plasma physics lecture 2 ian hutchinson

Upload: 005235

Post on 06-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    1/23

    Chapter2MotionofChargedParticles inFieldsPlasmasarecomplicatedbecausemotionsofelectronsandionsaredeterminedbytheelectricandmagneticfieldsbutalsochange thefieldsbythecurrentstheycarry.FornowweshallignorethesecondpartoftheproblemandassumethatFieldsarePrescribed.Evenso,calculatingthemotionofachargedparticlecanbequitehard.Equationofmotion:

    dvm = q ( E + v B ) (2.1)

    dt charge E-field velocityB-fieldRateofchangeofmomentum LorentzForce

    Havetosolvethisdifferentialequation,togetpositionrandvelocity(v=r)givenE(r,t),B(r,t).Approach: Startsimple,graduallygeneralize.

    2.1 UniformBfield,E= 0.mv =qvB (2.2)

    2.1.1 Qualitativelyin the plane perpendicular to B: Accel. is perp tov so particle moves in a circle whoseradiusrL issuchastosatisfy

    2v

    rListheangular(velocity)frequency

    mrL2 =m = q vB (2.3)| |

    1stequalityshows2 =v 2L2 /r (rL =v/)

    17

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    2/23

    Figure2.1: Circularorbitinuniformmagneticfield.vHencesecondgivesm 2 = q vB | |

    q Bi.e. = | | . (2.4)

    mParticlemovesinacircularorbitwith

    q Bangularvelocity = | | theCyclotronFrequency (2.5)

    mv

    andradius rl = theLarmorRadius. (2.6)

    2.1.2 ByVectorAlgebra ParticleEnergyisconstant. proof: takev. Eq. ofmotionthen

    d 1mv.v = mv2 =qv.(vB)=0. (2.7)dt 2

    ParallelandPerpendicularmotionsseparate. v =constantbecauseaccel(vB)isperpendiculartoB.

    PerpendicularDynamics:TakeBin z directionandwritecomponents

    mvx =qvyB , mvy =qvxB (2.8)Hence

    qB qB2vx = vy = vx =2vx (2.9)

    m mSolution: vx =vcost (choosezerooftime)Substituteback:

    m qvy = vx =|

    q|vsint (2.10)

    qB18

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    3/23

    Integrate:v

    x=x0 + sint , y = y0 + q v cost (2.11) |q|

    Figure2.2: Gyrocenter(x0, y0)andorbitThisistheequationofacirclewithcenterr0 =(x0, y0)andradiusrL =v/: GyroRadius.[Angleis=t]Directionofrotationisasindicatedoppositeforoppositesignofcharge:Ionsrotateanticlockwise. Electronsclockwiseaboutthemagneticfield.The current carried by theplasmaalways is in such a direction as toreduce the magneticfield.ThisisthepropertyofamagneticmaterialwhichisDiagmagnetic.Whenv isnon-zerothetotalmotionisalongahelix.

    2.2 UniformBandnon-zeroEmv =q(E+vB) (2.12)

    Parallel motion: Before,whenE=0thiswasv =const. NowitisclearlyqE

    v = (2.13)m

    Constantaccelerationalongthefield.Perpendicular MotionQualitatively:Speed of positive particle is greater at top than bottom so radius of curvature is greater.Result is that guiding center moves perpendicular to bothE andB. It drifts across thefield.Algebraically: Itisclearthatifwecanfindaconstantvelocityvd thatsatisfies

    E+vd B=0 (2.14)19

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    4/23

    Figure2.3:EBdriftorbitthenthesumofthisdriftvelocityplusthevelocity

    dvL = [rLei(tt0)] (2.15)

    dtwhichwecalculatedfortheE=0gyrationwillsatisfytheequationofmotion.TakeBtheaboveequation:

    0=EB+(vd B)B=EB+(vd.B)BB2vd (2.16)sothat

    vd =EB (2.17)B2

    doessatisfyit.Hencethefullsolutionis

    v= v + vd + vL (2.18)parallel cross-fielddrift Gyration

    whereqE

    v = (2.19)m

    andvd (eq2.17)istheEBdriftofthegyrocenter.CommentsonEBdrift:

    1. Itisindependent ofthepropertiesofthedriftingparticle(q,m,v,whatever).2. Henceitisinthesame directionforelectronsandions.3. UnderlyingphysicsforthisisthatintheframemovingattheEBdriftE=0. We

    havetransformedawaytheelectricfield.4. Formula given above is exact except for the fact that relativistic effects have been

    ignored. Theywouldbeimportantifvd c.20

    http://-/?-http://-/?-
  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    5/23

    2.2.1 DriftduetoGravityorotherForcesSupposeparticleissubjecttosomeotherforce,suchasgravity. WriteitFsothat

    1mv =F+qvB=q( F+vB) (2.20)

    qThisisjustliketheElectricfieldcaseexceptwithF/qreplacingE.Thedriftistherefore

    vd = 1FB (2.21)q B2

    Inthiscase,ifforceonelectronsandionsissame,theydriftinopposite directions.Thisgeneralformulacanbeusedtogetthedriftvelocityinsomeothercasesofinterest(seelater).

