phosphorescent oleds shortchemlabs.princeton.edu/macmillan/wp-content/uploads/sites/6/jml... ·...

46
Phosphorescent OLEDs Jeffrey Lipshultz MacMillan Lab Group Meeting November 1, 2017

Upload: others

Post on 18-Jun-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

  • Phosphorescent OLEDs

    Jeffrey LipshultzMacMillan Lab Group Meeting

    November 1, 2017

  • What is an Organic LED?

    Three basic components:

    1. Anode: inject holes (i.e. positive charges)2. Organic seminconductor Emission Layer (EML)3. Cathode: inject electrons

    How does it work?

    Zysman-Colman, E. Iridium(III) in Optoelectronic and Photonics Applications; John Wiley & Sons Ltd: Hoboken, NJ, 2017.Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

  • Early OLEDs

    Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.Burroughes, J. H. et. al. Nature 1990, 347, 539.

    1987: First “practical” (> 1% EQE) OLED using Alq3 (Eastman Kodak)

    Alq3

    N

    OAl

    3

    “diamine”

    N Np-tol

    p-tol

    p-tol

    p-tol

    External Quantum Efficiency (EQE) Internal Quantum Efficiency (IQE)

    electrons injectedphotons emitted

    excitons producedphotons emitted

    !ex = !i =

  • Early OLEDs

    Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.Burroughes, J. H. et. al. Nature 1990, 347, 539.

    1987: First “practical” (> 1% EQE) OLED using Alq3 (Eastman Kodak)

    1990: First polymer-based OLED (~ 8% EQE) using PPV (Burroughes, Cambridge)

    PPV

    Alq3

    N

    OAl

    3

    n

    “diamine”

    N Np-tol

    p-tol

    p-tol

    p-tol

  • Fluorescent OLEDs: Limitations

    Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B. 1999, 60, 14422.

    1987: First “practical” (> 1% EQE) OLED using Alq3 (Eastman Kodak)

    Alq3

    N

    OAl

    3

    Why only 1% EQE?

    poor SOC means no emission from T1

    BUT

    spin statistics dictate that excitons formedin 1:3 singlet:triplet ratio,

    somewhat verified experimentally

    ~25% IQEtheoretical limit

    !s = (20±1)%

    1990: First polymer-based OLED (~ 8% EQE) using PPV (Burroughes, Cambridge)

    PPV

    n

    !s = (20±4)%

    Segal, M.; Baldo, M. A.; Holmes, R. J.; Forrest, S. R.; Soos, Z. G. Phys. Rev. B. 2003, 68, 075211.

    If

  • Phosphorescent OLEDs

    The basics of PhOLEDs

    Fluorescence vs. Phosphorescence

    Basic design concept

    PhOLED architectures and materials

    Multi-layered devices

    Phosphorescent emitters

    Small-molecule and polymer hosts

    Current state-of-the-art

    Blue emitters!

    WOLEDs via mixed fluorescence/phosphorescence

    Thermally-activated delayed phosphorescence (TADF)

    Exciton formation/transfer

    What makes a good dopant and host?

    Specific considerations

  • Fluorescence vs. Phosphorescence

    Jablonski diagram upon photoexcitation

    S0

    S1T1

    abs

    fluor

    esce

    nce

    inte

    rnal

    con

    vers

    ion

    ISC

    phos

    phor

    esce

    nce

    alt-I

    SC

    Jablonski diagram upon electroexcitation

    S0

    S1T1

    excit

    on fo

    rmat

    ion

    fluor

    esce

    nce

    inte

    rnal

    con

    vers

    ion

    ISC

    phos

    phor

    esce

    nce

    alt-I

    SC

    excit

    on fo

    rmat

    ion

    1. Efficient exciton-harvesting requires (?) triplet-harvesting

    Key points for OLED development:

    2. EL from T1 requires appreciable SOC3. T1 lifetime much longer than S1

    4. E(T1) < E(S1)

  • Basic Design of PhOLEDs

    Minaev, B.; Baryshnikov, G.; Agren, H. Phys. Chem. Chem. Phys. 2014, 16, 179.

    Host/guest or host/dopant EML

    1998: First phosphor-doped OLED (Forrest, Princeton)

    Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoudtikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.

