physiology of hemodynamics & picco parameters in detail

78
Physiology of hemodynamics & PiCCO parameters in detail

Upload: meducationdotnet

Post on 12-Feb-2017

749 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Physiology of hemodynamics & PiCCO parameters in detail

Physiology of hemodynamics & PiCCO parameters in detail

Page 2: Physiology of hemodynamics & PiCCO parameters in detail

2

Goal of intensive care medicine

Ensuring adequate organ and tissue oxygenation is the main goal in intensive care

medicine:

O2 to the tissues!

Physiology of hemodynamics

Page 3: Physiology of hemodynamics & PiCCO parameters in detail

3

The circulation

heart = the pump

lung = saturation of the blood with oxygen in exchange with carbon dioxid

tissues and organs = sites where the oxygen is transported to by the circulating blood

arterial vessels = transport blood from the lung to the organs, contain oxygen-rich blood

venous vessels = transport blood from the organs to the lungs, contain oxygen-depleted blood

Physiology of hemodynamics

Page 4: Physiology of hemodynamics & PiCCO parameters in detail

4

Principal task of the circulation:supply organs with oxygen-rich blood and nutrition!

others: transport of hormones and drugsregulation of body temperatureimmunologic and blood coagulation functionevacuation of body waste matters

The circulation is determined by pressure (blood pressure) and

flow (cardiac output)

großer Kreislauf

kleiner Kreislauf

capillaries of the lung

pulmonary circulation

pulmonary artery pulmonary

vein

left heart

right heart

body circulation

capillaries of the body (smallest blood vessels)

The circulation

Physiology of hemodynamics

Page 5: Physiology of hemodynamics & PiCCO parameters in detail

5

Cardiac output

Cardiac Output (CO) is an important parameter for the assessment of the circulatory situation is defined as the amount of blood ejected by the heart within 1 minute is the calculation basis for most PiCCO parameters

The CO is determined by several factors:

amount of blood which fills the chambers of the heart (preload)

resistance against which the heart has to eject the blood (afterload)

heart rate (chronotropy)

power of the heart muscle (contractility)

Physiology of hemodynamics

Page 6: Physiology of hemodynamics & PiCCO parameters in detail

6

Systolic (110 - 120 mmHg)

Diastolic (70 - 80 mmHg)

Cardiac Cycle

normal heart rate: 60-90 bpm

Arterial blood pressure and heart rate

Physiology of hemodynamics

Page 7: Physiology of hemodynamics & PiCCO parameters in detail

7

The Heart as a Pump

Blood returns to into the Right Atrium (RA)

passes through the Tricuspid valve and into the Right

Ventricle (RV)

then through the Pulmonary valve into the Pulmonary Artery

(PA) and to the Lungs

Blood returns from the lungs into the Left Atrium (LA) via the

Pulmonary Veins

then down through the Mitral Valve into the Left Ventricle (LV)

Blood is ejected from the Left ventricle through the Aortic Valve

and into the Aorta

RA

RV

PA

LA

LV

Aorta

Physiology of hemodynamics

Page 8: Physiology of hemodynamics & PiCCO parameters in detail

8

Cardiac Output

Preload Contractility Afterload Chronotropy

Determinants of Cardiac Output

8

Amount of blood inside the heart

Resistance against which the heart has to pump

Efficacy of the heart muscle

Number of heart beats per minute

Physiology of hemodynamics

Page 9: Physiology of hemodynamics & PiCCO parameters in detail

9

Cardiac Output

Preload Contractility Afterload Chronotropy

Frank-Starling-Mechanism

Influence of preload and contractility on cardiac output

9

Physiology of hemodynamics

Page 10: Physiology of hemodynamics & PiCCO parameters in detail

10

SV

Preload

V

V

V

SV

SVSV

Normal contractility

Preload, CO and Frank-Starling-Mechanism

Target AreaVolume Responsive Volume Overloaded

10

Physiology of hemodynamics

Page 11: Physiology of hemodynamics & PiCCO parameters in detail

11

V

V

SV

SV

SV

Preload

Poor contractility

Normal contractility

Target AreaVolume Responsive Volume Overloaded

11

Preload, CO and Frank-Starling-Mechanism

Physiology of hemodynamics

Page 12: Physiology of hemodynamics & PiCCO parameters in detail

12

V

V

SV

SV

SV

Preload

High contractility

Normal Contractility

Target AreaVolume Responsive Volume Overloaded

Poor contractility

12

Preload, CO and Frank-Starling-Mechanism

Physiology of hemodynamics

Page 13: Physiology of hemodynamics & PiCCO parameters in detail

13

Summary and Key Points

• The goal of volume management is the optimization of cardiac output • An increase in preload leads to an increase in cardiac output, within certain

limits. This is explained through the Frank-Starling-Mechanism.

