pl7 junior/pro modicon premium plc applications analog...

416
PL7 Junior/Pro Modicon Premium PLC Applications Analog, Regulation PID, Weighing eng 35009577_00 March 2005

Upload: others

Post on 30-Jan-2021

17 views

Category:

Documents


0 download

TRANSCRIPT

  • PL7 Junior/ProModicon Premium PLC ApplicationsAnalog, Regulation PID, Weighing eng

    3500

    9577

    _00

    March 2005

  • 2

  • Related Documentation

    Related Documentation

    At a Glance This manual is made up of 8 volumes: � Volume 1

    � Common application specific functions� Discrete Application� AS-i Implementation� Operator Dialog Application

    � Volume 2� Counting Application

    � Volume 3� Axis Command Application

    � Volume 4� Step by Step Control Application

    � Volume 5� Electronic Cam Application

    � Volume 6� SERCOS(r) Movement Command Application

    � Volume 7� Analog Application� PID Control Application� Weighing Application

    � Volume 8� Regulation Application

    3

  • Related Documentation

    4

  • Table of Contents

    About the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

    Part I Analog task function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Chapter 1 The analog task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Introduction to the analog function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    Chapter 2 The racked analog modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 19At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    2.1 TSX AEY 800 and TSX AEY 1600 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Introducing the TSX AEY 800 and TSX AEY 1600 modules. . . . . . . . . . . . . . . . 21Timing of measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Monitoring under/overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Measurement filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Displaying measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Sensor alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Calibration of the TSX AEY 800 and TSX AEY 1600 modules . . . . . . . . . . . . . . 31

    2.2 TSX AEY 810 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Introducing the TSX AEY 810 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Timing of measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Monitoring under/overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Measurement filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Displaying measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Calibrating the TSX AEY 810 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    2.3 TSX AEY 1614 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Introducing the TSX AEY 1614 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Timing of measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Monitoring under/overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Measurement filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Displaying measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Sensor alignment for the TSX AEY 1614 module . . . . . . . . . . . . . . . . . . . . . . . . 52

    5

  • Calibrating the TSX AEY 1614 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532.4 TSX AEY 414 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Introducing the TSX AEY 414 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Timing of measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Monitoring under/overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Sensor link monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Measurement filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Displaying measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Sensor alignment for the TSX AEY 414 module . . . . . . . . . . . . . . . . . . . . . . . . . 65Cold junction compensation of the TSX AEY 414 module. . . . . . . . . . . . . . . . . . 66Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    2.5 TSX AEY 420 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Introducing the TSX AEY 420 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Timing of measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Monitoring under/overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Thresholds and Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Displaying measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Sensor alignment for the TSX AEY 420 module . . . . . . . . . . . . . . . . . . . . . . . . . 78

    2.6 TSX ASY 410 and TSX ASY 800 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Introducing the TSX ASY 410 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Characteristics of the outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Monitoring under/overshoots for the TSX ASY 410 module . . . . . . . . . . . . . . . . 83Behavior of the TSX ASY 410 module outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 85Introducing the TSX ASY 800 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Monitoring under/overshoots for the TSX ASY 800 module . . . . . . . . . . . . . . . . 89Behavior of the outputs of the TSX ASY 800 module . . . . . . . . . . . . . . . . . . . . . 90

    Chapter 3 The remote analog TBX modules . . . . . . . . . . . . . . . . . . . . . . . 91At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    3.1 TBX AES 400 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Introducing the TBX AES 400 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Timing of measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Monitoring under/overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Measurement filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Displaying measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Calibrating the TBX AES 400 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Sensor alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    3.2 TBX AMS 620 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Introducing the TBX AMS 620 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Timing of measurements on inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    6

  • Under/overshoot monitoring on inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Filtering of measurements on inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Displaying measurements on inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Characteristics of the outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Fault handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Monitoring under/overshoots on the TBX AMS 620 module outputs . . . . . . . . 114Calibrating the TBX AMS 620 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Sensor alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    3.3 TBX ASS 200 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Introducing the TBX ASS 200 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Output characteristics for the TBX ASS 200 module . . . . . . . . . . . . . . . . . . . . 120Fault handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Monitoring under/overshoots for the TBX ASS 200 module . . . . . . . . . . . . . . . 122

    Chapter 4 The remote analog Momentum modules . . . . . . . . . . . . . . . . 123At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    4.1 170 AAI 030 00 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Introduction to the 170 AAI 030 00 module. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Words for the 170 AAI 030 00 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    4.2 170 AAI 140 00 Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Introducing the 170 AAI 140 00 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129170 AAI 140 00 module words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Displaying measurements on the 170 AAI 140 00 module . . . . . . . . . . . . . . . . 132

    4.3 170 AAI 520 40 Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Introducing the 170 AAI 520 40 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135170 AAI 520 40 module words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Displaying measurements on the 170 AAI 520 40 module . . . . . . . . . . . . . . . . 140

    4.4 170 AAO 120 00 Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Introducing the 170 AAI 120 00 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Words of base unit 170 AAO 120 00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Measurement correspondence on the 170 AAO 120 00 module . . . . . . . . . . . 145

    4.5 170 AAO 921 00 Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Introducing the 170 AAI 921 00 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147170 AAO 921 00 module words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Measurement correspondence on the 170 AAO 921 00 module . . . . . . . . . . . 150

    4.6 170 AMM 090 00 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Introduction to the 170 AAM 090 00 module. . . . . . . . . . . . . . . . . . . . . . . . . . . 152170 AAM 090 00 module words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Displaying measurements in the module 170 AMM 090 00 . . . . . . . . . . . . . . . 156

    7

  • Chapter 5 Module configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    5.1 Configuring the analog application: General . . . . . . . . . . . . . . . . . . . . . . . . . . . 162At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Description of the configuration screen of a racked TBX analog module . . . . . 163Description of the configuration screen of a Momentum analog module. . . . . . 165How to access the configuration parameters of a racked analog module . . . . . 167How to access the configuration parameters of a remote analog module on the FIPIO bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169Modifying channel parameters of an analog module: General . . . . . . . . . . . . . 170

    5.2 Parameters for analog input channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172Input parameters for racked analog modules . . . . . . . . . . . . . . . . . . . . . . . . . . 173Input parameters for remote TBX analog modules . . . . . . . . . . . . . . . . . . . . . . 176Input parameters for remote Momentum analog modules. . . . . . . . . . . . . . . . . 177

    5.3 Parameters for analog output channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178Output parameters for racked analog modules . . . . . . . . . . . . . . . . . . . . . . . . . 179Output parameters for remote TBX analog modules . . . . . . . . . . . . . . . . . . . . . 180Output parameters for remote Momentum analog modules . . . . . . . . . . . . . . . 181

    5.4 Module configurations (illustrations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Modifying the range of an input or output of an analog module. . . . . . . . . . . . . 183Modifying the task associated to an analog module channel. . . . . . . . . . . . . . . 184Modifying the display format of an input channel as voltage or as current . . . . 185Modifying display format of a thermocouple or thermowell channel . . . . . . . . . 187Modifying the filter value of analog module channels . . . . . . . . . . . . . . . . . . . . 189Modifying the Scanning cycle of the inputs of a racked analog module . . . . . . 190Modifying terminal block presence detection in TSX and TBX analog modules 191Modifying Input channels used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Modifying overshoot monitoring and event processing selection. . . . . . . . . . . . 193Cold junction compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194High precision mode for TSX AEY 1614 module . . . . . . . . . . . . . . . . . . . . . . . . 195Modifying the fallback mode of analog outputs . . . . . . . . . . . . . . . . . . . . . . . . . 196Modifying parameters common to TBX or TSX output modules . . . . . . . . . . . . 197

