plumage convergence in tyrant flycatchers: a

40
Plumage convergence in tyrant flycatchers: A 1 tetrachromatic view 2 3 A thesis submitted to the Department of Biological Science of the 4 Universidad de los Andes in partial fulfillment of the requirements for the 5 degree of Bachelor of Science in Biology 6 7 8 María Alejandra Meneses-Giorgi 9 Laboratorio de Biología Evolutiva de Vertebrados 10 Departamento de Ciencias Biológicas 11 Universidad de los Andes 12 13 Advisor: 14 Daniel Cadena, PhD 15 Full Professor 16 Departamento de Ciencias Biológicas 17 Universidad de los Andes 18 19 20

Upload: others

Post on 02-Jul-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Plumage convergence in tyrant flycatchers: A

Plumage convergence in tyrant flycatchers: A 1

tetrachromatic view 2

3

A thesis submitted to the Department of Biological Science of the 4

Universidad de los Andes in partial fulfillment of the requirements for the 5

degree of Bachelor of Science in Biology 6

7

8

María Alejandra Meneses-Giorgi 9

Laboratorio de Biología Evolutiva de Vertebrados 10

Departamento de Ciencias Biológicas 11

Universidad de los Andes 12

13

Advisor: 14

Daniel Cadena, PhD 15

Full Professor 16

Departamento de Ciencias Biológicas 17

Universidad de los Andes 18

19

20

Page 2: Plumage convergence in tyrant flycatchers: A

ABSTRACT 21

Convergent evolution is the process through which different evolutionary lineages 22

independently evolve similar features. Phenotypic convergence has been linked 23

with selective pressures including predation and competitive interactions. Social 24

mimicry may lead to convergent evolution when interactions with conspecifics and 25

heterospecifics drive evolution towards similar phenotypes. Several hypotheses 26

accounting for convergence based on mechanisms of social mimicry exist, but 27

evaluations of how similar species are given the visual system of receptors has 28

been ostensibly missing from tests of such hypotheses. We used phylogenetic 29

methods, plumage reflectance measurements of six species of tyrant flycatchers 30

(Passeriformes, Tyrannidae) with strikingly similar plumage patterns, and models 31

of avian vision to evaluate the efficacy of visual deception and therefore the 32

plausibility of hypotheses potentially accounting for plumage convergence involving 33

mimicry. We found plumage similarity resulted from convergence and may have 34

been favored by selective pressures exerted by predation because putative models 35

and mimics species were indistinguishable by visually oriented raptors. We reject 36

social mimicry hypotheses as an explanation for the aparent similarity between one 37

of the putative model species and putative mimics because deception seems 38

unlikely given the visual system of passerines visual system. Nonetheless, 39

plumage convergence may have been favored by competitive interactions with 40

other putative model species or with other smaller species of passerines. 41

Experiments and behavioral observations are necessary to better characterize 42

social interactions among our study species and to test predictions of alternative 43

hypotheses posed to account for mimicry. 44

Page 3: Plumage convergence in tyrant flycatchers: A

45

RESUMEN 46

La evolución convergente es el proceso mediante el cual diferentes linajes 47

evolutivos independientemente evolucionan características similares. La evolución 48

convergente ha sido relacionada con presiones de selección como la depredación 49

y las interacciones de competencia. El mimetismo social puede llevar a evolución 50

convergente cuando las interacciones competitivas con individuos coespecíficos y 51

heteroespecíficos impulsan la evolución hacia fenotipos similares. Existen varias 52

hipótesis que dan cuenta de la convergencia dado el mimetismo social, pero 53

estimaciones de qué tanto se parecen las especies involucradas dado el sistema 54

visual de especie receptoras han estado ausentes de los trabajos que evalúan 55

dichas hipótesis. En este estudio usamos métodos filogenéticos, medidas de 56

reflectancia de seis especies de tiránidos (Passeriformes, Tyrannidae) que 57

presentan plumajes similares y modelos visuales de aves para evaluar la eficacia 58

del engaño visual y, por ende, la plausibilidad de hipótesis que plantean que la 59

convergencia en el plumaje ha surgido por mimetismo social. Encontramos que la 60

similitud en el plumaje es producto de convergencia, que pudo ser favorecida por 61

la presión de selección ejercida por los depredadores pues las especies modelo e 62

imitadoras hipotéticas son indistinguibles para aves rapaces que se orientan 63

visualmente. Rechazamos las hipótesis de mimetismo social como una explicación 64

de la aparente similitud entre una de las especies modelo y los imitadores 65

hipotéticos debido a que el engaño es poco probable dado el modelo visual de los 66