• The measurement of cardiac output does not show where the patient is located on the Frank-Starling curve.

• For optimization of the CO you must have a valid preload measurement.

13

Physiology of hemodynamics

Page 14: Physiology of hemodynamics & PiCCO parameters in detail

14

Goal of intensive care medicine

Ensuring adequate organ and tissue oxygenation is the main goal in intensive care

medicine:

O2 to the tissues!

Physiology of hemodynamics

Page 15: Physiology of hemodynamics & PiCCO parameters in detail

15

Processes contributing to cellular oxygen supply

Aim: Optimal Tissue Oxygenation

Pulmonary Gas exchange Macrocirculation Microcirculation Cell function

Direct Control Indirect

Oxygen AbsorptionLungs

Oxygen TransportationBlood

Oxygen DeliveryTissues

Oxygen UtilisationCells / Microchondria

Volume Catecholamines

Oxygen carriers Ventilation

Physiology of hemodynamics

Page 16: Physiology of hemodynamics & PiCCO parameters in detail

17

Central role of the mixed venous oxygen saturation

Determination of Oxygen Delivery and Consumption

Delivery DO2: DO2 = CO x Hb x 1,34 x SaO2

CO: Cardiac OutputHb: HemoglobinSaO2: Arterial Oxygen SaturationSvO2: Mixed Venous Oxygen SaturationDO2: Oxygen DeliveryVO2: Oxygen Consumption

SaO2CO

Hb

Physiology of hemodynamics

Page 17: Physiology of hemodynamics & PiCCO parameters in detail

18

SaO2

S(c)vO2

Consumption VO2: VO2 = CO x Hb x 1,34 x (SaO2 -  SvO2)Delivery DO2: DO2 = CO x Hb x 1,34 x SaO2

CO

Hb

Mixed Venous Saturation SvO2

SvO2

CO: Cardiac OutputHb: HemoglobinSaO2: Arterial Oxygen SaturationSvO2: Mixed Venous Oxygen SaturationDO2: Oxygen DeliveryVO2: Oxygen Consumption

Central role of the mixed venous oxygen saturation

Determination of Oxygen Delivery and Consumption

Physiology of hemodynamics

Page 18: Physiology of hemodynamics & PiCCO parameters in detail

19

Oxygen delivery and its influencing factors

DO2 = Hb x 1,34 x SaO2 x CO

Transfusion

• Transfusion CO: Cardiac Output

Hb: Haemoglobin

SaO2: Arterial Oxygen Saturation

CaO2: Arterial Oxygen Content

Physiology of hemodynamics

Page 19: Physiology of hemodynamics & PiCCO parameters in detail

20

DO2 = Hb x 1,34 x SaO2 x CO

Ventilation

• Transfusion• Ventilation

CO: Cardiac Output

Hb: Hemoglobin

SaO2: Arterial Oxygen Saturation

CaO2: Arterial Oxygen Content

Oxygen delivery and its influencing factors

Physiology of hemodynamics

Page 20: Physiology of hemodynamics & PiCCO parameters in detail

21

DO2 = Hb x 1,34 x SaO2 x CO

VolumeCatecholamines

• Transfusion• Ventilation• Volume• Catecholamines

CO: Cardiac Output

Hb: Hemoglobin

SaO2: Arterial Oxygen Saturation

CaO2: Arterial Oxygen Content

Oxygen delivery and its influencing factors

Physiology of hemodynamics

Page 21: Physiology of hemodynamics & PiCCO parameters in detail

22

Assessment of Oxygen Delivery

CO: Cardiac Output; Hb: Hemoglobin; SaO2: Arterial Oxygen Saturation

DO2 = CO x Hb x 1.34 x SaO2

Oxygen AbsorptionLungs

Oxygen TransportBlood

Oxygen DeliveryTissues

Oxygen UtilizationCells / Mitochondria

Supply

SaO2 CO, Hb

Physiology of hemodynamics

Page 22: Physiology of hemodynamics & PiCCO parameters in detail

23

Monitoring the CO, SaO2 and Hb is essential!