    N

    N N

    N

    Et

    Et

    Et

    Et Et

    Et

    Et

    Et

    Pt

    PtOEP

    anod

    e

    cath

    ode

    host

    dopant

    S1 T1

    Alq3

    N

    OAl

    3

    peak efficiencies:!ex = 4%!i = 23%

    EL lifetime 10-50 "s

  • Basic Principles of PhOLEDs

    Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

    Hole/electron recombination, aka exciton formation

    Segal, M.; Singh, M.; Rivoire, K.; Difley, S.; Van Coorhis, T.; Baldo, M. A. Nature Mater. 2007, 6, 374.

    anod

    e

    cath

    ode

    host

    dopant

    S1 T1

    As hole and electron get closer, Coloumbic attractions come into play

    ΔE(e-h) =e2

    4!ℇ0ℇRC= kBT RC(300 K) ≈ 180 Å

    These associated h+ and e- are called a charge transfer (CT) state.

    They don’t necessarily need to be on a single molecule or polymer chain.

  • Basic Principles of PhOLEDs

    Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

    Hole/electron recombination, aka exciton formation

    Reineke, S.; Baldo, M. A. Phys. Status Solidi A 2012, 209, 2341.

    anod

    e

    cath

    ode

    host

    dopant

    S1 T1

    Four main scenarios for exciton formation:

    Sn formation in host

    Tn formation in host

    Sn formation in dopant

    Tn formation in dopant

    exciton in host exciton in dopant

    Förster ET

    Dexter ET

    ISCISC

  • Basic Principles of PhOLEDs

    Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

    Host exciton energy transfer to dopant exciton, ISC/relaxation, phosphorescence

    Yersin, H. Top. Curr. Chem. 2004, 241, 1.

  • Basic Principles of PhOLEDs

    Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

    Exciton formation on the dopant: hole trapping first

    Yersin, H. Top. Curr. Chem. 2004, 241, 1.

  • Basic Principles of PhOLEDs

    Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943.

    characteristics of good PhOLED host

    Kappaun, S.; Slugove, C.; List, E. J. W. Int. J. Mol. Sci. 2008, 9, 1527.

    1. Large HOMO-LUMO gap (high energy LUMO)

    2. Long T1 lifetime = non-phosphorescent = poor SOC

    3. Higher energy S1, T1 than dopant

    4. Can efficiently transfer h+ or e-, or both (ambipolar)

    5. Spectral overlap (for FRET) and energy overlap (for DET)

    1. Lower LUMO than host

    2. Shorter T1 lifetime = phosphorescent = good SOC

    3. Lower energy S1, T1 than host

    4. Can efficiently trap h+ or e-, or both

    5. Spectral overlap (for FRET) and energy overlap (for DET)

    characteristics of good PhOLED dopant/emitter

  • Phosphorescent OLEDs

    The basics of PhOLEDs

    Fluorescence vs. Phosphorescence

    Basic design concept

    PhOLED architectures and materials

    Multi-layered devices

    Phosphorescent emitters

    Small-molecule and polymer hosts

    Current state-of-the-art

    Blue emitters!

    WOLEDs via mixed fluorescence/phosphorescence

    Thermally-activated delayed phosphorescence (TADF)

    Exciton formation/transfer

    What makes a good dopant and host?

    Specific considerations

  • Mulitlayer OLED Device

    Minaev, B.; Baryshnikov, G.; Agren, H. Phys. Chem. Chem. Phys. 2014, 16, 179.

    representative multilayer PhOLED

    Kappaun, S.; Slugove, C.; List, E. J. W. Int. J. Mol. Sci. 2008, 9, 1527.

    glass substrateanode

    hole-injection layer (HIL)

    hole-transport layer (HTL)

    host/guest

    hole-blocker layer (HBL)

    electron-transport layer (ETL)

    electron-injection layer (EIL)

    cathode

    emission layer (EML)

    examples

    Al, Mg/Ag, metals

    CsF, LiF

    most common: Alq3

    bathocuproine (BCP)

    to be discussed in detail

    bis(N,N’-diaryl)-biphenyls

    PEDOT:PSS, [M]OnITO

    characteristics/roles

    … to be a cathode

    high LUMO

    high ETelectron-deficient (pyridines)

    prevent “unused” h+from destroying ETL

    transport h+/e– to form excitons

    high ETelectron-rich (triarylamines)

    low HOMOITO

  • Triplet-Emitting Dopants (Phosphors)

    Nazeeruddin, M. K., et al. Top. Curr. Chem. 2017, 375, 39.