Passeriformes. Sin embargo, la convergencia en el plumaje pudo haber sido 67

favorecida por interacciones competitivas con la otra especie modelo putativa o 68

Page 4: Plumage convergence in tyrant flycatchers: A

con otras especies passeriformes más pequeñas. Es necesario hacer 69

experimentos y observaciones de comportamiento para caracterizar mejor las 70

interacciones sociales entre nuestras especies de estudio y para probar 71

predicciones de hipótesis alternativas planteadas para explicar el mimetismo. 72

73

Keywords: Convergence, coloration, social mimicry, visual models, interespecific 74

social dominance mimicry. 75

76

INTRODUCTION 77

Convergent evolution, the process through which two or more distinct lineages 78

independently acquire similar traits, reveals that the paths of evolution are not 79

infinite, but may be rather restricted. Convergence may happen rapidly or over the 80

course of millions of years either by random drift or more likely because a given 81

phenotypic trait is repeatedly favored by natural selection in a particular 82

environment (Endler, 1986; Losos et al., 1998). Likewise, convergence may also 83

occur due to biases in the production of phenotypic variation such as shared 84

developmental constraints (Brakefield, 2006; Losos et al., 1998; Price & Pavelka, 85

1996). A well-studied form of convergent evolution is mimicry, in which one species 86

(the mimic) evolves to resemble another species (the model), often to deceive a 87

third species (the receptor; McGhee, 2012). 88

89

There are numerous examples of phenotypic convergence among birds (Cody & 90

Brown, 1970; Davies & Welbergen, 2008; Jønsson et al., 2016; Laiolo, 2017; 91

Leighton et al., 2018; Lopes et al., 2017; Prum, 2014; Stoddard, 2012), and several 92

Page 5: Plumage convergence in tyrant flycatchers: A

scientists have proposed hypothesis to explain this phenomenon in the context of 93

mimicry (Barnard, 1979, 1982; Diamond, 1982; Moynihan, 1968; Prum, 2014; 94

Prum & Samuelson, 2012, 2016). Among leading ideas proposed to account for 95

phenotypic convergence in birds, the social mimicry hypothesis (Moynihan, 1968) 96

posits that convergent similarity in traits like coloration and plumage patterns may 97

evolve to promote efficient communication maintaining cohesion both among 98

conspecifics and heterospecifics in mixed-species flocks. A variant of this 99

hypothesis posits that rather than maintaining cohesion of mixed flocks, social 100

mimicry serves mainly as an antipredatory adaptation because predation 101

eliminates conspicuous or atypical individuals from populations, thereby promoting 102

phenotypic uniformity (Barnard, 1979). How atypical an animal is in this context 103

must be examined relative to the background (Gomez & Théry, 2007); if a predator 104

considers a whole mixed-species flock as the background, then any species 105

forming a distinct minority within it may be a preferred prey, resulting in a selective 106

pressure favoring homogeneity (Mueller, 1971). Therefore, the efficacy of social 107

mimicry to reduce predation (Barnard, 1979) depends on the extent to which 108

predators may perceive mixed flocks as homogeneous, which ultimately relies on 109

the acuity of their visual system. 110

111

An alternative explanation for mimicry not focusing on predation but still 112

considering social interactions suggests that mimicry may serve two purposes: (1) 113

mimics may escape attack from model species of larger body size, and (2) mimics 114

may deceive species of smaller size and scare them off without further effort 115

(Diamond, 1982). Along the same lines, Prum & Samuelson (2012) further 116

Page 6: Plumage convergence in tyrant flycatchers: A

proposed the Interspecific Social Dominance Mimicry (ISDM) hypothesis, which 117

posits that, given interference competition, smaller species evolve to mimic larger, 118

ecologically dominant competitors, to deceive them and thereby avoid attacks. For 119

this mechanism to be plausible, individuals of the mimic species must be confused 120

by individuals of the model species as if they were conspecific based on pictorial 121

cues like shape, color and plumage patterns regardless of differences in body size 122