    2.3 Non-UniformBFieldIfB-linesarestraightbutthemagnitudeofBvaries inspacewegetorbitsthat lookquali-tativelysimilartotheEBcase:

    Figure2.4: B driftorbitCurvatureoforbitisgreaterwhereBisgreatercausinglooptobesmallonthatside. Resultis a drift perpendicular to bothB and B. Notice, though, that electrons and ions go inopposite directions(unlikeEB).AlgebraWe try to find a decomposition of the velocity as before into v = vd +vL where vd isconstant.Weshallfindthatthiscanbedoneonlyapproximately. Alsowemusthaveasimpleexpres-sionforB.ThiswegetbyassumingthattheLarmorradiusismuchsmallerthanthescalelengthofBvariationi.e.,

    rL

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    6/23

    | |

    in which case we can express the field approximately as the first two terms in a Taylorexpression:

    BB0 +(r.)B (2.23)Thensubstitutingthedecomposedvelocityweget:

    dvmdt = mvL =q(vB)=q[vL B0 +vd B0 +(vL +vd)(r.)B] (2.24)

    or 0 = vd B0 +vL (r.)B+vd (r.)B (2.25)Now we shall find that vd/vL is also small, like r|B /B. Therefore the last term here is|secondorderbutthefirsttwoarefirstorder. Sowedropthelastterm.NowtheawkwardpartisthatvL andrL areperiodic. Substituteforr=r0 +rL so

    0=vd B0 +vL (rL.)B+vL (r0.)B (2.26)itWenowaverageoveracyclotronperiod. Thelasttermis soitaveragestozero:e

    0=vd B+vL (rL.)B. (2.27)Toperformtheaverageuse

    v qsint, cost (2.28)rL =(xL,yL) =

    q

    cost,qsintvL =(xL, yL) = v (2.29)q| |

    d

    So [vL (r.)B]x = vyydyB (2.30)d

    [vL (r.)B]y = vxydyB (2.31)(TakingB tobeinthey-direction).Then

    2

    2

    v

    v

    cost

    cos

    t

    costsint =0 (2.32)=vyy

    2

    1vq

    q| |qq| | (2.33)=vxy = 2

    So2 B

    q 1v

    vL (r.)B= (2.34)q 2| |

    Substitutein:0=vd B 2 B

    2q vq| | (2.35)

    22

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    7/23

    andsolveasbeforetogetv

    B B221q||= q v

    q| |2

    2B B

    (2.36)vd =B2 B2

    orequivalently 1mvq 2B

    2B B (2.37)vd =

    B2ThisiscalledtheGradBdrift.

    2.4 CurvatureDriftWhentheB-fieldlinesarecurvedandtheparticlehasavelocityv alongthefield,anotherdriftoccurs.

    Figure2.5: CurvatureandCentrifugalForceTake|B constant;radiusofcurvatureRe.|To1stordertheparticlejustspiralsalongthefield.Intheframeoftheguidingcenteraforceappearsbecausetheplasmaisrotatingaboutthecenterofcurvature.ThiscentrifugalforceisFcf

    Fcf =m 2vRc pointingoutward (2.38)

    asavectorRc2Fcf (2.39)=mvR2c

    [Thereisalsoacoriolisforce2m( v)butthisaveragestozerooveragyroperiod.]Usethepreviousformulaforaforce

    2mv

    q B2 qB2 R2c23

    1Fcf B Rc B(2.40)vd = =

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    8/23

    ThisistheCurvatureDrift.Itisoftenconvenienttohavethisexpressedintermsofthefieldgradients. SowerelateRctoB etc. asfollows:

    Figure2.6: Differentialexpressionofcurvature(Caretsdenoteunitvectors)Fromthediagram

    db=b2 b1 =Rc (2.41)and

    d= Rc (2.42)So

    dbdl =

    RcRc =

    RcR2c

    (2.43)But(bydefinition)

    dbdl =(B.)b (2.44)

    Sothecurvaturedriftcanbewritten2 2 B ( bb.)Rc Bmv mv (2.45)vd =

    R2c =

    B2 q B2q2.4.1 VacuumFieldsRelationbetweenB &Rc driftsThe curvature and B are related because of Maxwells equations, their relation dependsonthecurrentdensityj. Aparticularcaseofinterestisj=0: vacuumfields.