    Chapter 6 The Debugging function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Introducing the Debugging Function of an analog module . . . . . . . . . . . . . . . . 200Description of an analog module debugging screen . . . . . . . . . . . . . . . . . . . . . 201Analog module diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Forcing/unforcing analog channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204Detailed analog channel diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206Modifying the channel filtering value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Aligning an input channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    8

  • Modifying the fallback value of an output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Calibration function for an analog module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

    Chapter 7 Associated bits and words . . . . . . . . . . . . . . . . . . . . . . . . . . . 217At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    7.1 Addressing of analog module objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218Addressing objects of analog rack module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219Addressing objects of remote analog modules . . . . . . . . . . . . . . . . . . . . . . . . . 222

    7.2 Implicit exchange objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Implicit exchange objects associated with the analog function . . . . . . . . . . . . . 225

    7.3 Explicit exchange objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Explicit exchange objects: General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Explicit exchange objects associated with outputs . . . . . . . . . . . . . . . . . . . . . . 230Details on analog function explicit exchange words . . . . . . . . . . . . . . . . . . . . . 233

    Part II The regulation functions . . . . . . . . . . . . . . . . . . . . . . . . 237Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

    Chapter 8 General on the PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240Principal of the regulation loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241Development methodology of a regulation application . . . . . . . . . . . . . . . . . . . 242

    Chapter 9 Description of the regulation functions . . . . . . . . . . . . . . . . . 243Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Programming a regulation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244PID Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245Programming the PID function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247PWM Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252Programming the PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254SERVO Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Programming the SERVO function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260Performance of the functions in the operating mode. . . . . . . . . . . . . . . . . . . . . 263

    Chapter 10 Operator dialogue on CCX 17 . . . . . . . . . . . . . . . . . . . . . . . . . 265Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265Dialog operator on the CCX 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266Selecting a loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268Controlling a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Adjusting a loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270PID_MMI Function: programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271Performance of the PID_MMI function according to the PLC and CCX 17’s operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

    9

  • Chapter 11 Characteristics of the functions . . . . . . . . . . . . . . . . . . . . . . . 277Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Memory occupency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278Function running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

    Chapter 12 Example of application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Description of the application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282Configuration of the example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Programming the example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

    Chapter 13 Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291PID parameter adjustment method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292Role and influence of PID parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

    Part III Weighing Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 299At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

    Chapter 14 General Introduction to the Weighing Dedicated Function . 301At a Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Description of the weighing package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302Operation of the weighing module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304Implementing the Weighing Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306Weighing Application Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    Chapter 15 Configuration of the Weighing application . . . . . . . . . . . . . . 311At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311Description of the Dedicated Weighing Function Configuration Screen . . . . . . 312Weighing Module Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 313How to modify the task parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314How to modify metrological information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315How to modify the zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317How to modify the data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318How to modify the stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319How to Modify Measurement Input Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 320How to Modify the Flow Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322How to Modify the Tare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323How to Modify the Threshold Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    Chapter 16 Weighing programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

    16.1 General on the weighing programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328Principle of programming a weighing application. . . . . . . . . . . . . . . . . . . . . . . . 329Addressing Language Objects Associated with the Weighing Module . . . . . . . 330

    10

  • Description of the Main Objects Linked to the Weighing Function . . . . . . . . . . 331Presymbolization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

    16.2 Language objects for programmed exchange. . . . . . . . . . . . . . . . . . . . . . . . . . 335At a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335Bit language objects for default exchange associated with the weighing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336Implicit Exchange Language Word Objects Associated with the Weighing Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

    16.3 Language objects for user-defined exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 339At a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339Explicit Exchange Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340Explicit Exchange Objects: Current Exchange and Report . . . . . . . . . . . . . . . . 342Object for user-defined exchange: Module Status %MWxy.MOD.2 . . . . . . . . . 343Explicit Exchange Object: %MWxy.0.2 status channel . . . . . . . . . . . . . . . . . . . 344Explicit Exchange Object: Command Word %MWxy.0.3 . . . . . . . . . . . . . . . . . 345

    16.4 Description of the commands conveyed by program . . . . . . . . . . . . . . . . . . . . 346At a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346Send Commands to Weighing Module by Program . . . . . . . . . . . . . . . . . . . . . 347How to carry out the tare mode via the program. . . . . . . . . . . . . . . . . . . . . . . . 348How to set to zero the value of the weight by the program . . . . . . . . . . . . . . . . 351How to return to gross weight measurement via the program. . . . . . . . . . . . . . 353How to display the manual tare via the program. . . . . . . . . . . . . . . . . . . . . . . . 354How to Enable or Disable Thresholds by Program . . . . . . . . . . . . . . . . . . . . . . 355

    16.5 Modifying the parameters by program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357At a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Modify Parameters by Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358PL7 instructions used for adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360Description of Parameters Adjustable by Program . . . . . . . . . . . . . . . . . . . . . . 362Reading the configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

    Chapter 17 Calibrating the measurement string . . . . . . . . . . . . . . . . . . .367At a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367Introduction to the Calibration Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368Description of the Calibration Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370Calibrating the Analog Measurement System. . . . . . . . . . . . . . . . . . . . . . . . . . 371Calibrating the Analog Measurement System by Program . . . . . . . . . . . . . . . . 373How to Achieve Forced Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375Performing a Forced Calibration by Program . . . . . . . . . . . . . . . . . . . . . . . . . . 376

    Chapter 18 Debugging the weighing function. . . . . . . . . . . . . . . . . . . . . . 377At a glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377Description of the Debugging Screen for the Dedicated Weighing Function . . 378Description of the module zone on the debugging screen . . . . . . . . . . . . . . . . 380Description of the weighing debug screen’s display zone. . . . . . . . . . . . . . . . . 382Description of the Parameter Adjustment Zone . . . . . . . . . . . . . . . . . . . . . . . . 383

    11

  • Chapter 19 Protecting the adjustments. . . . . . . . . . . . . . . . . . . . . . . . . . . 385At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385Protection of the Adjustments to Weighing Parameters . . . . . . . . . . . . . . . . . . 386How to protect the adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388Legal metrology and regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

    Chapter 20 Operating a weighing application . . . . . . . . . . . . . . . . . . . . . 391At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391Ways of displaying weighing information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392Description of the display transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393Weighing module operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

    Chapter 21 Diagnostics of the weighing application . . . . . . . . . . . . . . . . 397Introduction to Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

    Chapter 22 Examples of the weighing program . . . . . . . . . . . . . . . . . . . . 401At a glance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401Example of a tare mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402Dosage example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

    Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

    12

  • About the book

    At a Glance

    Document Scope This manual deals with the software implementation of applications (apart from communication applications) on TSX/PMX/PCX57 by the PL7 software.

    Validity Note The update of this publication takes into account the functions of PL7 V4.5. Nevertheless, it enables you to use earlier versions of PL7.

    Related Documents

    User Comments We welcome your comments about this document. You can reach us by e-mail at [email protected]

    Title of Documentation Reference Number

    Hardware Implementation Manual TSX DM 57 xx E

    13

  • About the book

    14

  • I

    Analog task function

    At a Glance

    Aim of this part This part introduces the analog task function on Premium PLCs and describes its implementation withPL7 software.

    What's in this part?

    This Part contains the following Chapters:

    Chapter Chaptername Page

    1 The analog task 17

    2 The racked analog modules 19

    3 The remote analog TBX modules 91

    4 The remote analog Momentum modules 123

    5 Module configuration 161

    6 The Debugging function 199

    7 Associated bits and words 217

    15

  • Analog task function

    16

  • 1

    The analog task

    Introduction to the analog function

    Introduction The analog function applies to:

    � analog input/output modules placed on a rack,� remote analog input/output modules on the FIPIO bus.

    Installing the analog function requires the physical operating context to be defined in which it will be integrated (e.g. rack, supply, processor, modules or devices, etc.), and then the software installation to be carried out.