    Heavy-metal organometallic complexes exhibit appropriate phosphorescence

    N

    N N

    N

    Et

    Et

    Et

    Et Et

    Et

    Et

    Et

    Pt

    PtOEP

    T1 lifetime = 91 !sλmax = 650 nm

    IrIII

    N

    N N

    Ir(ppy)3

    T1 lifetime = 2.1 !sλmax = 509 nm

    Ir(ppy)2(acac)

    T1 lifetime = 1.6 !sλmax = 516 nm

    IrIII

    N

    N

    O

    OMe

    Me

    IrIII

    N

    N

    OO

    N

    F

    F

    FIrpic

    T1 lifetime = 1.7 !sλmax = 468 nm

    Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

    Chou, P.-T.; Chi, Y. Chem. Eur. J. 2007, 13, 380.

    really long lifetimehigh concentration of T1triplet-triplet annihilation

    F

    F

  • Triplet-Emitting Dopants (Phosphors)

    Nazeeruddin, M. K., et al. Top. Curr. Chem. 2017, 375, 39.

    Heavy-metal organometallic complexes exhibit appropriate phosphorescence

    Ir(piq)3

    T1 lifetime = 0.7 !sλmax = 620 nm

    IrIII

    N

    N N

    Ir(ppy)3

    T1 lifetime = 2.1 !sλmax = 509 nm

    Ir(ppy)2(acac)

    T1 lifetime = 1.6 !sλmax = 516 nm

    IrIII

    N

    N

    O

    OMe

    Me

    FIrpic

    T1 lifetime = 1.7 !sλmax = 468 nm

    Hartmut, Y. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, 2008.

    Chou, P.-T.; Chi, Y. Chem. Eur. J. 2007, 13, 380.

    IrIII

    N

    N N

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

  • Host Materials for PhOLEDs

    Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943.Segal, M.; Singh, M.; Rivoire, K.; Difley, S.; Van Coorhis, T.; Baldo, M. A. Nature Mater. 2007, 6, 374.

    Hole-transport-type hosts(electron-rich aromatic systems)

    Electron-transport-type hosts(electron-deficient aromatic systems)

    Ambipolar hosts(donor-acceptor systems)

    anode

    cathode

    HIL

    EIL

    EML

    *

    anode

    cathode

    HIL

    EIL

    EML

    *

    anode

    cathode

    HIL

    EIL

    EML*

    Type of host material determines exciton-generation zone

  • Host Materials for PhOLEDs

    Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943.Segal, M.; Singh, M.; Rivoire, K.; Difley, S.; Van Coorhis, T.; Baldo, M. A. Nature Mater. 2007, 6, 374.

    Hole-transport-type hosts(electron-rich aromatic systems)

    Electron-transport-type hosts(electron-deficient aromatic systems)

    Ambipolar hosts(donor-acceptor systems)

    N

    N 2

    CBP

    NnPVK

    NN

    N

    TAZ

    N

    N

    NPh

    Ph

    Ph

    T2T

    P

    P 2

    PO1

    PhPh

    OPh

    O

    Ph

    TFTPA

    N

    O

    N

    R

    Nalk

    CzOXD

    N N

    Ph Ph

    RN

    m-CZBP

    N

    P(O)Ph2Ph2(O)P

    PPO2NAr

    Ar Ph

  • Dopant Concentration Effect

    Reineke, S.; Baldo, M. A. Phys. Status Solidi A 2012, 209, 2341.Adachi, C. et al. Appl. Phys. Lett. 2005, 86, 071104.

    high concentration of dopant leads to dimished efficiency“concentration quenching”

    triplet-triplet annihilation

    Förster-type

    Staroske, W.; Pfeiffer, M.; Leo, K.; Hoffmann, M. Phys. Rev. Lett. 2007, 98, 197402.

    case study: Ir(ppy)3 in CBP

    RF = 2.9 nm

    Dexter-type

  • Dopant Concentration Effect

    Reineke, S.; Baldo, M. A. Phys. Status Solidi A 2012, 209, 2341.Adachi, C. et al. Appl. Phys. Lett. 2005, 86, 071104.

    high concentration of dopant leads to dimished efficiency“concentration quenching”

    triplet-triplet annihilation

    Staroske, W.; Pfeiffer, M.; Leo, K.; Hoffmann, M. Phys. Rev. Lett. 2007, 98, 197402.

    case study: Ir(ppy)3 in CBP

    RF = 2.9 nm

    0.1% Ir(ppy)3in TCTA

  • Increased IQE by Exciton Confinement

    Adachi, C.; Baldo, M. A.; Forrest, S R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904.Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. J. Appl. Phys. 2001, 90, 5048.