    Figure2.7: Localpolarcoordinatesinavacuumfield B=0 (staticcase) (2.46)

    24

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    9/23

    Considerthez-component1

    0=( B)z = (rB) (Br =0bychoice). (2.47)rr

    B B= + (2.48)

    r

    r

    or,inotherwords,B

    (B)r = (2.49)Rc

    [Notealso0=( B) =B/z :(B)z =0]andhence(B)perp =BRc/R2.cThusthegradBdriftcanbewritten:

    mv2 mV2Rc B(2.50)vB = B B =

    2q B3

    2q R2

    B2

    candthetotaldriftacrossavacuumfieldbecomes

    1 2 1 2vR +vB = mv + mv Rc B . (2.51)q 2 R2B2c

    Noticethefollowing:1. Rc &B driftsareinthesame direction.2. Theyareinopposite directionsforoppositecharges.3. Theyareproportionaltoparticleenergies4. CurvatureParallelEnergy(2)

    PerpendicularEnergyB5. Asaresultonecanveryquicklycalculatetheaveragedriftoverathermaldistribution

    ofparticlesbecause1 2 Tmv = (2.52)2 21 2

    mv

    =

    T

    2degrees

    of

    freedom

    (2.53)

    2

    Therefore b2TRc B 2TB b. (2.54)vR +vB =

    q R2B2=

    q B2c

    25

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    10/23

    2.5 Interlude: Toroidal Confinement of Single Parti-cles

    Since particles can move freely along a magnetic field even if not across it, we cannot ob-viously

    confine

    the

    particles

    in

    astraight

    magnetic

    field.

    Obvious

    idea:

    bend

    the

    field

    lines

    intocirclessothattheyhavenoends.

    Figure2.8: ToroidalfieldgeometryProblemCurvature&B drifts

    1 1 RB2 2 (2.55)+vd = mv mv R2B22q

    1 1 12 2 (2.56)+= mv|vd| q mv2 BR

    Ionsdriftup. Electronsdown. Thereisnoconfinement. Whenthereisfinitedensitythings

    Figure2.9: Chargeseparationduetoverticaldriftare

    even

    worse

    because

    charge

    separation

    occurs

    E

    Outward

    Motion.

    E

    B

    2.5.1 Howtosolvethisproblem?Considerabeamofelectronsv =0v =0. Driftis

    2mv

    q BTR26

    1vd = (2.57)

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    11/23

    WhatBz isrequiredtocancelthis?AddingBz givesacompensatingverticalvelocity

    Bzv=v forBz

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    12/23

    Inthepoloidalcross-sectionthefielddescribesacircleasitgoesroundin.Equationofmotionofaparticleexactly followingthefieldis:

    d B B B Br = v = v = v (2.61)

    dt B B B B and

    r=constant. (2.62)Nowaddontothismotionthecrossfielddriftinthe zdirection.

    Figure2.11: Componentsofvelocityd B

    r = v +vdcos (2.63)dt Bdr

    = vdsin (2.64)dt

    Takeratio,toeliminatetime:1dr udsin

    = (2.65)rd Bv +vdcosB

    TakeB,B,v,vd tobeconstants,thenwecanintegratethisorbitequation:Bv

    [lnr] = [ln +vdcos|]. (2.66)|B

    Taker=r0 whencos=0(= 2)thenBvd

    r=r0/ 1+ cos (2.67)bv

    If Bvd

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    13/23

    Figure2.12: Shifted,approximatelycircularorbitSubstituteforvd

    12 + 2)(mvB 1 1mv2 (2.69)r0

    B BRq v12

    2+1 mv mv rp(2.70)2

    qB Rvmv r0 r0If v =0 = (2.71),=rLqB R R

    whererL istheLarmorRadiusinafieldB r/R.Providedissmall,particleswillbeconfined. Obviouslytheimportantthingisthepoloidalrotationofthefieldlines: RotationalTransform.RotationalTransform

    rotationaltransform

    poloidalangle1toroidalrotation (2.72)

    (transform/2=) poloidalangletoroidalangle . (2.73)

    (Originally,wasusedtodenotethetransform. Sinceabout1990ithasbeenusedtodenotethetransformdividedby2whichistheinverseofthesafetyfactor.)SafetyFactor

    1 toroidalanglesq . (2.74)= = poloidalangle

    Actuallythevalueoftheseratiosmayvaryasonemovesaroundthemagneticfield. Definitionstrictlyrequiresoneshouldtakethelimitofalargeno. ofrotations.qs isatopologicalnumber: numberofrotationsthelongwayperrotationtheshortway.Cylindricalapprox.:

    rBqs = (2.75)

    RB

    29

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    14/23

    Intermsofsafetyfactortheorbitshiftcanbewrittenr Br

    =rL =rL =rLqs (2.76)||R BR

    (assumingB >>B).