Oxygen AbsorptionLungs

Oxygen DeliveryTissues

Oxygen UtilizationCells / Mitochondria

Oxygen TransportBlood

CO: Cardiac Output; Hb: Hemoglobin; SaO2: Arterial Oxygen Saturation

Supply

Assessment of Oxygen Delivery

CO, HbSaO2

Physiology of hemodynamics

Page 23: Physiology of hemodynamics & PiCCO parameters in detail

24

SvO2

SaO2 CO, HbMonitoring the CO, SaO2 and Hb is essential!

VO2 = CO x Hb x 1.34 x (SaO2 – SvO2)

Oxygen UtilizationCells / Mitochondria

Oxygen AbsorptionLungs

Oxygen TransportBlood

Oxygen DeliveryTissues

CO: Cardiac Output; Hb: Hemoglobin; SaO2: Arterial Oxygen Saturation

Supply

Consumption

Assessment of Oxygen Delivery and Consumption

Physiology of hemodynamics

Page 24: Physiology of hemodynamics & PiCCO parameters in detail

25

SvO2

SaO2 CO, Hb

Monitoring CO, SaO2 and Hb is essential

Monitoring the CO, SaO2 and Hb does not give information re O2-consumption!

Oxygen UtilizationCells / Mitochondria

Oxygen AbsorptionLungs

Oxygen TransportBlood

Oxygen DeliveryTissues

CO: Cardiac Output; Hb: Hemoglobin; SaO2: Arterial Oxygen Saturation

Supply

Consumption

Assessment of Oxygen Delivery and Consumption

Physiology of hemodynamics

Page 25: Physiology of hemodynamics & PiCCO parameters in detail

26

Summary and Key Points

• The purpose of the circulation is cellular oxygenation

• For an optimal oxygen supply at the cellular level the macro and micro-circulation have to be balanced along with pulmonary gas exchange

• Next to CO, Hb and SaO2 is SvO2 which plays a central role in the assessment of

oxygen supply and consumption.

• No single parameter provides enough information for a full assessment of oxygen supply at the tissues.

Physiology of hemodynamics

Page 26: Physiology of hemodynamics & PiCCO parameters in detail

27

PiCCO2 - get the complete picture!

Cardiac output Arterial oxygen content

Stroke volume Heart rate OxygenationSaO2

HemoglobineHb

PreloadGEDI; SVV

AfterloadSVRI; MAP

ContractilityCFI

Pulmonary Edema

ELWI

Volume? Vasopressors? Inotropics? Blood transfusion?

Global oxygenationScvO2

Oxygen delivery Oxygen consumption

Page 27: Physiology of hemodynamics & PiCCO parameters in detail

28

SvO2

SaO2 CO, Hb

Monitoring CO, SaO2 and Hb is essential

Monitoring the CO, SaO2 and Hb does not give information re O2-consumption!

Oxygen UtilizationCells / Mitochondria

Oxygen AbsorptionLungs

Oxygen TransportBlood

Oxygen DeliveryTissues

CO: Cardiac Output; Hb: Hemoglobin; SaO2: Arterial Oxygen Saturation

Supply

Consumption

The central venous oxygen saturation ScvO2

PiCCO parameters in detail

Page 28: Physiology of hemodynamics & PiCCO parameters in detail

29

Lungs

Pulmonary artery

Aorta

SvO2

(via pulmonary artery catheter)

ScvO2

(via central venous line)

V. cava sup.

V. cava inf.

Standard-CVC + CeVOX

(ScvO2)

PAC with optic fibre

(SvO2)

Mixed venous (SvO2) versus central venous (ScvO2) oxygen saturation

Site of measurement

PiCCO parameters in detail

Page 29: Physiology of hemodynamics & PiCCO parameters in detail

30

Reinhart K et al: Intensive Care Med 60, 1572-1578, 2004; Ladakis C et al: Respiration 68, 279-285, 2000

n = 29r = 0.866ScvO2 = 0.616 x SvO2 + 35.35

ScvO2

SvO2

r = 0.945

30

50

70

90

70 9050

SvO2 (%)

65

70

85

70 90

90

30 6040 80

80

ScvO2 (%)

40

60

80

806040

75

6050

Monitoring the central venous oxygen saturation

The ScvO2 correlates well with the SvO2!