(Leighton et al., 2018; Prum, 2014; Prum & Samuelson, 2012, 2016). Therefore, 123

the efficacy of this form of mimicry critically depends on the visual system of model 124

species. 125

126

Explicit consideration of the efficacy of visual deception given avian visual models 127

has been ostensibly missing from analyses, limiting our ability to assess the 128

plausibility of various hypotheses posed to account for mimicry. Birds have visual 129

pigments enabling them to acquire information from red, green and blue 130

wavelengths (like humans), but they are also capable of acquiring information from 131

ultraviolet wavelengths with an additional pigment. Also, each of the avian 132

pigments is paired with a particular pigmented oil droplet type, which results in 133

better spectral discrimination relative to other vertebrates (Cuthill et al., 2000). The 134

ability to distinguish colors varies among birds, however, with a pronounced 135

difference in the absorbance peak of the ultraviolet sensitive (UVS-type) cones 136

present in Passeriformes and Psittaciformes, and the violet sensitive (VS-type) 137

cones present in all other non-passerines including raptors (Håstad et al., 2005). 138

Thus, a crucial question one must answer to gauge support for hypotheses 139

attempting to account for mimicry is whether phenotypic similarities between 140

Page 7: Plumage convergence in tyrant flycatchers: A

species perceived by humans are sufficient to deceive birds including predators, 141

competitors, and putative models given properties of their visual systems. 142

143

We used plumage reflectance measurements of six species of tyrant flycatchers 144

(Passeriformes, Tyrannidae) with strikingly similar plumage patterns to evaluate 145

the efficacy of visual deception and therefore the plausibility of mimicry hypotheses 146

potentially accounting for phenotypic convergence. The species we studied are 147

part of a hypothetical mimicry complex posited to be an example of ISDM 148

consisting of two model species of large body size and a variety of putatively mimic 149

species of smaller size (Prum 2014). We first reconstructed ancestral character 150

states on a molecular phylogeny to evaluate whether plumage similarity is indeed a 151

result of convergence and not of common ancestry in tyrant-flycatchers. We then 152

compared plumage coloration for each pair of hypothetical models and mimics both 153

from the perspective of raptorial predators (using a VS vision model) and of the 154

study species themselves and smaller competitors (using an UVS vision model for 155

passerine birds) to evaluate the plausibility of deception of different observers. 156

Because raptors are likely the main diurnal predators of passerine birds (Acosta-157

Chaves et al., 2012; Amar et al., 2008; Gotmark, 1995; Thomson et al., 2010) 158

detecting them by sight (Mueller, 1975; Mueller, 1971; Slagsvold et al., 1995), the 159

hypothesis of social mimicry that species converge phenotypically to deceive 160

predators (Barnard 1979) predicts that species of flycatchers involved in the 161

mimicry complex should be very similar to each other or indistinguishable given 162

raptor vision in ecologically relevant plumage patches. On the other hand, 163

hypotheses positing that species evolve to deceive heterospecifics with which they 164

Page 8: Plumage convergence in tyrant flycatchers: A

may compete for resources (Diamond 1982, Prum & Samuelson 2012, Prum 2014) 165

predict that tyrant flycatcher species involved in the mimicry complex should have 166

indistinguishable plumage coloration given their own passerine visual model. 167

168

METHODS 169

Study system 170

We studied Boat-billed Flycatcher (Megarynchus pitangua, mean body mass 73.5 171

g) and Great Kiskadee (Pitangus sulphuratus, 63.8 g) as hypothetical models, and 172

Lesser Kiskadee (Pitangus lictor, 25.5 g), White-bearded Flycatcher (Phelpsia 173

inornata, 29.4 g), Social Flycatcher (Myiozetetes similis, 28 g), and Rusty-margined 174

Flycatcher (Myiozetetes cayanensis, 25.9 g) as hypothetical mimics following Prum 175

(2014; mean body masses from Dunning, 2008). All these species are members of 176

the Tyrannidae family showing strikingly similar plumage patterns which we refer to 177

as “kiskadee-like”: black facial mask, white throat, bright yellow underparts, 178

brownish upperparts, and tail and wings with rufous edges (John Fitzpatrick et al., 179

