phased array radar basics - national oceanic and ... · mit lincoln laboratory radar course jsh -2...

17
Radar Course JSH -1 MIT Lincoln Laboratory Phased Array Radar Basics Jeffrey Herd MIT Lincoln Laboratory 17 November 2009

Upload: hakhue

Post on 29-May-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

Radar CourseJSH -1

MIT Lincoln Laboratory

Phased Array Radar Basics

Jeffrey Herd

MIT Lincoln Laboratory17 November 2009

Page 2: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -2

Outline

• History and Evolution of Phased Arrays• Phased Array Radar Fundamentals

– Array Beamforming– Electronic Scanning– Active Transmit-Receive Modules

• Summary

Page 3: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -3

T R

Radar Antenna Architectures

Dish Antenna

• Very low cost• Frequency diversity • Slow scan rate • High distribution loss• Single point of failure

MILLSTONE

T R

Passive Phased Array

• Beam agility• Effective radar resource

management• High distribution loss • Higher cost

SPY-1

Beamformer

T R

Active Phased Array

• Highest performance • Effective radar resource

management• Low distribution loss• Highest cost

THAAD

T/R Modules

Page 4: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -4

• MIT LL Millstone Radar– 2 Klystrons with 3 MW peak power

– 120 kW avg power

– Center Frequency of 1295 MHz

– 8 MHz bandwidth

Millstone Klystron Tube

Dish Radar Example

• Advantages – High output power– Low cost per watt

• Disadvantages– Single point of failure– Large size

• $400,000/tube• 7 ft x 1ft• 600 lbs• 3% duty cycle• 42 dB gain

Page 5: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -5

Solid State Array Radar Example

• PAVE PAWS– First all-solid-state array radar– UHF Band – 1800 active transceiver T/R

modules, 340 W of peak power each

• Advantages – Electronic beam agility– Low maintenance (no moving

parts)– Graceful degradation

• Disadvantages– Higher cost per watt

Transmit and Receive Modules

Page 6: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -6

Airb

orne

Surf

ace

Phased Array Radar Evolution

PatriotC-Band

SPY-1S-Band

B-1BX-Band

JSTARSX-Band

Passive Arrays( Phase Shifter at Element)

F/A-22X-Band

JSFX-Band

THAADX-Band

SBXX-Band

MP-RTIPX-Band

SPY-3X-Band

Active Arrays(Amplifiers + Phase Shifter at Element)

1985

1975

1980

2015

2005

2000

1995

1990

2010

Increasing Beam Agility

Page 7: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -7

Outline

• History and Evolution of Phased Arrays• Phased Array Radar Fundamentals

– Array Beamforming– Electronic Scanning– Active Transmit-Receive Modules

• Summary

Page 8: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -8

• Multiple antennas combined to enhance radiation and shape pattern

Array Beamforming

Array Phased ArrayIsotropicElement

PhaseShifter

S

CombinerS S

Direction

Res

pons

e

Direction

Res

pons

e

Direction

Res

pons

e

Direction

Res

pons

e

Array

Page 9: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -9

Array Beamforming (Beam Collimation)

Broadside Beam Scan To 30 deg

• Want fields to interfere constructively (add) in desired directions, and interfere destructively (cancel) in the remaining space

Page 10: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -10

Broadside Uniform Linear Array

d = l/4 separation d = l/2 separation d = l separation

Angle off Array q (deg) Angle off Array q (deg) Angle off Array q (deg)0 30 60 90 120 150 180

Dire

ctiv

ity (d

Bi)

GratingLobes

0 30 60 90 120 150 180-30

-20

-10

0

10

20

0 30 60 90 120 150 180

10 dBi7 dBi

10 dBi

L = (N-1) d

z

90q = °Maximum at

90cos 0k d

qy q b

= °= + =

Design Goal0b =

Required Phase

N = 10 Elements

Limit element separation to d < l to preventgrating lobes for broadside array

Page 11: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -11

Increasing Broadside Linear ArraySize by Adding Elements

Gain ~ 2N(d / l) ~ 2L / lfor long broadside array without grating lobes*

N = 10 Elements

Dire

ctiv

ity (d

Bi)

Angle off Array q (deg)0 30 60 90 120 150 1800 30 60 90 120 150 1800 30 60 90 120 150 180-30

-20

-10

0

10

20

10 dBi 13 dBi 16 dBi

Angle off Array q (deg) Angle off Array q (deg)

N = 40 ElementsN = 20 Elements

• Element Separation d = l/2

* d < l

L = (N-1) d

z

Page 12: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -12

Excitation AmplitudesTapers Across 10 Element Linear Array

Uniform Amplitude Binomial26 dB Dolph-Tschebyscheff

-

1 2 3 4 5 6 7 8 9 10

1

2

3

1 2 3 4 5 6 7 8 9 10

1

2

3

1 2 3 4 5 6 7 8 9 10

50

100

150

1

0 30 60 90 120 150 180-40

-35

-30

-25

-20

-15

-10

-5

0

0 30 60 90 120 150 180-40

-35

-30

-25

-20

-15

-10

-5

0

0 30 60 90 120 150 180-40

-35

-30

-25

-20

-15

-10

-5

0

13 dB SLL

26 dB SLL

No Sidelobes -Theoretical Result!

Amplitude & Phase Errors Limit the Sidelobe Level (SLL)That Can Be Achieved in Practice: > 40 dB is Challenging

Page 13: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -13

Polarization

rE

HorizontalLinear

(with respectto Earth)

• Defined by behavior of the electric field vector as it propagates in time

r

E

VerticalLinear

(with respectto Earth)

ElectromagneticWave Electric Field

Magnetic Field

q

f

r

Page 14: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -14

Active Array T/R Module

Page 15: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -15

T/R Module / Subarray Integration

• High levels of integration reduce unit cost• Automated assembly and test reduces touch labor cost

64 Element Tile

Page 16: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -16

Summary

• Phased array provides improvements in radar functionality and performance

– Beam agility

– Effective radar resource management

– Graceful degradation with module failures

• Current trend is towards active arrays with distributed T/R modules

– Large number of distributed active components and control

– High levels of integration required to achieve low cost

Page 17: Phased Array Radar Basics - National Oceanic and ... · MIT Lincoln Laboratory Radar Course JSH -2 Outline • History and Evolution of Phased Arrays • Phased Array Radar Fundamentals

MIT Lincoln LaboratoryRadar CourseJSH -17

References

• General Antenna Theory and Design:– Balanis, C.A., Antenna Theory: Analysis and Design, 2nd ed. New

York: Wiley, 1997.*– Elliot, R. S., Antenna Theory and Design. New Jersey: Prentice-Hall,

1981.– Kraus, J.D., Antennas 2nd ed. New York: McGraw-Hill, 1993.– Stutzman W. L., Thiele, G. A., Antenna Theory and Design, 2nd ed.

New York: Wiley, 1998.• Special Topics:

– Hansen, R. C., Microwave Scanning Antennas. California: Peninsula Publishing, 1985.

– Pozar, D. M., Schaubert, D. H. eds., Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays. New York: IEEE, 1995.

• Handbooks:– Lo, Y.T. and Lee S.W. eds., Antenna Handbook, Theory, Applications,

and Design. New York: Van Nostrand Reinhold, 1993.– Mailloux, R. J., Phased Array Antenna Handbook. Artech House,

1994.