    N N

    NPh Ph

    host: TAZ dopant: Ir(ppy)2(acac)HTL: HMTPD ETL: Alq3

    N

    OAl

    3

    N

    MeMe

    Me

    2

    emission from HMTPD likely indicates exciton formation in HTL

    poor hole injection to EML/poor recombination in EML

    HOMO of host is below HOMO of HTL, unfavorable hole injection

    IrIII

    N

    N

    O

    OMe

    Me

    12% Ir(ppy)2(acac)

    !ext = (19±0.5)%

    !i = (87±7)%

  • Increased IQE by Exciton Confinement

    Adachi, C.; Baldo, M. A.; Forrest, S R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904.Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. J. Appl. Phys. 2001, 90, 5048.

    N N

    NPh Ph

    host: TAZ dopant: Ir(ppy)2(acac)HTL: HMTPD ETL: Alq3

    N

    OAl

    3

    N

    MeMe

    Me

    2

    emission from HMTPD likely indicates exciton formation in HTL

    poor hole injection to EML/poor recombination in EML

    HOMO of host is below HOMO of HTL, unfavorable hole injection

    IrIII

    N

    N

    O

    OMe

    Me

    12% Ir(ppy)2(acac)

    !ext = (19±0.5)%

    !i = (87±7)%

  • Increased IQE by Exciton Confinement

    Adachi, C.; Baldo, M. A.; Forrest, S R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904.Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. J. Appl. Phys. 2001, 90, 5048.

    N N

    NPh Ph

    host: TAZ dopant: Ir(ppy)2(acac)HTL: HMTPD ETL: Alq3

    N

    OAl

    3

    N

    MeMe

    Me

    2

    emission from HMTPD likely indicates exciton formation in HTL

    poor hole injection to EML/poor recombination in EML

    HOMO of host is below HOMO of HTL, unfavorable hole injection

    IrIII

    N

    N

    O

    OMe

    Me

    12% Ir(ppy)2(acac)

    !ext = (19±0.5)%

    !i = (87±7)%

  • Phosphorescent OLEDs

    The basics of PhOLEDs

    Fluorescence vs. Phosphorescence

    Basic design concept

    PhOLED architectures and materials

    Multi-layered devices

    Phosphorescent emitters

    Small-molecule and polymer hosts

    Current state-of-the-art

    Blue emitters!

    WOLEDs via mixed fluorescence/phosphorescence

    Thermally-activated delayed phosphorescence (TADF)

    Exciton formation/transfer

    What makes a good dopant and host?

    Specific considerations

  • E(T1) FIrpic > E(T1) CBPbut

    kR >> kh

    uphill ET can occurto repopulate T1 of FIrpic

    leading to delayed/prolongedphosphorescence!

    “Endothermic Energy Transfer” for Phosphorescence

    Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. Appl. Phys. Lett. 2001, 79, 2082.Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. J. Appl. Phys. 2001, 90, 5048.

    host: CBP dopant: FIrpicHTL: NPD ETL: Alq3

    N

    OAl

    3

    N

    2

    N

    2

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

  • up to 10 ms lifetimeof phosphorescence no CBP phosphorescence observed

    FIrpic phosphorescence observedat both early and delayed times

    !ext = (5.7±0.3)%

    “Endothermic Energy Transfer” for Phosphorescence

    Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. Appl. Phys. Lett. 2001, 79, 2082.Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. J. Appl. Phys. 2001, 90, 5048.

    host: CBP dopant: FIrpicHTL: NPD ETL: Alq3

    N

    OAl

    3

    N

    2

    N

    2

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

  • Improved Efficiency in Blue Phosphorescent LEDs

    Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. Appl. Phys. Lett. 2001, 79, 2082.Tokito, S.; Ijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83, 569.

    host: CBP dopant: FIrpicHTL: NPD ETL: Alq3

    N

    OAl

    3

    N

    2

    N

    2

    host: CDBP dopant: FIrpicHTL: NPD ETL: Alq3

    N

    OAl

    3

    N

    2

    N

    2

    Me

    !ext = (5.7±0.3)%

    !ext = 10.4%

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

  • Improved Efficiency in Blue Phosphorescent LEDs

    Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. Appl. Phys. Lett. 2001, 79, 2082.Tokito, S.; Ijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83, 569.