    This second point is carried out by various PL7 editors:

    � either offline,� or in online mode; in this instance, modification is limited to certain parameters.

    Note: To access the latter, the configured processor must be a processor with a built-in FIPIO link.

    Note: Online mode functions cannot be accessed for remote input/output modules.

    17

  • Analog task

    Installation principle

    The table below shows the different installation phases for the analog function.

    Mode Phase Description

    Offline Module declaration Choice:� of geographical position,

    � number and slot in the case of racked module,� connection point for a remote module,

    � module type.

    Configuration Entering configuration parameters.

    Confirming configuration parameters

    Confirmation at module level.

    Global application confirmation

    Confirmation at application level.

    On- or offline Symbolization Symbolizing the variables associated with the application specific function.

    Programming Programming the functions that the specific function must carry out using:� word and bit objects associated with the module,� task-specific instructions.

    Online Transfer Transferring the application to the PLC.

    Debugging Debugging the application using:� debug help screens, allowing inputs and outputs to be

    controlled,� diagnostics screens, allowing faults to be identified.

    Calibration Module calibration, which allows:� long term module drifts to be corrected,� increased measurement accuracy.

    On- or offline Documentation Printing different information relating to the application.

    Note: The order defined above is given as an indication. The PL7 software can use editors interactively in any order you wish (however you cannot use the data or program editors without first configuring the input/output modules).

    18

  • 2

    The racked analog modules

    At a Glance

    Aim of this chapter?

    This chapter introduces the racked analog modules.

    What's in this Chapter?

    This Chapter contains the following Sections:

    Section Topic Page

    2.1 TSX AEY 800 and TSX AEY 1600 modules 20

    2.2 TSX AEY 810 Module 32

    2.3 TSX AEY 1614 Module 43

    2.4 TSX AEY 414 Module 55

    2.5 TSX AEY 420 Module 69

    2.6 TSX ASY 410 and TSX ASY 800 modules 79

    19

  • Racked analog modules

    2.1 TSX AEY 800 and TSX AEY 1600 modules

    At a Glance

    Aim of this section?

    This section introduces the TSX AEY 800 and TSX AEY 1600 rack modules.

    What's in this Section?

    This Section contains the following Maps:

    Topic Page

    Introducing the TSX AEY 800 and TSX AEY 1600 modules 21

    Timing of measurements 23

    Monitoring under/overshoot 25

    Measurement filtering 27

    Displaying measurements 29

    Sensor alignment 30

    Calibration of the TSX AEY 800 and TSX AEY 1600 modules 31

    20

  • Racked analog modules

    Introducing the TSX AEY 800 and TSX AEY 1600 modules

    General The TSX AEY 800 and TSX AEY 1600 modules are high level 8 /16 input devices for industrial measurement.Associated to sensors or transmitters, they support surveillance, measurement and regulation functions for continuous processes.The TSX AEY 800 and TSX AEY 1600 modules support the range +/-10 V, 0..10 V, 0..5 V, 1..5 V, 0..20 mA or 4..20 mA for each of their inputs, depending on the selection made in configuration (See Modifying the range of an input or output of an analog module, p. 183).The debugging screen displays the value and status for each channel in the selected module in real-time. It also enables the user to access channel command (forcing the input or output value, reactivation of outputs, etc.).

    Structural diagram

    The TSX ASY 800 and TSX AEY 1600 input modules support the following functions:

    A/DMultiplexer

    Sub

    D c

    onne

    ctor

    (s)

    8 or

    16

    inpu

    ts

    Con

    nect

    or to

    X b

    us

    Processing

    DC/DCConverter

    1000 Vrms

    Channel selection

    5 V

    Function1 2 3 4 5

    6

    7

    Opto-coupler

    Opto-coupler

    X busInterface

    21

  • Racked analog modules

    Description The table below shows the various functions

    Address Element Function

    1 Connection to the process and scanning of input channels

    � physical connection to the process, via SubD connector(s),� protection of the module against voltage surges using limiter diodes,� adapting input signals using analog filtering,� scanning input channels using static multiplexing.

    2 Adapting input signals � gain selection, based on the input signal characteristics, defined at configuration (unipolar or bipolar range, voltage or current),

    � compensation for drifts in the amplification string.

    3 Digitalization of analog input measurement signals

    � 12 bit analog/digital converter.

    4 transformation of input measurements into a unit that can be used by the user

    � acknowledgment of recalibration and alignment coefficients to be applied to measurements, as well as self-calibration coefficients for the module,

    � measurement filtering (digital filtering), based on configuration parameters,

    � scaling of measurements, based on configuration parameters.

    5 Interface and communication with the application

    � management of exchanges with the processor,� geographical addressing,� receiving module and channel configuration parameters,� transmitting measured values, as well as module status, to the application.

    6 Module power supply -

    7 Module monitoring and notification of possible errors to the application

    � testing conversion string,� testing for range under/overshoot on channels,� testing for presence of terminal block,� testing watchdog.

    22

  • Racked analog modules

    Timing of measurements

    At a Glance The timing of measurements depends on the cycle used, defined on configuration: normal cycle or fast cycle.� in normal cycle, the scanning cycle time is fixed,� in fast cycle, only channels registered as used are scanned. The scanning cycle

    time is therefore proportional to the number of channels registered as used.

    Channel scanning cycle

    The scanning cycle of channels used in normal cycle is as follows:

    The scanning cycle of channels used in fast cycle is as follows:

    Note: In fast cycle, filtering is inhibited

    Channel 0 Channel 1 Channel 7 (or 15) Internal ref.

    Cycle time

    Tv Tv Tv Tv

    Tv = scanning time for one channel

    Internal ref. = corresponds to the acquisition of voltage references built-in to the module, to allow periodic self-calibration

    Channel 3 Channel 5

    Tv Tv

    Channel 6

    Tv Tv

    Internal ref.

    Cycle time = (3+1)xTv

    Tv = scanning time for one channel

    Internal ref. = corresponds to the acquisition of voltage references built-in to the module, to allow periodic self-calibration

    Example for channels 3, 5, 6

    23

  • Racked analog modules

    Calculating cycle time

    The table below gives the values of cycle time according to the cycle used:

    Illustration:

    Module Normal cycle Fast cycle

    TSX AEY 800 27 ms (N+1) x 3 ms� where N = number of channels used.

    TSX AEY 1600 51 ms (N+1) x 3 ms� where N = number of channels used.

    Note: The module cycle is asynchronous with the PLC cycle. At the start of each PLC cycle, the channel values are recognized. If the cycle time of the MAST task is less than that of the module, some values will not have changed.

    changes of the channel values

    MAST task time

    Module processing time

    24

  • Racked analog modules

    Monitoring under/overshoot

    At a Glance The TSX AEY 800 and TSX AEY 1600 modules give the choice of 6 ranges of voltage or current for each of their inputs. For the selected range, the module monitors over/undershoot: it checks that the measurement is between a lower and upper limit.This check is always enabled.Generally speaking, the modules will authorize an over/undershoot by 5% of the positive electrical part of the range.

    Measurement zones

    The measurement scale is divided into three zones:

    � the nominal zone is the measurement scale that corresponds to the range selected,

    � the overshoot zone is the zone above the upper limit,� the undershoot zone is the zone below the lower limit.

