matrix

Page 30: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

30

Intragranular idiomorphs are equiaxed crystals which almost always nucleate inside austenite grains usually on non-metallic inclusions present in the steel. An idiomorph forms without contact with austenite grain boundaries and may sometimes show crystallographic facets.Intragranular Widmanstätten plates are similar to grain boundary Widmanstätten plates but nucleate entirely within austenite grains.

Grain

boundary

Intragranular

Widmanstätten

plates

Intragranular

idiomorphs 200 m

Intragranular Ferrite

Page 31: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

31

Ferrite growth without a change in composition can only occur below the T0

composition/temperature (or T0 line) at which and with the same chemical composition have identical free energies.

Fe C

G

Mole fraction carbon

Fre

e e

nerg

y

x

G

xT0

T0 Curve

Diffusionless α

transformation

would decrease G

Diffusionless α

transformation

would raise G

Under equilibrium

conditions, the common

tangent line determines

the chemical

composition of phases

for alloy compositions

between Xα and X.

Achieving equilibrium

requires diffusion

because Xα and X are

unequal. Therefore, for

diffusionless

transformations, the

common tangent is not

relevant.

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 32: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

32

0,0 0,5 1,0 1,5250

500

750

1000

1250

Ae3

Acm

Te

mp

era

ture

, °C

C, mass-%

-38

-36

-34

-32

-30

-28

-26

-24

Fre

e E

ne

rgy

, kJ

/mo

le

T0

G

G

0.0 0.2 0.4 0.6 0.8 1.0250

500

750

1000

A

e3

Te

mp

era

ture

, °C

C, mass-%

T0

0.0 0.5 1.0 1.5 2.0 2.5

-45000

-40000

-35000

-20000

-15000

-10000

-5000

0

T0

T0

T0

700°C

400°C

200°C

800°C

G

G

G,

G J/m

ol

Carbon, mass-%

T0

T0 Curve

Growth without carbon diffusion possible(e.g. martensite)

T0 temperature denotes the highest temperature at which the diffusionless formation of ferrite can occur. Diffusionless transformations are therefore restricted to below T0

temperature (e.g. martensite).

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 33: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

33

0.00 0.01 0.02 0.03 0.04 0.05

600

650

700

750

800

850

900

950

martensite start

massive start

Tem

pe

ratu

re,

°C

Carbon, w-%

Massive Transformation

Reconstructive but diffusionless Only involves short-range rearrangement of atoms at the / interface It occurs upon cooling from the homogenous -field to a temperature in the

homogenous -field (in C steels with very low C levels such as IF steels). At still higher cooling rates, the martensitic transformation may replace the massive

transformation.

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 34: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

34

Massive Transformation

Ti IF steel

Cooling rate: 30°C/s

50 m50 m

Massive ferritePolygonal ferrite

Ti IF steel

Cooling rate: 1 °C/s

Irregular and ragged boundaries

Chemical composition: Fe, 0.0017%C, 0.042%Ti, 0.0032%B, 0.0023%N, 0.0049%S

B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.

Page 35: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

35

Pro-Eutectoid Fe3C in Hyper-eutectoid Steels

0.0 0.5 1.0 1.5 2.0250

500

750

1000

1250

T

em

pera

ture

, °C

C, mass-%

Hyper-eutectoid

+ + Fe3C

+ Fe3C

Fe3C

precipitation

from

Hypo-eutectoid

Allotriomorphic

cementite Idiomorphic

cementite

Widmanstätten

cementite

plates

Intragranular

Widmanstätten

Fe-13Mn-1.3C alloy isothermally reacted at 650 °C

M.V. Kral, G. Spanos, Acta Mater. 47 (1999) 711–724.

Page 36: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

36

Pro-Eutectoid Fe3C in Hyper-eutectoid Steels

200 m

Fe-6Mn-(~1.7C) steel air cooled from 1150 °C

+ M3C

Allotriomorphic cementite

Widmanstätten cementite

Page 37: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

37

Pro-Eutectoid Fe3C in Hyper-eutectoid Steels

3D view of allotriomorphic cementite

after deep etching of austenite in a Fe-

13Mn-1.3C alloy. The grain boundary

films in 2D view are in fact impinged

dendrites of cementite.

3D view of Widmanstätten cementite

after deep etching of austenite in a Fe-

13Mn-1.3C alloy

Stacked sub-unit laths

M.V. Kral, G. Spanos, Acta Mater. 47 (1999) 711–724.