2004; Hilty & Brown, 1986). They are all lowland species (500m-1700m) with wide 180

distribution ranges except for P. inornata, which is restricted to areas in the llanos 181

of Colombia and Venezuela (Fitzpatrick et al., 2004). The distribution ranges of 182

putative models and mimics overlap extensively and species share habitats in 183

mostly semi-open areas. Despite having very similar plumage patterns and 184

coloration to the human eye, the species have distinctive voices (Hilty & Brown, 185

1986). 186

187

Is plumage similarity product of convergent evolution? 188

Page 9: Plumage convergence in tyrant flycatchers: A

To assess whether the similarity in phenotype among species of flycatchers is 189

product of convergent evolution or if it is a result of common ancestry, we 190

reconstructed ancestral states of a binary character (kiskadee-like or nonkiskadee-191

like) using stochastic mapping, a Bayesian approach in which character histories 192

are sampled from their posterior probability distribution (Huelsenbeck et al., 2003; 193

Ree, 2005; Revell, 2013b, 2013a). To conduct this analysis we used a subset of a 194

complete phylogeny of the Tyrannidae (Gomez-Bahamon, 2014), corresponding to 195

a clade defined by the most recent common ancestor of all study species except P. 196

inornata because no molecular data for this species are available. Using R 197

packages “ape” (Paradis et al., 2004, 2017) and “phytools” (Revell, 2012, 2017) we 198

generated 100 stochastically mapped trees using the “make.simmap” function 199

(Revell, 2017). Subsequently, we summarized them to estimate the number of 200

changes of each type and the proportion of time spent in each state, and using the 201

“densityMap” function we visualized the posterior probability of being in each state 202

across all the edges and nodes of the tree (Revell, 2013b). Although we were not 203

able to take spectrophotometric measurements of Conopias albovittatus we 204

included this species in the ancestral states reconstruction because it shares the 205

kiskadee-like plumage (Prum, 2014). 206

207

Quantifying plumage similarity 208

Reflectance measurements 209

We quantified plumage similarity between hypothetical models and mimics using 210

spectrophotometric data obtained from museum specimens deposited in the 211

Museo de Historia Natural de la Universidad de los Andes (ANDES), Instituto de 212

Page 10: Plumage convergence in tyrant flycatchers: A

Ciencias Naturales de la Universidad Nacional (ICN), and Instituto de Investigación 213

de Recursos Biológicos Alexander von Humboldt (IAvH). We took reflectance 214

measurements using an Ocean Optics USB4000 spectrophotometer and a DH-215

2000 deuterium halogen light source coupled with a QP400-2-UV-VIS optic fiber 216

with a 400 µm diameter. We measured reflectance from eight patches: crown, 217

back, rump, throat, flank, upper breast, middle breast and belly (Figure 1). We 218

measured each patch three times per individual; the spectrometer was calibrated 219

using a white standard prior to measuring any new patch. We averaged the three 220

measurements per patch per individual and removed electrical noise using 221

functions implemented in the package “pavo” for R (Maia et al., 2013). 222

223

We quantified plumage coloration in six species belonging to the putative mimicry 224

complex described by Prum (2014); we were unable to include data for 225

Myiozetetes granadensis, Conopias parva and Conopias cinchoneti. We measured 226

spectra from 10 or 11 specimens per species except for P. inornata for which there 227

where only seven specimens available and P. sulphuratus for which 19 specimens 228

were measured. We used both female and male individuals and measured 229

specimens not older than 50 years (Armenta et al., 2008) for a total of 68 230

specimens and 1,632 spectra (Supplementary Table 1). 231

232

Statistical and perceptual analysis 233

To determine whether species putatively involved in the mimicry complex are 234

indeed indistinguishable from the perspectives of predators (raptors) or competitors 235

Page 11: Plumage convergence in tyrant flycatchers: A

(passerines), one needs to address two separate questions: (1) Are hypothetical 236

models and mimics statistically distinct?; and (2) Are they perceptually different? 237

We addressed both questions following the approach described by Maia & White 238

(2017). We performed paired analysis between hypothetical models and mimics 239

comparing coloration of each plumage patch using the averaged and noise-free 240

spectra in the R package “pavo” based on the receptor-noise model (Vorobyev & 241