PiCCO parameters in detail

Page 30: Physiology of hemodynamics & PiCCO parameters in detail

33

Detecting tissue hypoxia with S(c)vO2

What is “Shock”?

„Shock“ is defined as a state in which the oxgen supply cannot cover the demand, hence leading to tissue hypoxia.

Consequently, monitoring and treatment of shock states involves monitoring of oxygen supply/demand balance!

The diagnosis of „shock“ is not related to any given blood pressure, heart rate, Hb or other parameter of standard monitoring!

PiCCO parameters in detail

Page 31: Physiology of hemodynamics & PiCCO parameters in detail

34

S(c)vO2 is the only clinically available parameter for assessment of oxygen consumption and is highly sensitive to tissue hypoxia!

Detecting tissue hypoxia with S(c)vO2

PiCCO parameters in detail

Page 32: Physiology of hemodynamics & PiCCO parameters in detail

35

Early goal-directed therapyRivers E et al. New Engl J Med 2001;345:1368-77

O2-Insufflation and SedationIntubation + Ventilation

Central Venous CatheterInvasive Blood Pressure Monitoring

CVP

MAP

ScVO2

Cardiovascular Stabilisation

Volume therapy

8-12 mmHg

< 8 mmHg

65 mmHg

Inotropes

>70%70%

< 70%

no Therapy maintenance,regular reviews

< 65 mmHgVasopressors

Blood transfusion to Hematocrit 30%

Monitoring the S(c)vO2 – Clinical relevance

< 70%

Goal achieved?yes

ScVO2

PiCCO parameters in detail

Hospital 60 days

Leth

ality

Page 33: Physiology of hemodynamics & PiCCO parameters in detail

36

Significance of ScvO2 for therapy guidance

36

Monitoring the S(c)vO2 – Clinical relevance

PiCCO parameters in detail

Page 34: Physiology of hemodynamics & PiCCO parameters in detail

37

Early monitoring of ScvO2 is crucial for rational and effective

hemodynamic management!

37

Monitoring the S(c)vO2 – Clinical relevance

PiCCO parameters in detail

Page 35: Physiology of hemodynamics & PiCCO parameters in detail

38

Tissue Hypoxia despite „normal“ or high ScvO2?

?Microcirculation disturbances in SIRS / Sepsis

Monitoring the S(c)vO2 – Limitations

S. Schaudig, 2003

38

SxO2 in %

PiCCO parameters in detail

Page 36: Physiology of hemodynamics & PiCCO parameters in detail

39

Early recognition of disturbances in global tissue oxygenation

Detection of shock of any origin

ScvO2 – very fast responding parameter to hemodynamic changes (often much quicker than heart rate or blood pressure)

valid and easy to obtain via less invasive CVC line

Decreased mortality proven by normalizing ScvO2 (Rivers study)

Control of clinical course / therapy success of hemodynamic management

Summary and key points – S(c)vO2

CeVOX sales training

Page 37: Physiology of hemodynamics & PiCCO parameters in detail

40

PiCCO parameters in detail

V

V

V

SV

SVSV

In order to optimize the CO you must know what the preload is!

Target AreaVolume Responsive Volume Overloaded

40

Preload

SV

Importance of preload measurement

Page 38: Physiology of hemodynamics & PiCCO parameters in detail

41

Methods for measuring preload

traditional method: filling pressures (CVP, PCWP)

via central venous line (CVC) or pulmonary artery catheter (PAC)

RA

RV

PA

LA

LV

AortaCVC

PAC

inherent problem: conclusion from pressures on volume!