    Over/undershoot indications

    In the over/undershoot zones, there is a risk of saturation of the measurement string , which is signaled by:

    nominal zoneundershoot zone overshoot zone

    upper limitlower limit

    Bit name Meaning (when = 1)

    %Ixy.i.ERR Channel fault

    %MWxy.i.2:X1 Range over/undershoot on the channel

    25

  • Racked analog modules

    Over/Undershoot limits

    The over/undershoot limit values are as follows:

    Range Lower limit Lower limit Values available by default in standardized format

    Minimum limit in user-defined format

    Maximum limit in user-defined format

    +/-10V -10.5V +10.5V +/- 10500 Min-5%x(Max-Min)/2 Max+5%x(Max-Min)/2

    0..10V -0.5V +10.5V -500...10500 Min-5%x(Max-Min)/2 Max+5%x(Max-Min)/2

    0..5V 0V +5.25V -500...10500 approx. -10mV Max+5%x(Max-Min)/2

    1..5V 0.8V +5.25V -500...10500 Min-5%x(Max-Min)/2 Max+5%x(Max-Min)/2

    0..20mA 0mA +21mA 0...10500 approx. -40 A Max+5%x(Max-Min)/2

    4..20mA +3.2mA +20.8mA -500...10500 Min-5%x(Max-Min)/2 Max+5%x(Max-Min)/2

    µ

    Note: Min designates the minimum value indicated by the user. Max designates the maximum value indicated by the user.

    26

  • Racked analog modules

    Measurement filtering

    At a Glance The filtering used is first order filtering.The filtering coefficient can be modified (See Modifying the channel filtering value, p. 208) from the PL7 screen or via the program.

    Mathematical formula

    The mathematical formula used is as follows :

    with:=filter efficiency,

    Mesf(n)=measurement filtered at moment n,Mesf(n-1)=measurement filtered at moment n-1,Valb(n)=gross value at moment n.At configuration, the user selects the filter value from 7 possible values. This value can be modified, even when the application is in RUN mode.

    Values for the TSX AEY 800 module

    The filter values are as follows:

    Note: Filtering is inhibited in fast cycle mode

    Mesf n( ) α Mesf n 1–( ) 1 α–( ) Valb n( )×+×=

    α

    Required efficiency

    Value to be selected

    corresponding Filter response time at 63%

    Cut-off frequency (Hz)

    No filtering 0 0 0 0

    Low filtering 12

    0,7500,875

    100 ms202 ms

    1,5910,788

    Medium filtering 34

    0,9370,969

    419 ms851 ms

    0,3790,187

    High filtering 56

    0,9840,992

    1,714 ms3,442 ms

    0,0930,046

    α

    27

  • Racked analog modules

    Values for the TSX AEY 1600 module

    The filter values are as follows:

    Required efficiency

    Value to be selected

    corresponding Filter response time at 63%

    Cut-off frequency (Hz)

    No filtering 0 0 0 0

    Low filtering 12

    0,7500,875

    178 ms382 ms

    0,8940,416

    Medium filtering 34

    0,9370,969

    791 ms1,607 s

    0,2010,099

    High filtering 56

    0,9840,992

    3,239 s6,502 s

    0,0490,024

    α

    28

  • Racked analog modules

    Displaying measurements

    At a Glance The measurement provided to the application can be applied directly by the user, who can choose between:� using standardized display 0..10000 (or +/-10000 for the range +/-10 V),� parameterizing his display format by indicating the minimum and maximum

    values required.

    Standardized display

    The values are displayed in standardized units (in % with 2 decimals, also symbolized °/ ):

    User-defined display

    The user can select the value scale (See Modifying the display format of an input channel as voltage or as current, p. 185) in which the measurements are expressed, by selecting:� the minimum limit corresponding to the range minimum 0 °/ (or -10000 °/ ),� the maximum limit corresponding to the range maximum (+ 10000 °/ ).These minimum and maximum limits are integers within the range – 30000 and + 30000.

    Example:Let us suppose that a conditioning unit indicates pressure information on a 4-20mA loop, with 4mA corresponding to 3200 mB and 20mA corresponding to 9600 mB. The user can, therefore, select the user-defined format (User), defining the following minimum and maximum limits: 3200 °/ for 3200 mB as minimum limit,9600 °/ for 9600 mB as maximum limit, Values sent to the program will change between 3200 (= 4 mA) and 9600 (= 20 mA).The corresponding values are as follows:

    Type of range Display

    unipolar range: 0-10V, 0-5V, 0-20mA, 4-20mA

    from 0 to 10000 (0 °/ to 10000 °/ )

    bipolar range:+/-10V

    from -10000 to +10000 (-10000 °/ to +10000 °/ )

    °°°

    °°° °°°

    °°° °°°

    Value transmitted to the program

    Value of current Value of pressure

    3200 4 mA 3200 mB

    current value between 4 and 20mA current value

    9600 20 mA 9600 mB

    °°° °°°°°°

    °°°°°°

    29

  • Racked analog modules

    Sensor alignment

    At a Glance Alignment consists of eliminating systematic deviation observed with a given sensor around a given operating point. An error linked to the process is compensated for. For this reason, replacing a module does not necessitate a new alignment, whereas the replacement of the sensor or modification of the operating point of this sensor does necessitate a new alignment.

    Example Let us suppose that a pressure sensor, linked to a conditioning unit (1mV/mB), indicates 3200 mB, whereas the actual pressure is 3210 mB.The value measured by the module in standardized scale will be 3200 (3.20 V). The user can align the measurement to the value 3210 (value required). After this alignment procedure, the measurement channel will apply a systematic offset of +10. The alignment value that must be entered is 3210.

    Alignment values

    The alignment value can be modified (See Aligning an input channel, p. 210) from the PL7 screen, even when the program is in RUN mode.For each input channel, the user can: � view and modify the required measurement value,� save the alignment value,� see if the channel already possesses an alignment.The alignment offset can also be modified by the program.Alignment is performed on the channel under normal usage, without affecting the module channel operating modes. The maximum difference between the value measured and the value required (aligned value) must not exceed 1000.The alignment offset is stored in the word %Mwxy.i.8.

    Conversion line after alignment

    Initial conversion line

    30

  • Racked analog modules

    Calibration of the TSX AEY 800 and TSX AEY 1600 modules

    At a Glance Calibration (See Calibration function for an analog module, p. 214) is performed globally for the module on channel 0. It is advisable to calibrate the module outside the application. Calibration can be performed with the PLC task linked to the channel in RUN or STOP modes.

    Precautions When in calibration mode, measurements for all channels in the module are declared invalid (%Ixy.i.ERR bit = 1), filtering and alignment is prevented and channel acquisition cycles may be lengthened. As inputs other than channel 0 will not be acquired during calibration, the value transmitted to the application for these other channels is the last value that was measured before switching to calibration.

    Procedure The following table gives the procedure for calibrating the module:

    Step Action

    1 Access the calibration adjustment screen.

    2 Double click on channel 0.Result: A question appears ‘Do you wish to switch to recalibration mode?’.

    3 Reply to this question with Yes.Result: The calibration window appears.

    4 According to the range to be calibrated, connect a reference voltage to the voltage input of channel 0:� reference voltage = 10 V (20 ppm precision) in order to calibrate the module on the +/-10 V and 0..10

    V ranges,� reference voltage = 5 V (20 ppm precision) in order to calibrate the module on the 0..5 V, 1..5 V, 0..20

    mA and 4..20 mA ranges.Caution: the 5 V reference is used to calibrate the whole measurement device for the 0..20 mA and 4..20 mA ranges, with the exception of the 250 Ohm current shunt situated on the current entry.

    5 Once the reference has been connected to the voltage input (e.g. 10 V), use the Reference drop-down list box to slect this value. Wait, if necessary, for the reference voltage connected to stabilize, then confirm the selection using the Confirm command button. The ranges linked to this reference (e.g. +/-10 V and 0..10 V) are then calibrated automatically.

    6 Calibrate the module for other ranges, if applicable.the Return to Factory Parameters command button cancels all previous calibrations, and return to the original calibration settings configured in the factory.

    7 Press the Save command button, in order to recognize and save the new calibration in the module. If you exit the calibration screen without saving, a message is displayed indicating that the new calibration values will be lost.

    31

  • Racked analog modules

    2.2 TSX AEY 810 Module

    At a Glance

    Aim of this section?

    This section introduces the TSX AEY 810 rack-based module.

    What's in this Section?