Osorio, 1998). This model assumes thresholds for discrimination are imposed by 242

receptor noise, which is dependent on the receptor type and its abundance in the 243

retina (Vorobyev & Osorio, 1998; Vorobyev et al., 2001). The model allows one to 244

estimate the distance between groups of points in a color space in units of “just 245

noticeable differences” or JNDs (Vorobyev et al., 2001). If when comparing two 246

colors the JND value is lower than 1, then those colors are predicted to be 247

indistinguishable given the visual model employed for analyses. 248

249

To determine whether hypothetical models and mimics are statistically different in 250

plumage coloration, we used permutation-based analyses of variance 251

(PERMANOVAs) using perceptual color distances in the R package “vegan” 252

(Oksanen et al., 2008). We used 999 permutations and recorded the pseudo-f, the 253

significance of the analysis (a=0.05), and the R2 (Maia & White, 2017). To evaluate 254

whether plumage patches showing statistical differences in reflectance are also 255

perceptually distinguishable we did a bootstrap analysis to calculate a mean 256

distance and a confidence interval in JNDs (Maia & White, 2017). If two colors are 257

statistically distinct and the bootstrapped confidence interval does not include the 258

Page 12: Plumage convergence in tyrant flycatchers: A

threshold of 1 JND, then one can conclude that these colors are statistically distinct 259

and perceptually different given a visual model (Maia & White, 2017). 260

261

To assess statistical and perceptual differences from the perspective of raptors and 262

tyrant-flycatchers we performed the PERMANOVAs and the bootsraps assuming 263

two alternative visual models. First, we used the “avg.v” model implemented in 264

“pavo” which represents the standard violet-sensitive visual system; because there 265

is no information available for Accipitriformes, we used the Gallinula tenebrosa 266

(Rallidae) receptor densities -1:1.69:2.10:2.19- (Olsson et al., 2017). We then 267

used the “avg.uv” model representing the standard ultraviolet-sensitive visual 268

system and used the default receptor densities -1:2:2:4- which correspond to 269

Leiothrix lutea (Leothrichidae; Maia et al., 2017). We used a Weber fraction of 0.1 270

for both models (Maia et al., 2017). 271

272

273

RESULTS 274

Is plumage similarity among kiskadee-like flycatchers product of convergent 275

evolution? 276

Our analyses suggest there have been four independent evolutionary origins of the 277

kiskadee-like phenotype in: (1) Conopias albovittatus, (2) M. pitangua, (3) the 278

Myiozetetes clade and (4) the Pitangus clade (Figure 2). These four independent 279

origins of kiskadee-like plumage suggest that phenotypic similarity among putative 280

model and mimic species is product of convergence and not of common ancestry. 281

Page 13: Plumage convergence in tyrant flycatchers: A

However, similarity due to common ancestry cannot be rejected in cases involving 282

closely related species (i.e Myiozetetes similis – M. cayanensis – M. granadensis 283

and Pitangus lictor - P. sulphuratus). 284

285

Can plumage similarity among flycatchers deceive putative competitors or 286

predators? 287

As predicted by various hypotheses involving social mimicry (Barnard, 1979; 288

Diamond, 1982; Prum, 2014; Prum & Samuelson, 2012), we found some pairs of 289

hypothetical model and mimic species to be indistinguishable from each other in 290

aspects of their plumage. Most hypothetical mimic species are perceptually 291

indistinguishable from hypothetical model M. pitangua in the coloration of the upper 292

breast, middle breast, belly and flanks (JND values ≤1; Figure 4 and 293

Supplementary Table 3) in spite of some being statistically different from each 294

other (Figure 4 and Supplementary Table 2). Additionally, all hypothetical mimics 295

are indistinguishable from both hypothetical models in plumage from the crown, 296

back and rump (JND values≤1; Figure 4, Figure 5A, Figure 6A and Supplementary 297

Table 3). Statistical and perceptual evaluation of the data were almost identical for 298

the UVS and VS visual models (Figure 4, Supplementary Table 2 and 299

Supplementary Table 3), indicating that both predators and competitors might be 300

deceived by the coloration of underpart plumage patches when considering M. 301

pitangua as hypothetical model or by upperpart patches when considering either 302

M. pitangua or P. sulphuratus as hypothetical models. Resemblance between M. 303

pitangua and hypothetical mimics exists because although there are differences in 304

brilliance of all the patches, the hue reflected by each patch is highly similar 305