PiCCO parameters in detail

Page 39: Physiology of hemodynamics & PiCCO parameters in detail

42

modern method: direct measurement of the filling volumes (GEDV, ITBV)

via PiCCO-system

Left heartRight heart

Pulmonary Circulation

Lungs

Body Circulation

Methods for measuring preload

PiCCO parameters in detail

Page 40: Physiology of hemodynamics & PiCCO parameters in detail

43

latest concept: volume responsiveness (SVV, PPV)

via PiCCO-system

Prediction whether the heart will respond to fluid administration with an increase in cardiac output

SV

PreloadV

SV

V

SV

Methods for measuring preload

PiCCO parameters in detail

Page 41: Physiology of hemodynamics & PiCCO parameters in detail

44

Preload

Filling Pressures

CVP / PCWP

Volumetric Preload Parameters, Volume Responsiveness and Filling Pressures

Volume Responsiveness

SVV / PPV

Volumetric

Preload parameters

GEDV / ITBV

44

PiCCO parameters in detail

Page 42: Physiology of hemodynamics & PiCCO parameters in detail

45

Kumar et al., Crit Care Med 2004;32: 691-699

Correlation between central venous pressure CVP and stroke volume

Role of Filling Pressures CVP / PCWP

45

PiCCO parameters in detail

Page 43: Physiology of hemodynamics & PiCCO parameters in detail

46

Kumar et al., Crit Care Med 2004;32: 691-699

Correlation between pulmonary capillary wedge pressure PCWP with stroke volume

46

Role of Filling Pressures CVP / PCWPPiCCO parameters in detail

Page 44: Physiology of hemodynamics & PiCCO parameters in detail

47

The filling pressures CVP and PCWP do not give an adequate assessment of cardiac preload. The PCWP is, in this regard, not superior to CVP (ARDS Network, N Engl J Med 2006;354:2564-75).

Pressure is not volume!

Influencing Factors:-Ventricular compliance-Position of catheters (PAC)-Mechanical Ventilation-Intra-abdominal hypertension

47

Role of Filling Pressures CVP / PCWPPiCCO parameters in detail

Page 45: Physiology of hemodynamics & PiCCO parameters in detail

48

Role of Volumetric Preload Parameters GEDV / ITBV

Preload

Filling Pressures

CVP / PCWP

Volume Responsiveness

SVV / PPV

Volumetric Preload parameters

GEDV / ITBV

48

PiCCO parameters in detail

Page 46: Physiology of hemodynamics & PiCCO parameters in detail

49

Total volume of blood in all 4 heart chambers

Left heartRight Heart

Pulmonary Circulation

Lungs

Body Circulation

GEDV = Global Enddiastolic Volume

49

Role of Volumetric Preload Parameters GEDV / ITBV

PiCCO parameters in detail

Page 47: Physiology of hemodynamics & PiCCO parameters in detail

50

Michard et al., Chest 2003;124(5):1900-1908

50

Role of Volumetric Preload Parameters GEDV / ITBV

PiCCO parameters in detail

GEDV shows good correlation with the stroke volume

Page 48: Physiology of hemodynamics & PiCCO parameters in detail

51

ITBV = Intrathoracic Blood Volume

Total volume of blood in all 4 heart chambers plus the pulmonary blood volume

Left heartRight heart

Pulmonary Circulation

Lungs

Body Circulation

ITBV =GEDV + PBV

51

Role of Volumetric Preload Parameters GEDV / ITBV

PiCCO parameters in detail

Page 49: Physiology of hemodynamics & PiCCO parameters in detail

52

Sakka et al, Intensive Care Med 2000; 26: 180-187

52

ITBVTD (ml)

ITBV = 1.25 * GEDV – 28.4 [ml]

GEDV vs. ITBV in 57 Intensive Care Patients

0

1000

2000

3000

0 1000 2000 3000 GEDV (ml)

ITBV is normally 1.25 times the GEDV

Role of Volumetric Preload Parameters GEDV / ITBV

PiCCO parameters in detail

Page 50: Physiology of hemodynamics & PiCCO parameters in detail

53

The static volumetric preload parameters GEDV and ITBV

• Are superior to filling pressures for assessing cardiac preload (Comment DSG/DIVI S2-Guidelines)

• In contrast to filling pressures are not falsified by other

pressures (Ventilation, intra-abdominal pressure)