    This Section contains the following Maps:

    Topic Page

    Introducing the TSX AEY 810 module 33

    Timing of measurements 35

    Monitoring under/overshoot 37

    Measurement filtering 40

    Displaying measurements 41

    Calibrating the TSX AEY 810 module 42

    32

  • Racked analog modules

    Introducing the TSX AEY 810 module

    General The TSX AEY 810 module is a high level 8 input industrial measurement device. Associated to sensors or transmitters, it is used for monitoring, measuring and regulating continuous processes.The TSX AEY 810 module offers the range +/-10 V, 0..10 V, 0..5 V, 1..5 V, 0..20 mA or 4..20 mA for each of its inputs, according to the selection made in configuration (See Modifying the range of an input or output of an analog module, p. 183).The debugging screen displays the value and status for each channel of the selected module in real-time. It also enables the user to access the channel command (forcing the input or output value, reactivation of outputs, etc.).

    Structural diagram

    The TSX AEY 810 input module supports the following functions:

    2 3 57

    A/D

    Con

    nect

    or to

    X b

    us5 V 6

    Channel selection

    1000 Vrms insulation

    41

    X busInterface

    Processing

    Opto-coupler

    Opto-coupler

    DC/DCConverter

    8 in

    puts

    Sub

    D c

    onne

    ctor

    (s)

    TSX AEY 810

    Filter

    Filter

    33

  • Racked analog modules

    Description The table below shows the various functions :

    Address Element Function

    1 Connection to process and scanning of input channels

    � physical connection to the process, via SubD connector(s),� protection of the module against voltage surges using limiter diodes,� adapting input signals using analog filtering,� scanning input channels using static multiplexing,� inter-channel isolation assured by optical connectors.

    2 Adapting input signals

    � gain selection, based on the input signal characteristics, defined at configuration (unipolar or bipolar range, voltage or current),

    � compensation for drifts in the amplification string.

    3 Digitalization of analog input measurement signals

    � 16 bit analog/digital converter.

    4 Transformation of input measurements into a unit that can be used by the user

    � acknowledgment of recalibration and alignment coefficients to be applied to measurements, as well as self-calibration coefficients for the module,

    � filtering (digital filtering) of measurements, based on configuration parameters,� scaling of measurements, based on configuration parameters.

    5 Interface and communication with the application

    � management of exchanges with the processor,� geographical addressing,� receiving module and channel configuration parameters,� transmitting measured values, as well as module status, to the application.

    6 Module power supply

    -

    7 Module monitoring and notification of possible errors to the application

    � testing conversion string,� testing for range under/overshoot on channels,� testing for presence of terminal block,� testing watchdog.

    34

  • Racked analog modules

    Timing of measurements

    At a Glance The timing of measurements depends on the cycle used, defined at configuration (See Modifying the Scanning cycle of the inputs of a racked analog module, p. 190) : normal cycle or fast cycle.� in normal cycle, the scanning cycle time is fixed,� in fast cycle, only channels registered as used are scanned. The scanning cycle

    time is therefore proportional to the number of channels registered as used.

    Channel scanning cycle

    The scanning cycle of channels used in normal cycle is as follows:

    The scanning cycle of channels used in fast cycle is as follows:

    Note: In fast cycle, filtering is inhibited

    Channel 0 Channel 1 Channel 7 (or 15) Internal ref.

    Cycle time

    Tv Tv Tv Tv

    Tv = scanning time for one channel

    Internal ref. = corresponds to the acquisition of voltage references built-in to the module, to allow periodic self-calibration

    Channel 3 Channel 5

    Tv Tv

    Channel 6

    Tv Tv

    Internal ref.

    Cycle time = (3+1)xTv

    Tv = scanning time for one channel

    Internal ref. = corresponds to the acquisition of voltage references built-in to the module, to allow periodic self-calibration

    Example for channels 3, 5, 6

    35

  • Racked analog modules

    Calculating cycle time

    The table below gives the values of cycle time according to the cycle used:

    Illustration:

    Module Normal cycle Fast cycle

    TSX AEY 810 29.7 ms (N+1) x 3.3 ms� where N = number of channels used.

    Note: The module cycle is asynchronous with the PLC cycle. At the start of each PLC cycle, the channel values are recognized. If the cycle time of the MAST task is less than that of the module, some values will not have changed.

    changes of the channel values

    MAST task time

    Module processing time

    36

  • Racked analog modules

    Monitoring under/overshoot

    At a Glance The TSX AEY 810 module provides a choice of 6 voltage or current ranges for each of its inputs. For the selected range, the module monitors over/undershoot: it checks that the measurement is between a lower and upper limit.This check is optional.Generally speaking, the module will authorize an overshoot of 5% on the positive electrical part of the range.

    Measurement zones

    The measurement scale is divided into five zones :

    � the nominal zone is the measurement scale that corresponds to the range selected,

    � the upper tolerance zone contains the values between the upper value of the range (e.g.: +10V for a range -10V/+10V) and the upper limit,

    � the lower tolerance zone contains the values between the lower value of the range (e.g.: -10V for a range -10V/+10V) and the lower limit,

    � the overshoot zone is the zone above the upper range limit,� the undershoot zone is the zone below the lower range limit.

    Over/undershoot indications

    In the over/undershoot zones, there is a risk of measurement device saturation. To overcome this risk of the user program, error bits are provided:

    nominal zoneundershoot zone

    overshoot zone

    Upper limitLower limit

    lower tolerance

    zone

    Lower valuein range

    upper tolerance

    zone

    Upper valuein range

    Bit name Meaning (when = 1)

    %IWxy.i.1:X5 Measurement in the lower tolerance zone.

    %IWxy.i.1:X6 Measurement in the upper tolerance zone.

    %MWxy.i.2:X1 If over/undershoot monitoring is required, this bit signals an over/undershoot fault in the range:� %MWxy.i.2:X14 signals an undershoot,� %MWxy.i.2:X15 signals an overshoot.

    %Ixy.i.ERR Channel fault.

    Note: If an over/undershoot occurs, the value measured is limited to value of the corresponding limit.

    37

  • Racked analog modules

    Over/undershoot limit values

    The overshoot or undershoot values can be configured (See Modifying overshoot monitoring and event processing selection, p. 193) independently of each other. They can take integer values between the following values: Lower limit = Vinf range + lower tolerance zoneUpper limit = Vsup range + upper tolerance zoneThe table below gives the values of the tolerance zones for the different ranges:

    Range Lower tolerance zone Upper tolerance zone

    - Default value Max. value

    Min. value Default value Min. value

    Max. value

    Bipolar -0.125 x

    /2

    0 -0.25 x

    /2

    -0.125 x

    /2

    0 0.25 x

    /2

    Unipolar -0.125 x 0 -0.25 x 0.125 x 0 0.25 x

    Standardized Bipolar

    -1250 0 -2500 1250 0 2500

    Standardized Unipolar

    -1250 0 -2500 1250 0 2500

    User-defined Bipolar

    -0.125 x

    /2

    0 -0.25 x

    /2

    0.125 x

    /2

    0 0.25 x

    /2

    User-defined Unipolar

    -0.125 x 0 -0.25 x 0.125 x 0 0.25 x

    With = Upper range value - Lower range value,

    ∆gamme ∆gamme ∆gamme ∆gamme

    ∆gamme ∆gamme ∆gamme ∆gamme

    ∆gamme ∆gamme ∆gamme ∆gamme

    ∆gamme ∆gamme ∆gamme ∆gamme

    ∆gamme

    Note: � The bipolar range is range +/-10V, the unipolar ranges are ranges 0..20mA,

    0..10V, 0..5V, 1..5V, 4..20mA,� By default, overshoot monitoring is active but it can be partially activated (only

    for overshoots or undershoots) or deactivated.