    2.6 TheMirrorEffectofParallelFieldGradients: E=0, BB

    Figure2.13: BasisofparallelmirrorforceIntheabovesituationthereisanetforcealongB.Forceis

    sin

    ==

    |qvB|Br

    B

    sin= |q|vBsin (2.77)(2.78)

    CalculateBr asfunctionofBz from.B=0.1

    .B=rr(rBr)+zBz =0. (2.79)

    HencerBr = rBz

    z dr (2.80)SupposerL issmallenoughthat Bzz const.

    [rBr]rL0

    rL0 rdr

    Bzz =

    12 r2L

    Bzz (2.81)

    SoBr(rL)=1

    2rLBzz (2.82)

    sin=BrB =+

    rL2

    12

    Bzz (2.83)

    30

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    15/23

    >=

    12

    Hence2BzBz mv

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    16/23

    andforceisF=(B.) (constant), (2.94)

    We shall show in a moment that || is constant for a circulating particle, regard as anelementarycircuit. Also,foraparticlealwayspoints inthe -Bdirection. [Notethatthismeans

    that

    the

    effect

    of

    particles

    on

    the

    field

    is

    to

    decrease

    it.]

    Hence

    the

    force

    may

    be

    written

    F=B (2.95)Thisgivesusboth:

    MagneticMirrorForce:F =B (2.96)

    andGradBDrift:

    1 FB B B. (2.97)vB = =q B2 q B2

    2.6.2 isaconstantofthemotionAdiabaticInvariantProof from FParallelequationofmotion

    dv

    m

    =F =

    dB(2.98)

    dt dz

    SodB dB2mv dv = d(1mv)=vz = (2.99) dt dt 2 dz dt

    ord 1 2 dB( mv)+ =0 . (2.100)dt 2 dt

    ConservationofTotalKEd 1 2 1 2dt(2mv + 2mv)=0 (2.101)d 1= ( mv2 +B)=0 (2.102)dt 2

    Combined dB

    (B) =0 (2.103)dt dt

    d= =0 Asrequired (2.104)

    dt32

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    17/23

    AngularMomentumofparticleabouttheguidingcenteris

    2mv 2m1mvrLmv = mv = 2 (2.105)

    |q|B

    q B| |2m= . (2.106)

    q| |

    Conservationofmagneticmomentisbasicallyconservationofangularmomentumabouttheguidingcenter.Proofdirect fromAngularMomentumConsiderangularmomentumaboutG.C.Because isignorable(locally)Canonicalangularmomentumisconserved.

    p= [r (mv+qA)]z conserved. (2.107)HereAisthevectorpotentialsuchthatB= Athedefinitionofthevectorpotentialmeansthat

    1 (rA))Bz = (2.108)

    r r 2rL mrL rLA(rL) = r.Bzdr=2Bz = q (2.109)0 | |

    Hencemp = q rLvm+q (2.110)

    q q| |q | |

    = m. (2.111)|q|

    Sop=const=constant.ConservationofisbasicallyconservationofangularmomentumofparticleaboutG.C.2.6.3 MirrorTrappingF maybeenoughtoreflectparticlesback. Butmaynot!Letscalculatewhetheritwill:Supposereflectionoccurs.Atreflectionpointvr =0.Energyconservation

    11 2 2m(v0 +v0)= mv2 (2.112)r2 233

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    18/23

    Figure2.14: MagneticMirrorconservation

    1 2 1 2mv2 0 = 2mvr (2.113)

    B0 BrHence

    2 2 Br 2v0 +v0 = B0v0 (2.114)B0 v2

    = 0 (2.115)2Br v0 +v2o2.6.4 PitchAngle

    vtan = (2.116)

    vB0 v2

    = 0 =sin20 (2.117)2Br v0 +v20So,givenapitchangle0,reflectiontakesplacewhereB0/Br =sin20.If0 istoosmallnoreflectioncanoccur.Criticalanglec isobviously

    c =sin1(B0/B1)12 (2.118)LossCone isall

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    19/23

    Figure2.15: Criticalanglec dividesvelocityspace intoaloss-coneandaregionofmirror-trapping

    22m1mv= 2 (2.120)

    q2 B2m=

    q2 =constant. (2.121)NotethatifB changessuddenlymightnotbeconserved.