53

Role of Volumetric Preload Parameters GEDV / ITBV

PiCCO parameters in detail

Page 51: Physiology of hemodynamics & PiCCO parameters in detail

54

Role of the Dynamic Volume Responsiveness Parameters SVV / PPV

Preload

Filling Pressures

CVP / PCWP

Volume Responsiveness

SVV / PPV

Volumetric Preload parameters

GEDV / ITBV

54

PiCCO parameters in detail

Page 52: Physiology of hemodynamics & PiCCO parameters in detail

55

Intrathoracic pressure

Venous return to left and right ventricle

Left ventricular preload

Left ventricular stroke volume

Systolic Arterial Blood Pressure

Intrathoracic pressure

„Squeezing “ of the pulmonary blood

Left ventricular preload

Left ventricular stroke volume

Systolic Arterial Blood Pressure

PPPPmaxmax PPPPminmin

PPPPmaxmax

PPPPminmin

Inspiration

From Reuter et al., Anästhesist 2003;52: 1005-1013

Physiology of the Dynamic Parameters of Volume Responsiveness

Expiration Inspiration Expiration

Early Inspiration Late Inspiration

55

Fluctuations in blood pressure during the respiration cycle

PiCCO parameters in detail

Page 53: Physiology of hemodynamics & PiCCO parameters in detail

56

SV

PreloadV

SV

V

SV

Mechanical Ventilation

Fluctuations in Stroke Volume

Intrathoracic Pressure fluctuations

Changes in intrathoracic blood volume Preload changes

Fluctuations in Stroke Volume throughout the respiratory cycle

Physiology of the Dynamic Parameters of Volume Responsiveness

PiCCO parameters in detail

Page 54: Physiology of hemodynamics & PiCCO parameters in detail

57

SVSVmaxmax

SVSVminmin

SVSVmeanmean

Role of the Dynamic Parameters of Volume Responsiveness SVV / PPV

SVV = Stroke Volume Variation

• Is the variation in stroke volume over the respiratory cycle • Correlates well with the reaction of the hearts ejection volume during preload

enhancement (Volume Responsiveness)

57

PiCCO parameters in detail

-
cant change to mean
Page 55: Physiology of hemodynamics & PiCCO parameters in detail

59

PPV = Pulse Pressure Variation

• Is the variation in pulse pressure amplitude over the respiration cycle • Correlates equally well as SVV for volume responsiveness

PPPPmaxmax

PPPPmeanmean

PPPPminmin

59

Role of the Dynamic Parameters of Volume Responsiveness SVV / PPV

PiCCO parameters in detail

Page 56: Physiology of hemodynamics & PiCCO parameters in detail

60

The Dynamic Preload Parameters SVV and PPV

- are good predictors of a potential increase in CO to volume administration

- are only valid with patients who are fully ventilated and who have no cardiac arrhythmias

60

Role of the Dynamic Parameters of Volume Responsiveness SVV / PPV

PiCCO parameters in detail

Page 57: Physiology of hemodynamics & PiCCO parameters in detail

61

Summary and Key Points - preload

• The volumetric parameters GEDV / ITBV are superior for measuring cardiac preload than CVP/PCWP.

• The dynamic volume responsiveness parameters SVV and PPV can predict whether CO will respond to volume administration.

• GEDV and ITBV show what the actual volume status is, whilst SVV and PPV reflect the volume responsiveness of the heart.

• For optimal control of volume therapy it is recommended to monitor simultaneously both the static preload parameters and the dynamic parameters of volume

responsiveness (F. Michard, Intensive Care Med 2003;29: 1396).

61

PiCCO parameters in detail

Page 58: Physiology of hemodynamics & PiCCO parameters in detail

62

Contractility is the degree of muscular power of the heart

Contractility parameters displayed by the PiCCO-Technology:

CFI = Cardiac Function Index

GEF = Global Ejection Fraction

dPmx = maximum rate of the increase in pressure

Contractility

kg

PiCCO parameters in detail

Page 59: Physiology of hemodynamics & PiCCO parameters in detail

63

• is the CI divided by global enddiastolic volume index

CFI = Cardiac Function Index

CICFI =

GEDI

PiCCO parameters in detail

Contractility – Thermodilution parameters

Page 60: Physiology of hemodynamics & PiCCO parameters in detail

64

V

SV

SV

CI

Preload

High Contractility

NormalContractility

Target AreaVolume Responders Volume Overload

LowContractility

VV

SV

V

V

VSV

SV

SV

PiCCO parameters in detail

is a parameter of both left and right ventricular contractility

has been validated successfully against echocardiographic measurement of contractility

mirrors the fraction of the preload volume which is ejected by the heart in one minute