    38

  • Racked analog modules

    Example Overshoot for the range 4..20mA in standardized mode on channel 0

    1. Undershoot zone2. Lower tolerance zone3. Nominal zone4. Upper tolerance zone5. Overshoot zone

    Lower limit : -1250 (2mA) Upper limit = 10625 (21mA)

    0 mA 4 mA 20 mA 24 mA

    1 2 3 4 5Measurement range

    Range measurable electronically

    %MWxy.0.2:X1

    %MWxy.0.2:X14

    %MWxy.0.2:X15

    %IWxy.0.1:X5

    %IWxy.0.1:X6

    %Ixy.0.ERR

    Upper limit:

    Lower limit: 0

    1062510000

    -12502 mA 4 mA 20 mA 21 mA

    39

  • Racked analog modules

    Measurement filtering

    At a Glance The filtering used is first order filtering. The filter coefficient can be modified from a programming terminal and by program (See Modifying the filter value of analog module channels, p. 189).

    Mathematical formula

    The mathematical formula used is as follows :

    with:=filter efficiency,

    Mesf(n)=measurement filtered at moment n,Mesf(n-1)=measurement filtered at moment n-1,Valb(n)=gross value at moment n.At configuration, the user selects the filter value from 7 possible values. This value can be changed, even when the application is in RUN mode.

    Values for the TSX AEY 810 module

    The filter values are as follows: .

    Note: Filtering is inhibited in fast cycle mode.

    Mesf n( ) α Mesf n 1–( ) 1 α–( ) Valb n( )×+×=

    α

    Required efficiency

    Value to be selected

    corresponding Filter response time at 63%

    cut-off frequency (Hz)

    No filtering 0 0 0 0

    Low filtering 12

    0,7500,875

    104.3 ms224.7 ms

    1,5260,708

    Medium filtering 34

    0,9370,969

    464.8 ms944.9 ms

    0,3420,168

    High filtering 56

    0,9840,992

    1,905 ms3,825 ms

    0,0840,042

    α

    40

  • Racked analog modules

    Displaying measurements

    Introduction The measurement provided to the application can be applied directly by the user, who can choose (See Modifying the display format of an input channel as voltage or as current, p. 185) between:� using standardized display 0..10000 (or +/-10000 for the range +/-10 V),� creating parameters for its display format by indicating the minimum and

    maximum values required.

    Standardized display

    The values are displayed in standardized units (in % with 2 decimals, also with symbol °/ ):

    User display The user can select the value range in which the measurements are expressed, by selecting:� the minimum limit corresponding to the range minimum 0 °/ (or -10000 °/ ),� the maximum limit corresponding to the range maximum + 10000 °/ .These minimum and maximum limits should be integers within the range -30000 to +30000.

    Example:Suppose that a conditioning unit indicates pressure on a loop of 4-20mA, where 4mA corresponds to 3200mB and 20mA corresponds to 9600mB. The user can, therefore, select the User display format, defining the following minimum and maximum limits: 3200 °/ for 3200 mB as minimum limit,9600 °/ for 9600 mB as maximum limit,Values sent to the program will change between 3200 (=4mA) and 9600 (=20mA).The corresponding values are as follows:

    Type of range Display

    unipolar range: 0-10V, 0-5V, 0-20mA, 4-20mA

    from 0 to 10000 (0 °/ to 10000 °/ ).

    bipolar range:+/-10V

    from -10000 to +10000 (-10.000 °/ to +10.000 °/ ).

    °°°

    °°° °°°

    °°° °°°

    Value transmitted to program

    Value of current Value of pressure

    3200 4 mA 3200 mB

    current value between 4 and 20mA current value

    9600 20 mA 9600 mB

    °°° °°°°°°

    °°°°°°

    41

  • Racked analog modules

    Calibrating the TSX AEY 810 module

    Introduction Calibration (See Calibration function for an analog module, p. 214) is performed globally for the module on channel 0. It is advisable to calibrate the module outside the application. Calibration can be performed with the PLC task linked to the channel, in RUN or STOP modes.

    Precautions When in calibration mode, measurements for all channels in the module are declared invalid (bit %IWxy.i.1:X2 = 1), filtering and alignment is prevented and channel acquisition cycles may be lengthened.As inputs other than channel 0 will not be acquired during calibration, the value transmitted to the application for these other channels is the last value that was measured before commencing calibration.

    Procedure The following table shows the module calibration procedure:

    Step Action

    1 Access the calibration adjustment screen.

    2 Double-click on channel 0.Result: The system asks for confirmation ‘Do you wish to switch to recalibration mode?’.

    3 Reply to this question with Yes.Result: The calibration window appears.

    4 Connect a reference voltage on the voltage input of channel 0, according to the range to be calibrated:� reference voltage = 10 V (20 ppm precision) in order to calibrate the module on the +/-10 V and 0..10

    V ranges,� reference voltage = 5 V (20 ppm precision) in order to calibrate the module on the 0..5 V, 1..5 V, 0..20

    mA and 4..20 mA ranges.Caution: the reference 5 V is used to recalibrate the whole measurement channel for ranges 0..20 mA and 4..20 mA, with the exception of the 250 Ohm current shunt situated mounted on the current input.

    5 Once the reference has been connected to the voltage input (e.g. 10 V), select the value from the Reference drop-down list box. Wait, if necessary, for the reference voltage connected to stabilize, then confirm the selection using the Confirm command button. The ranges linked to this reference (e.g. +/-10 V and 0..10 V) are then calibrated automatically.

    6 Calibrate the module for any other ranges in use.the Return to Factory Settings command button will cancel all previous calibrations, and return the module to the calibration settings configured in the factory.

    7 Click on the Save command button in order to register and save the new calibration in the module. If an attempt is made to exit the calibration screen without saving, a message is displayed indicating that the new calibration values will be lost.

    42

  • Racked analog modules

    2.3 TSX AEY 1614 Module

    At a Glance

    Aim of this section?

    This section introduces the TSX AEY 1614 rack-based module.

    What's in this Section?

    This Section contains the following Maps:

    Topic Page

    Introducing the TSX AEY 1614 module 44

    Timing of measurements 46

    Monitoring under/overshoot 48

    Measurement filtering 50

    Displaying measurements 51

    Sensor alignment for the TSX AEY 1614 module 52

    Calibrating the TSX AEY 1614 module 53

    43

  • Racked analog modules

    Introducing the TSX AEY 1614 module

    General The TSX AEY 1614 module is a 16 input thermocouple industrial measurement device.The TSX AEY 1614 module offers the following ranges for each of its inputs according to the selection made at configuration (See Modifying the range of an input or output of an analog module, p. 183):� Thermocouple: B,E,J,K,L,N,R,S,T or U;� Voltage: -80..+80 mV.

    Structural diagram

    The TSX AEY 1614 input module performs the following functions:

    Note: The TELEFAST ABE 7 CP A12 connection accessory facilitates connection and provides a cold junction compensation device

    2 37

    6

    41

    TSX AEY1614

    Opto

    Processing X busInterface

    Con

    nect

    or to

    X b

    us

    5

    ADC

    ADCAcquisition channel

    Supply

    Supply

    Acquisition channel

    Mul

    tiple

    xing

    Mul

    tiple

    xing

    Cold junctionTelefast 8

    Channels 8 to 15

    Cold junctionTelefast 8

    Channels0 to 7

    Opto

    Opto

    Opto

    44

  • Racked analog modules

    Description Details of the functions are as follows:

    Address Element Function

    1 Adaptation and multiplexing

    Adaptation consists of a common mode and differential mode filter. It is followed by channel multiplexing via opto switches in order to offer the possibility of common mode voltage between channels (up to 400 V). A second multiplexing stage is used to self calibrate the acquisition string offset as close as possible to the input limit, and select the cold junction compensation sensor included in the telefast package.

    2 Amplification This is built around a weak offset amplifier. Lopping the amplifier on entry enables it to withstand voltage surges of 30V.