    Figure2.16: FluxtubedescribedbyorbitBasicrequirement

    rL

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    20/23

    Figure2.17: ParticleorbitsroundBsoastoperformalineintegraloftheElectricfield(dandvqareinoppositiondirections).

    12mv2

    = |q|Br2L = 2Bm|q|B

    12mv2

    B2B

    (2.126)=

    || . (2.127)Hence

    ddt

    12mv2

    = ||

    2

    12mv2

    =db

    dt (2.128)butalso

    ddt

    12mv2

    = d

    dt(B) . (2.129)Hence

    d=0. (2.130)

    dt

    Noticethatsince= 2m,thisisjustanotherwayofsayingthatthefluxthroughthegyroq2

    orbitisconserved.Noticealsoenergy increase. Methodofheating. AdiabaticCompression.

    2.8 TimeVaryingE-field (E,Buniform)RecalltheEBdrift:

    vEB =EB (2.131)B2

    whenE variessodoesvEB. ThustheguidingcentreexperiencesanaccelerationvEB = d EB (2.132)

    dt B2Intheframeoftheguidingcentrewhichisaccelerating,aforceisfelt.

    Fa =m d EB (Pushedbackintoseat! ve.) (2.133)dt B2

    36

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    21/23

    Thisforceproducesanotherdrift1Fa B m d EB

    (2.134)vD = =q B2 qB2dt B2 B

    m d

    = (E.B)BB2E (2.135)qBdtm = E (2.136)

    qB2

    Thisiscalledthepolarizationdrift.m vD =vEB + vp =EB +

    qB2 E (2.137)B2 1 = EB +

    BE (2.138)B2

    Figure 2.18: Suddenly turning on an electric field causes a shift of the gyrocenter in thedirectionofforce. Thisisthepolarizationdrift.Start-up effect: Whenwe switchon anelectric fieldtheaverage position(gyrocenter)ofaninitiallystationaryparticleshiftsoverby 1 theorbitsize. Thepolarizationdriftisthis2polarizationeffectonthemedium.Totalshift duetovp is

    r vpdt= mqB2 Edt=

    mqB2 [E] . (2.139)

    2.8.1 DirectDerivationof dE effect: PolarizationDriftdt

    ConsideranoscillatoryfieldE=Eeit (r0B)dv

    m = q(E+vB) (2.140)dt

    = q Eeit +vB (2.141)Tryforasolutionintheform

    v=vDeit +vL (2.142)37

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    22/23

    where,asusual,vL satisfiesmvL =qvL BThen

    (1) m(ivD =q(E+vD B) xit (2.143)SolveforvD : TakeBthisequation:

    (2) mi(vD B)=q EB+ B2.v D B B2vD (2.144)|addmi (1)toq (2)toeliminatevD B.

    2m22vD +q (EB B2vD)=miqE (2.145)m22 mi EB

    (2.146)or: vD = E+1q2B2 qB2 B22 iq

    i.e. vD 12 =B|q|E+EB

    (2.147)B2Since i this is the same formula as we had before: the sum of polarization and

    tEBdriftsexcept forthe[1 22]term.ThistermcomesfromthechangeinvD withtime(accel).Thusourearlierexpressionwasonlyapproximate. Agoodapproxif

  • 8/3/2019 Plasma Physics Lecture 2 Ian Hutchinson

    23/23

    2(E.g. crosstermsarexyxyE).

    Averageoveragyroorbit: r=rL(cos,sin,0).Averageofcrossterms=0.Then

    2

    rE(r) =E+(rL.)E+ L (2.153)2! 2E.lineartermrL =0. So

    2(2.154)E(r) E+r

    4L2EHenceEBwith1stfinite-Larmor-radiuscorrectionis

    2 EBvEB = 1+rL 2 . (2.155)

    r B2[Note: GradBdriftisafiniteLarmoreffectalready.]SecondandThirdAdiabaticInvariantsThereareadditionalapproximatelyconservedquantitieslikeinsomegeometries.

    2.10 SummaryofDriftsvE = EB

    B2 ElectricField (2.156)vFvE

    ==

    1qFB

    B21+r2L

    42EB

    B2

    GeneralForceNonuniformE

    (2.157)(2.158)

    2B Bmv GradB (2.159)vB =

    B32q2 Rc Bmv

    Curvature (2.160)vR =q R2B2c

    1 1 Rc B2 mv2 VacuumFields. (2.161)vR +v += mvB R2B2c2qEq

    q |B| | |Polarization (2.162)vp =

    MirrorMotionmv22B isconstant (2.163)

    ForceisF=B.39