CFI = Cardiac Function Index

Contractility – Thermodilution parameters

Page 61: Physiology of hemodynamics & PiCCO parameters in detail

65

• is calculated as 4 times the stroke volume divided by the global enddiastolic volume

GEF = Global Ejection Fraction

4xSVGEF =

GEDV

PiCCO parameters in detail

Contractility – Thermodilution parameters

Page 62: Physiology of hemodynamics & PiCCO parameters in detail

66

PiCCO parameters in detail

is –like the CFI- a parameter of both left and right ventricular contractility

has been validated successfully against echocardiographic measurement of contractility

mirrors the fraction of the preload volume which is ejected by the heart during one beat

GEF = Global Ejection Fraction

Contractility – Thermodilution parameters

Page 63: Physiology of hemodynamics & PiCCO parameters in detail

67

• maximum of pressure increase in the aorta (P/tmax)

• excellent correlation to the maximum pressure increase speed in the left ventricle

dPmx = maximum rate of the increase in arterial pressure

PiCCO parameters in detail

Contractility – Pulse contour parameter

Page 64: Physiology of hemodynamics & PiCCO parameters in detail

68

• is calculated as the difference between MAP and CVP divided by CO

• as an afterload parameter it presents a further determinant of thecardiovascular situation

• is an important parameter for controlling volume and catecholamine therapies

(MAP – CVP) x 80SVR =

CO

Afterload

SVR = Systemic Vascular Resistance

MAP = Mean Arterial PressureCVP = Central Venous PressureCO = Cardiac Output80 = Correction Factor for Units

PiCCO parameters in detail

Page 65: Physiology of hemodynamics & PiCCO parameters in detail

69

Afterload

SVR = Systemic Vascular Resistance

PiCCO parameters in detail

Flow (CO) =

Vasoconstriction: Flow (CO)

Vasodilation: Flow (CO)Pressure Resistance

Pressure the heart has to overcome to eject blood

If pressure is unchanged, cardiac output decreases when afterload increases

Page 66: Physiology of hemodynamics & PiCCO parameters in detail

70

• The contractility parameters CFI and GEF are important parameters for assessing the global systolic function and supporting the early diagnosis of myocardial insufficiency

• dPmx from the pulse contour analysis gives specific information on the left ventricular contractility

• The Systemic Vascular Resistance SVR calculated from blood pressure and cardiac output provides an additional determinant of the cardiovascular

situation, and is an important parameter for controlling volume and catecholamine therapies

Summary and Key Points – contractility and afterload

PiCCO parameters in detail

Page 67: Physiology of hemodynamics & PiCCO parameters in detail

71

Extravascular water content of the lung tissue

Pulmonary circulation

Left Heart

Right Heart

Lungs

The Extravascular Lung Water EVLW

EVLW = Extravascular Lung Water

Body circulation

71

PiCCO parameters in detail

Page 68: Physiology of hemodynamics & PiCCO parameters in detail

72

The Extravascular Lung Water is the difference between the intrathoracic thermal volume and the intrathoracic blood volume.

It represents the amount of water in the lungs outside the blood vessels

Calculation of Extravascular Lung Water (EVLW)

PiCCO parameters in detail

ITTV

– ITBV

= EVLW

Page 69: Physiology of hemodynamics & PiCCO parameters in detail

74

Böck, Lewis, In: Practical Applications of Fiberoptics in Critical Care Monitoring,Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 129-139

High Extravascular Lung Water is not necessarily identified by blood gas analysis

EVLW as a quantifier of lung edema

PaO2 /FiO2

10

20

550

30

150 2500 450

ELWI (ml/kg)

050 350

PiCCO parameters in detail

Page 70: Physiology of hemodynamics & PiCCO parameters in detail

75

40

Halperin et al, 1985, Chest 88: 649

EVLW as a quantifier of lung edema

Also, Chest X-ray is not able to quantify lung edema and is for a lot of patients difficult to judge, especially in critically ill patients in supine position.