Page 14: Plumage convergence in tyrant flycatchers: A

between species (Figure 5C). Moreover, descriptive variables of the plumage (i.e 306

usml centroids, total and relative volumes, color span, hue disparity and saturation) 307

of each species vary between the two visual models (Supplementary Table 4). As 308

a graphical example of the variation, points occupied larger volume when being 309

evaluated using the UVS model than when being evaluated with the VS model 310

(Figure 5B). 311

312

Conversely, we found some pairs of hypothetical model and mimic species are 313

distinguishable in plumage, particularly in patches of the underparts. All 314

hypothetical mimics were perceptually distinguishable from hypothetical model M. 315

pitangua in plumage of the upper breast, middle breast, belly and flank patches 316

(JND values>1; Figure 3 and Figure 6A). Underpart patches were statistically 317

(Figure 4) and perceptually different in all comparisons. Additionally, we found two 318

species to be distinguishable from M. pitangua in some plumage patches: P. lictor 319

is distinguishable from M. pitangua in the middle breast and flank patches (lower 320

JND values 1.85 and 2.06 respectively; Supplementary Table 3) and M. 321

cayanensis was found to be distinguishable in the rump patch (lower JND value of 322

1.28; Supplementary Table 3). Color dissimilarity between P. sulphuratus and 323

hypothetical mimics is shown by the difference in the wavelengths reflected 324

between 450nm and 500nm in underpart patches (Figure 6C). Color dissimilarity in 325

underparts patches is also illustrated by variance in the values of the s centroid 326

when comparing hypothetical mimics and hypothetical models (Supplementary 327

Table 5). Statistical and perceptual evaluation of the data were almost identical 328

both for the UVS and VS models indicating that species are distinguishable by 329

Page 15: Plumage convergence in tyrant flycatchers: A

models, smaller passerine species, and predatory raptors. Nevertheless, 330

descriptive variables of the plumage of each species varied when using UVS and 331

VS models (Supplementary Table 4), illustrated by points occupying a larger 332

volume when being evaluated using the UVS model than when being evaluated 333

with the VS model (Figure 6B). 334

335

336

DISCUSSION 337

Although plumage convergence is widespread (Barnard, 1979, 1982; Cody & 338

Brown, 1970; Davies & Welbergen, 2008; Laiolo, 2017; Leighton et al., 2018; 339

Moynihan, 1968; Prum, 2014; Prum & Samuelson, 2016, 2012; Stoddard, 2012), 340

few studies have assessed the mechanisms underlying this phenomenon. For 341

example, convergence has been documented in previous studies of birds which 342

may engage in mimicry including toucans (Weckstein, 2005), friarbirds and orioles 343

(Jønsson et al., 2016), and woodpeckers (Leighton et al., 2018; Miller et al., 2018) 344

but the extent to which alternative hypotheses involving mimicry may account for 345

convergence is unknown. A first step to examine the plausibility of alternative 346

hypotheses posed to account for mimicry is to determine whether two or more 347

sympatric and phenotypically similar species indeed acquired their resemblance 348

due to convergence and not as a consequence of common ancestry. We found 349

that phenotypic similarity among Neotropical flycatcher species with kiskadee-like 350

plumage pattern is indeed a product of convergence among hypothetical mimics in 351

the genera Myiozetetes, Pitangus and Phelpsia, and hypothetical models in 352

Megarynchus and Pitangus. 353

Page 16: Plumage convergence in tyrant flycatchers: A

354

The hypothesis that mimicry in birds arises as an antipredatory strategy (Barnard 355

1979) predicts that plumages should be indistinguishable to predators given their 356

visual system. Moreover, mimicry should be more precise in plumage patches 357

used by predators as cues to select prey (Barnard, 1979). The main predators of 358

adult songbirds, including tyrant flycatchers, are likely diurnal raptors (Amar et al., 359

2008; Acosta-Chaves et al., 2012; Motta-Junior, 2007; Selas, 1993), which often 360

observe prey from long distances while perched on treetops (Clark & Wheeler, 361

2001) and may choose odd individuals relative to their background (Mueller, 1971, 362