    host: CBP

    N

    2

    host: CDBP

    N

    2

    Me

    !ext = (5.7±0.3)%

    !ext = 10.4%

    E(T1) = 2.6 eV

    E(T1) = 3.0 eV

    dopant: FIrpic

    phosphorescence decays significantly faster

    exothermic ET to phosphor is more efficient than endothermic

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

  • Improved Efficiency in Blue Phosphorescent LEDs

    Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S R. Appl. Phys. Lett. 2001, 79, 2082.Tokito, S.; Ijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83, 569.

    host: CBP

    N

    2

    host: CDBP

    N

    2

    Me

    !ext = (5.7±0.3)%

    !ext = 10.4%

    E(T1) = 2.6 eV

    E(T1) = 3.0 eV

    dopant: FIrpic

    phosphorescence decays significantly faster

    exothermic ET to phosphor is more efficient than endothermic

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

  • Improving Stability and Lifetime of Blue PhOLEDs

    Seifert, R.; Rabelo de Moraes, I.; Scholz, S.; Gather, M. C.; Lussem, B.; Leo, K. Org. Electron. 2013, 14, 115.Endo, A.; Suzuki, K.; Yoshihara, T.; Tobita, S.; Yahiro, M.; Adachi, C. Chem. Phys. Lett. 2008, 460, 155.

    FIrpic

    T1 lifetime = 1.2 !sλmax = 476 nm

    IrIII

    N

    N

    N

    N

    F

    F

    T1 lifetime = 2.2 !sλmax = 458 nm

    FIr6

    as films in mCP

    N N

    N

    NB

    N

    N

    N

    N

    high triplet energy emittersrapid decay of pure films and OLED devicesstabilization with improved hosts, HBL, etc

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F

    F

    F

  • Improving Stability and Lifetime of Blue PhOLEDs

    Seifert, R.; Rabelo de Moraes, I.; Scholz, S.; Gather, M. C.; Lussem, B.; Leo, K. Org. Electron. 2013, 14, 115.Zhang, Y.; Lee, J.; Forrest, S. R. Nat. Commun. 2014, 5, 5008.

    Ir(dmp)3λmax = 466 nm

    IrIIINN

    MeMe

    3

    NN

    mCBP

    E(HOMO) = 5.0 eV E(HOMO) = 6.0 eVhole transport in EML electron transport in EML

    at high Ir(dmp)3 concentrations, exciton formation should occur

    only in vicinty of/on Ir(dmp)3

  • anode

    Improving Stability and Lifetime of Blue PhOLEDs

    Seifert, R.; Rabelo de Moraes, I.; Scholz, S.; Gather, M. C.; Lussem, B.; Leo, K. Org. Electron. 2013, 14, 115.Zhang, Y.; Lee, J.; Forrest, S. R. Nat. Commun. 2014, 5, 5008.

    Ir(dmp)3λmax = 466 nm

    IrIIINN

    MeMe

    3

    NN

    mCBP

    E(HOMO) = 5.0 eV E(HOMO) = 6.0 eVhole transport in EML electron transport in EML

    at high Ir(dmp)3 concentrations, exciton formation should occur

    only in vicinty of/on Ir(dmp)3

    !ext= (8.5±0.1)%T50 = 510 h

    !ext = (9.5±0.1)%T50 = 1500-1600 h

  • anode

    Improving Stability and Lifetime of Blue PhOLEDs

    Seifert, R.; Rabelo de Moraes, I.; Scholz, S.; Gather, M. C.; Lussem, B.; Leo, K. Org. Electron. 2013, 14, 115.Zhang, Y.; Lee, J.; Forrest, S. R. Nat. Commun. 2014, 5, 5008.

    Ir(dmp)3λmax = 466 nm

    IrIIINN

    MeMe

    3

    NN

    mCBP

    E(HOMO) = 5.0 eV E(HOMO) = 6.0 eVhole transport in EML electron transport in EML

    at high Ir(dmp)3 concentrations, exciton formation should occur

    only in vicinty of/on Ir(dmp)3

    !ext = (9.5±0.1)%T50 = 1500-1600 h

    !ext = (18±0.2)%T50 = 3500-3700 h

  • Improving Stability and Lifetime of Blue PhOLEDs

    Sarma, M.; Tsai, W.-L.; Lee, W.-K.; Chi, Y.; Wu, C.-C.; Liu, S.-H.; Chou, P.-T.; Wong, K.-T. Chem 2017, 3, 461.