    3 Conversion The converter receives the signal coming from an input channel or cold junction

    compensation. Conversion is based on a 16 bit converter.

    4 Transformation of input measurements into a unit that can be used by the user

    � acknowledgment of recalibration and alignment coefficients to be applied to measurements, as well as self-calibration coefficients for the module,

    � measurement filtering (digital filtering), based on configuration parameters,� scaling of measurements, based on configuration parameters.

    5 Interface and communication with the application

    � management of exchanges with the processor,� geographical addressing,� receiving module and channel configuration parameters,� transmitting measured values, as well as module status, to the application.

    6 Module power supply

    -

    7 Module monitoring and notification of possible errors to the application

    � testing conversion string,� testing for range under/overshoot on channels,� testing for presence of terminal block,� testing watchdog.

    8 Cold junction compensation

    � integrated into TELEFAST ABE 7CP A12,� to be allowed for by the user if TELEFAST is not used.

    Σ∆

    45

  • Racked analog modules

    Timing of measurements

    Introduction The cycle time for the TSX AEY 1614 module depends on which cycle is used: normal cycle or fast cycle, defined in configuration (See Modifying the Scanning cycle of the inputs of a racked analog module, p. 190), and the configured options.� in normal cycle, the scanning cycle time is fixed,� in fast cycle, only channels registered as used are scanned. The scanning cycle

    time is therefore proportional to the number of channels registered as used.

    Normal cycle Example for a module in which all the options are activated.

    Note: The channels are acquired simultaneously in pairs (channel 0 and channel 8, channel 1 and channel 9, …, channel 7 and channel 15).

    Wt0 V0 Wt1 V1 V2Wt2 V7Wt7....... TCJC High prec.

    Wt8 V8 Wt9 V9 V10Wt10 V15Wt15....... TCJC High prec.

    Wt: wiring test (8 ms per channel requesting the test)TCJC: Telefast cold junction compensation (70ms)High prec. : high precision mode (corresponds to a self-calibration procedure of the module) (70ms)

    8ms 70ms 8ms 8ms 8ms70ms 70ms 70ms70ms

    Module cycle time

    46

  • Racked analog modules

    Fast cycle To reduce the cycle time to the maximum, the system will take account of the fact that the channels are acquired simultaneously in pairs.Example of optimal cabling for 3 channels used with wiring test, Telefast cold junction compensation, and high precision mode:If the user wishes to use only 3 channels and have the minimum cycle time, it is best to connect the dual channels. In this way, there will only be an elementary time for two channels. In our example, the dual channels 0 and 8 and channel 1 are selected.The cycle time is therefore as follows:

    Illustration:

    Note: The module cycle is asynchronous with the PLC cycle. At the start of each PLC cycle, the channel values are recognized. If the cycle time of the MAST task is less than that of the module, some values will not have changed.

    2 70ms 2 8ms 70ms 70ms 296ms=+ +×+×

    Tf0 V0 Tf1 V1

    Tf8 V8 Tf9 V9

    CSFT Hte préc.

    CSFT Hte préc.

    8ms 70ms 8ms 70ms 70ms 70ms

    Temps de cycle = 296ms

    changes of the channel values

    MAST task time

    Module processing time

    47

  • Racked analog modules

    Monitoring under/overshoot

    Introduction The TSX AEY 1614 module provides the choice of one voltage range and six thermocouple ranges for each of its inputs.For the selected range, the module monitors over/undershoot: it checks that the measurement is between a lower and upper limit (See Modifying overshoot monitoring and event processing selection, p. 193).This check is optional.

    Measurement zones

    The measurement range is divided into three zones:

    � the nominal zone is the measurement range corresponding to the range selected,

    � the overshoot zone is the zone above the upper range limit,� the undershoot zone is the zone below the lower range limit.

    Over/undershoot indications

    In the over/undershoot zones, there is a risk of measurement device saturation. To overcome this risk with a user program the following error bits can be used:

    Note: Beyond these limits (in the overshoot or undershoot zones) which correspond to nominal values in the selected range (thermocouple value limits or -80mV and +80mV for the electrical range), there is measurement saturation, even if overshoot monitoring has not been activated.

    nominal zoneundershoot zone overshoot zone

    upper limitlower limit

    Bit name Meaning (when = 1)

    %Ixy.i.ERR Channel fault

    %MWxy.i.2:X1 Indicates a range over/undershoot on the channel

    %MWxy.i.2:X14 Indicates a undershoot on the channel

    %MWxy.i.2:X15 Indicates an overshoot on the channel

    Note: If overshoot monitoring is not activated, all bits described above will remain at zero irrespective of the measurement value.

    48

  • Racked analog modules

    ‘Temperature’ range

    The range overshoot corresponds either to a dynamic overshoot on the acquisition device or to an overshoot of the standardized sensor measurement zone or to dynamic overshoot of the cold junction compensation temperature (-5 C to +85

    C).

    °°

    49

  • Racked analog modules

    Measurement filtering

    Introduction The filtering used is first order filtering. The filter coefficient can be modified (See Modifying the channel filtering value, p. 208) from a programming terminal and by program.

    Mathematical formula

    The mathematical formula used is as follows :

    where:=filter efficiency,

    Mesf(n)=measurement filtered at moment n,Mesf(n-1)=measurement filtered at moment n-1,Valb(n)=gross value at moment n.At configuration, the user selects the filter value from 7 possible values. This value can be changed, even when the application is in RUN mode.

    Values for the TSX AEY 1614 module

    The filter values are as follows. They are dependent on the cycle time T:

    Note: Filtering is inhibited in fast cycle mode.

    Mesf n( ) α Mesf n 1–( ) 1 α–( ) Valb n( )×+×=

    α

    Required efficiency

    Value to be selected

    corresponding Filter response time at 63%

    cut-off frequency (Hz)

    No filtering 0 0 0 0

    Low filtering 12

    0,7500,875

    4 x T8 x T

    0.040 / T0.020 / T

    Medium filtering 34

    0,9370,969

    16 x T32 x T

    0.010 / T0.005 / T

    High filtering 56

    0,9840,992

    64 x T128 x T

    0.025 / T0.012 / T

    α

    50

  • Racked analog modules

    Displaying measurements

    Introduction This process is used to select the display format depending on which formats are provided in the user program. It is necessary to differentiate between the electric ranges and the thermocouple or thermowell ranges.

    Range -80..+80mV

    The measurement supplied to the application can be applied directly by the user, who can choose between standardized and user-defined display formats.

    Standardized display:The values are displayed in standardized units (in % to 2 decimal points, also with °/ symbol).

    User display:The user can select (See Modifying the display format of an input channel as voltage or as current, p. 185) the range of values within which the measurements are expressed, by selecting:� the minimum limit corresponding to the minimum limit of the range (-10000 °/ ),� the maximum limit corresponding to the maximum limit of the range (+10.000°/

    ).These minimum and maximum limits should be integers between -30000 and +30000.

    Thermocouple ranges

    The measurement supplied to the application can be applied directly by the user, who can select (See Modifying display format of a thermocouple or thermowell channel, p. 187) one of the two types of display: temperature display and standardized display.

    Temperature display:The values are supplied in tenths of a degree (Celsius or Fahrenheit, depending on the unit selected on configuration).

    User display:The user can select standardized display 0..10000 (i.e. 0 to 10000 °/ ), by specifying the minimum and maximum temperatures corresponding to 0 and 10000.

    Display

    from -10000 to +10000 (-10.000 °/ to +10.000 °/

    )

    °°°

    °°°°°°

    °°°

    °°°

    °°°

    51

  • Racked analog modules

    Sensor alignment for the TSX AEY 1614 module

    Introduction Alignment consists of eliminating systematic deviation observed with a given sensor around a given operating point. An error linked to the process is compensated for. For this reason, replacing a module does not necessitate a new alignment, whereas the replacement of the sensor or modification of the operating point of this sensor does necessitate a new alignment.