1975). Consequently, similarity in upperpart coloration in species that forage 363

together or use different strata of the same trees may create a sense of 364

homogeneity and thereby be adaptive to avoid attacks from predators approaching 365

from above. In agreement with this hypothesis, our analyses of kiskadee-like 366

flycatchers revealed that all hypothetical mimics are indistinguishable from 367

hypothetical models in the coloration of upperpart plumage patches, which would 368

arguably be the most relevant ones considering the perspective of predatory 369

diurnal raptors perched on treetops. 370

371

Wallace (1863, 1869) and later Diamond (1982) were amazed by the striking 372

similarity in plumage between orioles (genus Oriolus, family Oriolidae) and 373

friarbirds (genus Philemon, family Meliphagidae). Wallace first claimed such 374

similarity was a case of visual mimicry, but no study on the subject was done until 375

Diamond (1982) posited that visual mimicry may serve to escape attack from larger 376

model species or to deceive smaller species and scare them off only by 377

Page 17: Plumage convergence in tyrant flycatchers: A

appearance. Prum & Samuelson (2012) and Prum (2014) further expanded on the 378

first idea by positing the ISDM hypothesis and outlining its predictions. A recent 379

analysis assessing ISDM on orioles and friarbirds using phylogenetic methods 380

suggested that orioles indeed appear to mimic larger-bodied friarbirds (Jønsson et 381

al., 2016), but there is no information about the species being deceived in this 382

system. In principle, ISDM may also apply to kiskadee-like flycatchers because 383

existing data support the prediction that hypothetical model species are larger in 384

body mass (i.e. at least 30g heavier) than hypothetical mimic species. The 385

additional prediction that models are socially dominant over mimics has not been 386

tested quantitatively, but several observations exist of both hypothetical model 387

species scaring off hypothetical mimics from foraging grounds (personal 388

communications with other ornithologists). Also, we found that shared phenotypic 389

similarities between model and mimic species are not product of common ancestry: 390

our ancestral state character reconstructions revealed that because the kiskadee-391

like phenotype has evolved at least four times independently it is product of 392

convergence. 393

394

A critical additional prediction of the ISDM hypothesis is that visual deception 395

based on covergent coloration should be physiologically plausible at ecologically 396

relevant visual distances between individuals (Prum, 2014). We found partial 397

support for this prediction in kiskadee-like tyrant flycatchers. On one hand, 398

because all hypothetical mimics were perceptually distinguishable from 399

hypothetical model P. sulphuratus in the coloration of the upper breast, middle 400

breast, abdomen and flank patches using the UVS model, and considering that 401

Page 18: Plumage convergence in tyrant flycatchers: A

underpart patches are visually relevant when two species engage physically in 402

interference competition (Schoener, 1983), our analyses reject the proposition that 403

visual deception is physiologically possible when having P. sulphuratus as 404

hypothetical model. This result is consistent with previous work in other birds 405

showing that despite striking similarity to the human eye, putatively mimic Downy 406

Woodpeckers (Picoides pubescens) do not experience reduced aggression from 407

hypothetical model Hairy Woodpeckers (Picoides villosus), implying lack of 408

deception (Leighton et al., 2018). Because Downy Woodpeckers were more 409

dominant over other bird species than expected based on their body size, 410

convergence in plumage with Hairy Woodpeckers may instead have evolved to 411

deceive smaller third-party species (Diamond, 1982; Leighton et al., 2018), a 412

hypothesis to be tested in kiskadee-like flycathers resembiing P. sulphuratus. 413

414

On the other hand, we found that most hypothetical mimics are perceptually 415

indistinguishable from M. pitangua in underpart plumage patches. Perceptual 416

similarity given the UVS model indicates that M. pitangua might be deceived by 417

hypothetical mimics, misidentify them as conspecifics, and thus split resources with 418

them owing to reduced agression. Alternatively, other passerines might be 419

deceived by hypothetical mimics, misidentify them as M. pitangua individuals, and 420

therefore withdraw from any interaction which may potentially result in attack. 421

Consequently, our results are consistent with mimicry hypotheses that imply 422

deception of either putative models or smaller passerine competitors (Diamond, 423

1982; Prum, 2014; Prum & Samuelson, 2012, 2016) when considering M. pitangua 424

as the putative model. We are unable to fully support either hypotheses given our 425

