physics ii: lecture 1, pg 1 ap physics “mechanics for physicists and engineers” agenda for today...

17
Physics II: Lecture 1, Pg 1 AP Physics AP Physics “Mechanics for Physicists and “Mechanics for Physicists and Engineers” Engineers” Agenda for Today Agenda for Today 1-D Kinematics (review). 1-D Kinematics (review). Average & instantaneous velocity and acceleration Motion with constant acceleration Introduction to calculus applications derivatives and slopes Integrals and area

Upload: jewel-crawford

Post on 05-Jan-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 1

AP Physics AP Physics “Mechanics for Physicists and Engineers”“Mechanics for Physicists and Engineers”

Agenda for TodayAgenda for Today

1-D Kinematics (review).1-D Kinematics (review).Average & instantaneous velocity and accelerationMotion with constant acceleration

Introduction to calculus applicationsderivatives and slopesIntegrals and area

Page 2: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 2

Kinematics ProblemsKinematics Problems 1-D Kinematics 1-D Kinematics

Average & instantaneous velocity (Chapter2 1,4,5,11-13,15-17) and acceleration (18,21)

Motion with constant acceleration(23,24,27,31,35,37,39,40-(23,24,27,31,35,37,39,40-1,43)1,43)

Free Fall (44,47,49,51,53,56,61,63)Free Fall (44,47,49,51,53,56,61,63) Motion Graphs (66,67,69,70) Review Phun!! Review Phun!!

Page 3: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 3

KinematicsKinematics

Location and motion of objects is described using Kinematic Variables:

Some examples of kinematic variables.position rr vectorvelocity vv vector

Kinematic VariablesKinematic Variables: : Measured with respect to a reference frame. (x-y axis)Measured using coordinates (having units).Many kinematic variables are VectorsVectors, which means

they have a directiondirection as well as a magnitudemagnitude.Vectors denoted by boldface VV or arrow

v

Page 4: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 4

Motion in 1 dimensionMotion in 1 dimension In general, position at time t1 is usually denoted rr(t1).

In 1-D, we usually write position as x(t1 ). Since it’s in 1-D, all we need to indicate direction is + or .

Displacement in a time t = t2 - t1 is x = x(t2 ) - x(t1 ) = x2 - x1

t

x

t1 t2

x

t

x1

x2some particle’s trajectory

in 1-D

See text : 2-1

Page 5: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 5

1-D kinematics1-D kinematics

vx t x t

t t

x

tav

( ) ( )2 1

2 1

t

x

t1 t2

x

x1

x2trajectory

Velocity v is the “rate of change of position” Average velocity vav in the time t = t2 - t1 is:

t

Vav = slope of line connecting x1 and x2.

See text : 2-1

Page 6: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 6

Instantaneous velocity v is defined as:

1-D kinematics...1-D kinematics...

v tdx t

dt( )

( )

t

x

t1 t2

x

x1

x2

t

so V(t2 ) = slope of line tangent to path at t2.

See text : 2-2

Page 7: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 7

1-D kinematics...1-D kinematics...

av t v t

t t

v

tav

( ) ( )2 1

2 1

Acceleration a is the “rate of change of velocity” Average acceleration aav in the time t = t2 - t1 is:

And instantaneous acceleration a is defined as:

a tdv t

dt

d x t

dt( )

( ) ( ) 2

2

See text : 2-3

Page 8: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 8

RecapRecap

If the position x is known as a function of time, then we can find both velocity v and acceleration a as a function of time!

adv

dt

d x

dt

2

2

vdx

dt

x x t ( )

x

a

vt

t

t

Page 9: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 9

More 1-D kinematicsMore 1-D kinematics

We saw that v = x / t so therefore x = v t ( i.e. 60 mi/hr x 2 hr = 120 mi )

In “calculus” language we would write dx = v dt, which we can integrate to obtain:

x t x t v t dtt

t( ) ( ) ( )2 1

1

2

Graphically, this is adding up lots of small rectangles:

v(t)

t

+ +...+

= displacement

v

t1 2

60

Page 10: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 10

High-school calculus:

Also recall that

Since a is constant, we can integrate this using the above rule to find:

Similarly, since we can integrate again to get:

1-D Motion with constant acceleration1-D Motion with constant acceleration

t dtn

t constn n

1

11

adv

dt

v adt a dt at v 0

vdx

dt

x vdt at v dt at v t x ( )02

0 01

2

See text : 2-4

Page 11: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 11

RecapRecap So for constant acceleration we find:

v v at 0

x x v t at 0 021

2

a const

x

a

v t

t

tv v a x x

v v vav

22

12

2 1

1 2

2

1

2

( )

( )

From which we can derive:

See text : Table 2-1 (p. 33)

Page 12: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 12

Problem 1Problem 1

A car traveling with an initial velocity vo. At t = 0, the driver puts on the brakes, which slows the car at a rate of ab

x = 0, t = 0ab

vo

Page 13: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 13

Problem 1...Problem 1...

A car traveling with an initial velocity vo. At t = 0, the driver puts on the brakes, which slows the car at a rate of ab. At what time tf does the car stop, and how much farther xf does it travel ??

x = xf , t = tf

v = 0

x = 0, t = 0ab

vo

Page 14: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 14

Problem 1...Problem 1...

Above, we derived: (a)

(b)

Realize that a = -ab

Using (b), realizing that v = 0 at t = tf :

find 0 = v0 - ab tf or tf = vo /af

Plugging this result into (a) we find the stopping distance:

x x v t at 0 021

2v v at 0

x vv

aa

v

a

v

af oo

bb

o

b

o

b

1

2

1

2

2 2

Page 15: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 15

Problem 1...Problem 1...

So we found that

Suppose that vo = 65 mi/hr x .45 m/s / mi/hr = 29 m/s Suppose also that ab = |g| = 9.8 m/s2.

Find that tf = 3 s and xf = 43 m

tv

ax

v

afo

bf

o

b ,

1

2

2

Page 16: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 16

Tips:Tips:

Read !Before you start work on a problem, read the problem

statement thoroughly. Make sure you understand what information in given, what is asked for, and the meaning of all the terms used in stating the problem.

Watch your units !Always check the units of your answer, and carry the units

along with your numbers during the calculation.

Understand the limits !Many equations we use are special cases of more general

laws. Understanding how they are derived will help you recognize their limitations (for example, constant acceleration).

Page 17: Physics II: Lecture 1, Pg 1 AP Physics “Mechanics for Physicists and Engineers” Agenda for Today l 1-D Kinematics (review). çAverage & instantaneous velocity

Physics II: Lecture 1, Pg 17

Recap of kinematics lecturesRecap of kinematics lectures 1-D Kinematics 1-D Kinematics

Average & instantaneous velocity (Chapter3- 1,3,7,9,11) and and acceleration

Motion Graphs (14,15,17,19) Motion with constant acceleration(Ch3 (Ch3 21,23,27,29,31,35,37

41)) Free Fall (Ch3-Free Fall (Ch3-41,43,47,49,51,52)) Review Phun!! (Review Phun!! (67,69,70 ))