Page 38: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

38

Austenite/Cementite Orientation Relationship

Pitsch Orientation Relationship:

Orthorhombic M3C (θ): a= 0.509 nm, b= 0.674 nm, c= 0.452 nm

<5-54> // <001>θ

<-225> // <010>θ

<110> // <100>θ

H.K.D.H. Bhadeshia, S.R. Honeycombe, Steels, Third Ed., Butterworth-Heinemann, Oxford, 2006.

Page 39: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

39

Reconstructive No shape deformation Almost always diffusional Growth on both sides of

austenite grain boundaries

Examples:Allotriomorphic ferriteIdiomorphic ferriteMassive ferrite (reconstructive but diffusionless)Pearlite

Displacive No diffusion of Fe or substitutional solutes Carbon may diffuse Shape deformation (surface relief as a result

of shear) Thin plate shape Plate growth only on one side of austenite

grain boundaries

Examples:MartensiteBainite (carbon diffuses during the nucleation but not during the growth )Widmanstätten ferrite (carbon diffuses during paraequilibrium nucleation and growth)

Characteristics of Transformations

Another view holds that C diffusion takes place during both nucleation and growth of bainite.

H.K.D.H. Bhadeshia, S.R. Honeycombe, Steels, Third Ed., Butterworth-Heinemann, Oxford, 2006.B.C. De Cooman, J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, Association for Iron and Steel Technology, Warrendale, 2011.D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992.

Page 40: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

40

0 0.2 0.6 0.8 1.6 1.8

Carbon, mass-%

Tem

pera

ture

, °C

700

900

1100

1300

1500

1400

1200

1000

800

600

1600

8 %Si

1.41.21.00.4

Pseudo-Binary Phase Diagrams

-loop in pseudo-binary Fe-Si-C steels

Effect of Si on

the C limit of

E.C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939.

Page 41: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

41

0 0.2 0.6 0.8 1.6 1.8

Carbon, mass-%

Tem

pera

ture

, °C

700

900

1100

1300

1500

1400

1200

1000

800

600

1600

1.41.21.00.4

Pseudo-Binary Phase Diagrams

-loop in pseudo-binary Fe-Ti-C steels

Effect of Ti on

the C limit of

1 %Ti

E.C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939.

Page 42: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

42

0 0.2 0.6 0.8 1.6 1.8

Carbon, mass-%

Tem

pera

ture

, °C

700

900

1100

1300

1500

1400

1200

1000

800

600

1600

1.41.21.00.4

Pseudo-Binary Phase Diagrams

-loop in pseudo-binary Fe-Cr-C steels

Effect of Cr on

the C limit of

E.C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939.

Page 43: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

43

0 0.2 0.6 0.8 1.6 1.8

Carbon, mass-%

Tem

pera

ture

, °C

700

900

1100

1300

1500

1400

1200

1000

800

600

1600

1.41.21.00.4

Pseudo-Binary Phase Diagrams

-loop in pseudo-binary Fe-Mn-C steels

E.C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939.

Page 44: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

44

0 2 6 8 16 18

Alloying element, mass-%

Eu

tecto

id

tem

pera

ture

, °C

700

900

1100

1300

1200

1000

800

600

1412104

Eutectic Point Displacement by Alloying Elements

500

Ti

Mo SiW

Cr

Mn

Ni

0.8

0.6

0.4

0.2

0

Eu

tecto

id C

co

nte

nt,

mass-%

C

Ti Mo

Si

W

Cr

Mn

Ni

Ferrite stabilizers

Austenite stabilizers

Ferrite & austenite

stabilizers

E.C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939.

Page 45: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

45

Calculated Phase Diagrams

Chemical composition: Fe-16.19Cr-0.04N-0.5Mn-0.15Ni-0.23 Si, C as X-axis

Liq.

+

+ Cr2N + M23C6 + Cr2N

+ + Cr2N + M23C6

+ + M23C6

+ M23C6

+ M7C3

+ Liq.

+ + Liq.

Example of a pseudo-

binary phase diagram

calculated by a

thermodynamic

calculation package.

Page 46: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

46

Calculated Phase Diagrams

Calculated influence of Ni on the -loop in a quaternary Fe-16.2Cr-Ni-C alloy system

Page 47: Phase Diagrams and Constitution of Steels€¦ · WS 2017/18 3 Open -field ASM Handbook: Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1992

Intr

od

ucti

on

to

Ferr

ou

s M

ate

rials

(I)

WS

2017/1

8

47