r = 0.1p > 0.05

0

20

80

15-10-15 10

60

radiographic score

-80

-60

-40

-20 ELWI

PiCCO parameters in detail

Page 71: Physiology of hemodynamics & PiCCO parameters in detail

76

EVLWI = 7 ml/kg

EVLWI = 8 ml/kgEVLWI = 14 ml/kg

EVLWI = 19 ml/kg

Extravascular lung water index

ELWInormal range:

3 – 7 ml/kg

Pulmonary ed

ema Normal range

EVLW as a quantifier of lung edema

PiCCO parameters in detail

Page 72: Physiology of hemodynamics & PiCCO parameters in detail

77

ELWI (ml/kg)

> 21 n = 54

14 - 21 n = 100

7 - 14 n = 174

< 7 n = 45

Mortality(%)

10

00

n = 373*p = 0.002

20

30

40

50

60

70

80

Sturm, In: Practical Applications of Fiberoptics in Critical Care Monitoring, Springer Verlag Berlin - Heidelberg - NewYork 1990, pp 129-139

Relevance of EVLW Assessment

High Extravascular Lung Water is a predictor for mortality in intensive care patients

ELWI (ml/kg) 4 - 6

30

0

Mortality (%)

20

n = 81

40

50

60

70

80

6 - 8 8 - 10 10 - 12 12 - 16 16 - 20 > 20

90

100

Sakka et al , Chest 2002

PiCCO parameters in detail

Page 73: Physiology of hemodynamics & PiCCO parameters in detail

78

Intensive Care days

Mitchell et al, Am Rev Resp Dis 145: 990-998, 1992

Volume management aimed at EVLW reduction can significantly reduce time on ventilation and ICU stay, when compared to PCWP oriented therapy

Ventilation Days

PAC Group

n = 101* p ≤ 0,05

PAC GroupEVLW Group EVLW Group22 days 15 days9 days 7 days

* p ≤ 0,05

Relevance of EVLW Assessment

PiCCO parameters in detail

Page 74: Physiology of hemodynamics & PiCCO parameters in detail

79

PiCCO parameters in detail

PVPI = Pulmonary Vascular Permeability Index

• is the ratio of Extravascular Lung Water to Pulmonary Blood Volume

• is a measure of the permeability of the lung vessels and as such can classify the type of lung edema (hydrostatic vs. permeability caused)

EVLWPVPI =

PBV

Differentiating Lung Edema

Page 75: Physiology of hemodynamics & PiCCO parameters in detail

80

PiCCO parameters in detail

PVPI = Pulmonary Vascular Permeability Index

Differentiating Lung Edema

Cardiogenic Lung OedemaIncreased hydrostatic pressure with normal permeability

Permeability Lung OedemaNormal hydrostatic pressure with increased permeability

Alveolus wallAlveolus wall

Capillary Capillary

PVPI normal (1-3) PVPI raised (>3)

Page 76: Physiology of hemodynamics & PiCCO parameters in detail

81

Summary and key points - EVLW and PVPI

- is useful to differentiate and quantify lung edema

- for this purpose it is a unique parameter available at the bedside

- functions as a warning parameter for fluid overload

- is indexed to “predicted body weight” instead of actual body weight, allowing even better diagnosis

The Extravascular Lung Water EVLW

81

PiCCO parameters in detail

The Pulmonary Vascular Permeability Index PVPI- can differentiate between a hydrostatic and a permeability caused lung edema

Page 77: Physiology of hemodynamics & PiCCO parameters in detail

82

PULSION monitoring philosophy: the hemodynamic triangle

The

hemodynamic triangleOptimization

of preload

Optimization of stroke volume

PiCCO allows the establishment of an adequate cardiac output through optimization of volume status whilst avoiding lung edema

Avoidance of lung edema

PiCCO parameters in detail

Page 78: Physiology of hemodynamics & PiCCO parameters in detail

83

PiCCO2 - get the complete picture!

Cardiac output Arterial oxygen content

Stroke volume Heart rate OxygenationSaO2

HemoglobineHb

PreloadGEDI; SVV

AfterloadSVRI; MAP

ContractilityCFI

Pulmonary Edema

ELWI

Volume? Vasopressors? Inotropics? Blood transfusion?

Global oxygenationScvO2

Oxygen delivery Oxygen consumption