    Alignment values

    The alignment value can be modified (See Aligning an input channel, p. 210) from a programming terminal, even when the program is in RUN mode. For each input channel, the user can:� view and modify the required measurement value,� save the alignment value,� see if the channel is already aligned.The alignment offset can also be modified by the program.Alignment is performed on the channel during normal operation, without affecting the module channel operating modes.The maximum difference between the value measured and the value required (aligned value) should not exceed 1500.

    Conversion line after alignment

    Conversion line before alignment

    Note: bit %IWxy.i.1:X0 = 1 indicates that the channel is aligned.

    52

  • Racked analog modules

    Calibrating the TSX AEY 1614 module

    Introduction Calibration (See Calibration function for an analog module, p. 214) is performed on channels 0 and 8. On channel 0, two types of calibration are possible:� calibration of the measurement string for one channel,� calibration of the current source necessary for the measurements from resistive

    probe sensors.On channel 8, only calibration of the measurement string is possible.

    Recommen-dations

    It is advisable to calibrate the module outside the application. Calibration can be performed with the PLC task linked to the channel, in RUN or STOP modes.

    Procedure for recalibrating the measurement string

    The following table shows the procedure for calibrating the measurement string:

    Note: in the calibration screen, the values displayed on the left side of the screen (channels 0 et 8) indicate the value measured on the connected voltage reference. The display format in tenths of mV (16000 displayed for 1.6 V) is not intended to monitor the reference precision but simply to indicate the presence of this reference.

    Step Action

    1 Access the calibration adjustment screen

    2 Double-click on channel 0.Result: The system asks for confirmation ‘Do you wish to switch to recalibration mode?’.

    3 Reply to this question with Yes.Result: The recalibration window appears.

    4 Connect a voltage reference to the voltage input to be calibrated, according to the range to be calibrated� +25.000mV+/-0.039% for the ranges to be calibrated Thermocouples B, R, S,

    and T,� +55.000mV+/-0.026% for the ranges to be calibrated Thermocouples U, N, L,

    and K,� +80.000mV+/-0.023% for the ranges to be calibrated Thermocouples J and E,� +166.962mV+/-0.019% for the range Pt100.

    5 Once the reference has been connected to the voltage input (e.g. 10 V), select the value from the Reference drop-down list box. Wait, if necessary, for the reference voltage connected to stabilize, then confirm the selection using the Confirm command button. The ranges linked to this reference (e.g. 10 V and 0..10 V) are then calibrated automatically.

    53

  • Racked analog modules

    Calibrating the 1.25 mA current source

    The current source is used for cold junction compensation. The following table shows the procedure for calibrating the current source:

    6 Calibrate the module for any other ranges in use.The Return to Factory Settings command button will cancel all previous calibrations, and return the module to the calibration settings configured in the factory.

    7 Click on the Save command button in order to take into account and save the new calibration in the module. If an attempt is made to exit the calibration screen without saving, a message is displayed indicating that the new calibration values will be lost.

    Step Action

    Step Action

    1 Access the calibration adjustment screen.

    2 Double-click on channel 0.Result: The system asks for confirmation ‘Do you wish to switch to recalibration mode?’.

    3 Reply to this question with Yes.Result: The calibration window appears.

    4 Using a precision multimeter (0.068% to 1.25mA), measure the current source value given by the channel to be calibrated.Note this value and convert it into micro-Amps.

    5 Use the Reference drop-down list box to select Source.Enter the converted value in the Source field (for example 12501 for 1.2501 mA) then confirm the selection with the OK command button.

    6 Click on the Save command button in order to acknowledge and save the new calibration in the module. If an attempt is made to exit the calibration screen without saving, a message is displayed indicating that the new calibration values will be lost.

    54

  • Racked analog modules

    2.4 TSX AEY 414 Module

    At a Glance

    Aim of this section?

    This section introduces the TSX AEY 414 rack-based module.

    What's in this Section?

    This Section contains the following Maps:

    Topic Page

    Introducing the TSX AEY 414 module 56

    Timing of measurements 58

    Monitoring under/overshoot 59

    Sensor link monitoring 61

    Measurement filtering 62

    Displaying measurements 63

    Sensor alignment for the TSX AEY 414 module 65

    Cold junction compensation of the TSX AEY 414 module 66

    Calibration 67

    55

  • Racked analog modules

    Introducing the TSX AEY 414 module

    General The TSX AEY 414 module is a multi-range acquisition device with 4 separately insulated inputs. For each of its inputs, the module offers ranges dependent on the selection made at (See Modifying the range of an input or output of an analog module, p. 183) configuration:� Thermocouple: B, E, J, K, L, N, R, S, T and U,� Voltage: -13..+63 mV,� Thermowell Pt100, Pt1000, Ni1000 with 2 or 4 wires, or an ohmic range of: 0..400

    Ohms, 0..3850 Ohms,� High level +/-10 V, 0..10 V, +/- 5 V, 0..5 V (0..20 mA with external shunt) or 1..5

    V (4..20 mA with external shunt). It should be noted that the external shunts are supplied with the product.

    Structural diagram

    The TSX AEY 414 input module performs the following functions:

    Note: The terminal block is supplied separately under the reference TSX BLY 01.

    A/D

    Con

    nect

    or to

    X b

    usProcessing

    Opto-coupler

    5 V

    Function

    1

    2 3 4

    5

    6

    Opto-couplers

    Opto-couplers

    Opto-couplers

    1780 Vrms insulation

    Opto-couplers

    20 p

    in s

    crew

    term

    inal

    blo

    ck

    Mul

    tiple

    xer

    2830 Vrms insulation

    Measurement of the internal temperature

    DC / DC convertercouplers

    1

    X busInterface

    TSX AEY 414

    56

  • Racked analog modules

    Description Details of the functions are as follows:

    Address Element Function

    1 Connection to process and scanning of input channels

    � physical connection to the process via a screw terminal block,� gain selection, based on the input signal characteristics, defined in configuration

    for each channel (high-level range, thermocouple or thermowell),� multiplexing.

    2 Digitization of analog input measurement signals

    Digitization of analog input measurement signals

    3 Transformation of input measurements into a unit that can be used by the user

    � consideration of recalibration and alignment coefficients to be applied to measurements (channel-by-channel and range-by-range), as well as self-calibration coefficients for the module,

    � linearization of the measurement provided by the Pt or Ni thermowells,� linearization of measurement and adjustment for internal or external cold

    junction compensation in the case of thermocouples,� scaling of measurements, based on configuration parameters (in physical units

    or user-defined range).

    4 Interface and communication with the application

    � management of exchanges with the processor,� geographical addressing,� receiving module and channel configuration parameters,� transmitting measured values, as well as module status, to the application.

    5 Module power supply

    -

    6 Module monitoring and notification of possible errors to the application

    � testing conversion string,� testing for range under/overshoot on channels,� testing for presence of terminal block,� sensor link test (except for the ranges +/-10 V, 0..10V, +/-5 V, 0..5V (0..20mA)),� watchdog test.

    57

  • Racked analog modules

    Timing of measurements

    Introduction The cycle length for the TSX AEY 414 module is always 550 ms.This time is independent of the mains frequency (50Hz or 60Hz). The measurements are linked in the following manner: channel 0, channel 1, channel 2, channel 3 and internal selection.

    Breakdown of the cycle time

    The table below breaks down the different times:

    Illustration

    Type of time Breakdown of times Total

    Scanning time for channel 0

    � Wiring test: 4 ms,� Channel conversion: 106 ms.

    110 ms

    Scanning time for channel 1

    � Wiring test: 4 ms,� Channel conversion: 106 ms.

    110 ms

    Scanning time for channel 2

    � Wiring test: 4 ms,� Channel conversion: 106 ms.

    110 ms

    Scanning time for channel 3

    � Wiring test: 4 ms,� Channel co