    FIrpic

    T1 lifetime = 1.1 !sλmax = 470 nm

    MS2

    T1 lifetime = 0.8 !sλmax = 475 nm

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F IrIII

    N

    N

    N

    N

    OO

    N

    F

    F

    F

    F

  • Improving Stability and Lifetime of Blue PhOLEDs

    Sarma, M.; Tsai, W.-L.; Lee, W.-K.; Chi, Y.; Wu, C.-C.; Liu, S.-H.; Chou, P.-T.; Wong, K.-T. Chem 2017, 3, 461.

    FIrpic

    T1 lifetime = 1.1 !sλmax = 470 nm

    MS2

    T1 lifetime = 0.8 !sλmax = 475 nm

    IrIII

    N

    N

    OO

    N

    F

    F

    F

    F IrIII

    N

    N

    N

    N

    OO

    N

    F

    F

    F

    F

  • White OLEDs (WOLEDs)

    Gather, M. C.; Köhnen, A.; Meerholz, K. Adv. Mater. 2011, 23, 233.

    white light = blended blue, green, red

    Red PhOLED ✓

    Green PhOLED ✓

    Blue PhOLED ?

    Solution: combine blue fluorescence with red/green phosphorescence

  • Working principle:

    trap singlets on blue flourescent emittertrap triplets on red/green phosphorescent emitter

    White OLEDs (WOLEDs)

    Sun, Y.; Biebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908.Chen, J.; Zhao, F.; Ma, D. Mater. Today 2014, 17, 175.

  • White OLEDs (WOLEDs)

    Sun, Y.; Biebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908.

    NEt

    2

    BCzVBi

    O

    OMe

    Me

    IrIII

    N

    N

    IrIII

    N

    N N

    Ir(ppy)3 PQIr

  • Working principle:

    trap singlets on blue flourescent emittertrap triplets on red/green phosphorescent emitter

    White OLEDs (WOLEDs)

    Schwartz, F.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672.Chen, J.; Zhao, F.; Ma, D. Mater. Today 2014, 17, 175.

  • White OLEDs (WOLEDs)

    Schwartz, F.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Adv. Mater. 2007, 19, 3672.Chen, J.; Zhao, F.; Ma, D. Mater. Today 2014, 17, 175.

    O

    OMe

    Me

    IrIII

    N

    N

    N

    N Me

    Me

    IrIII

    N

    N N

    Ir(ppy)3 Ir(MDQ)2(acac)4P-NPD

    N

    2

  • Thermally-Activated Delayed Fluorescence (TADF)

    Yang, Z. et al. Chem. Soc. Rev. 2017, 46, 915.

    Obviously not phosphorescence

    S0

    S1T1

    excit

    on fo

    rmat

    ion

    fluor

    esce

    nce

    inte

    rnal

    con

    vers

    ion

    ISC

    phos

    phor

    esce

    nce

    alt-I

    SC

    excit

    on fo

    rmat

    ion

    RISC

    eosin Y, 1961(E-type delayed fluorescence)

    O O

    Br

    BrO

    Br

    Br

    CO2“the high-frequency band (which has a contour

    identical with the fluorescence band) is the result of thermal activation to the upper singlet

    level folowed by a radiative transition from there to the ground state, and we shall therefore call

    this the delayed fluorescence band”

    Parker, C. A.; Hatchard, C. G. Trans. Faraday Soc. 1961, 57, 1894.

  • Thermally-Activated Delayed Fluorescence (TADF)

    Yang, Z. et al. Chem. Soc. Rev. 2017, 46, 915.Adachi, C. et al. Appl. Phys. Lett. 2011, 98, 083302.

    N N

    NN N

    NPh PhN

    PIC-TRZ

    E(T1) = 2.55 eVE(S1) = 2.66 eV

    ΔEST = 0.11 eV

    !ext = 5.3%

  • Thermally-Activated Delayed Fluorescence (TADF)

    Yang, Z. et al. Chem. Soc. Rev. 2017, 46, 915.Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234

    NC CNN

    NN N

    4-CzIPN

  • Thermally-Activated Delayed Fluorescence (TADF)

    Yang, Z. et al. Chem. Soc. Rev. 2017, 46, 915.Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234

    NC CNN

    NN N

    4-CzIPN

  • !ext = (19.3±1.5)%

    Thermally-Activated Delayed Fluorescence (TADF)

    Yang, Z. et al. Chem. Soc. Rev. 2017, 46, 915.Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234

    NC CNN

    NN N

    4-CzIPN

    “Third-generation organic electroluminescence materials”

    335 references in Review below, published Jan 2017