Page 19: Plumage convergence in tyrant flycatchers: A

results but we agree with Leighton et al. (2018) in that because individuals are 426

expected to be very good at identifying conspecifics given its importance for 427

competition and successful breeding, visual deception of hypothetical models 428

seems unlikely. Alternatively, because selective pressures to identify individuals 429

which are not predators, prey or strong competitors are likely reduced, visual 430

deception of species that are neither hypothetical mimics or models may be more 431

likely (Diamond, 1982; Leighton et al., 2018). 432

433

Ours is the first study to assess the plausibility of mimicry hypotheses in birds 434

using spectrophotometric measurements of plumage, and evaluating the data with 435

statistical and perceptual analysis (Maia & White, 2017) given two avian visual 436

models. Additional work is required to further evaluate hypotheses accounting for 437

plumage convergence. For instance, although our study species overlap in 438

geographic range, diet and foraging strategies (Fitzpatrick, 1980; Fitzpatrick, 1981; 439

Fitzpatrick et al., 2004), very little is known about interactions between them; the 440

extent to which hypothetical models are indeed deceived by hypothetical mimics 441

should be evaluated through behavioral observations and experiments. Likewise, 442

field studies are required to assess whether predators such as raptors are indeed 443

deceived by putative models and mimics to escape predation. In addition, there is 444

no knowledge of how perception of color may vary with distance between 445

individuals or of how to account for distances over which individuals interact in the 446

field when analyzing spectrophotometric data. Hence, we do not know precisely 447

how likely deception is at ecologically relevant distances, an important condition for 448

ISDM (Prum, 2014). For example, while some hypothetical models may be 449

Page 20: Plumage convergence in tyrant flycatchers: A

distinguishable by hypothetical mimcs upon inspection at close distances, 450

hypothetical mimic species may be able to deceive hypothetical models from 451

greater distances (Leighton et al., 2018). Finally, we accounted for passerines’ and 452

raptors’ visual systems using available standard UVS and VS models however, 453

specific visual models of putative models, mimics and third-party receptors are 454

necessary for a more accurate assessment of social mimicry hypotheses. 455

456

In conclusion, perceptual similarity of the crown, back and rump patches among 457

species is consistent with the hypothesis that predation by visually oriented 458

predators approaching their prey from above may have favored convergence in 459

plumage in kiskadee-like tyrant flycatchers (Barnard, 1979). Perceptual similarity 460

suggests that deception involved in competitive interactions with M. pitangua, but 461

not with P. sulphuratus, may also have favored convergence (Diamond, 1982; 462

Prum, 2014; Prum & Samuelson, 2012, 2016). Future studies should focus on 463

gathering behavioral data to characterize competitive and predator-prey 464

interactions among species involved in social mimicry. Moreover, assessing how 465

other factors like climate, habitat and development shape the evolution of plumage 466

would allow for a comprehensive understanding of the mechanisms underlying 467

convergence in plumage. 468

469

Acknowledgments: 470

We thank Museo de Historia Natural de la Universidad de los Andes (ANDES), 471

Instituto de Ciencias Naturales de la Universidad Nacional (ICN), and Instituto de 472

Page 21: Plumage convergence in tyrant flycatchers: A

Investigación de Recursos Biológicos Alexander von Humboldt (IAvH) for 473

permitting us take spectrophotometric measurements of museum specimens. 474

References 475 Acosta-Chaves, V., Granados-Rodríguez, F., & Araya-Huertas, D. (2012). Predation of 476

Long-tailed Silky Flycatcher (Ptilogonys caudatus) by Ornate Hawk-eagle (Spizaetus 477

ornatus) in a cloud forest of Costa Rica. Revista Brasileira de Ornitologia, 20(4), 451–478

452. https://doi.org/10.1159/000314948.Haymann 479

Amar, A., Thirgood, S., Pearce-Higgins, J., & Redpath, S. (2008). The impact of raptors on 480

the abundance of upland passerines and waders. Oikos, 117(8), 1143–1152. 481

https://doi.org/10.1111/j.0030-1299.2008.16769.x 482

Armenta, J. K., Dunn, P. O., & Whittingham, L. A. (2008). Effects of specimen age on 483

plumage color. The Auk, 125(4), 803–808. https://doi.org/10.1525/auk.2008.07006 484

Barnard, C. J. (1979). Predation and the Evolution of Social Mimicry in Birds. The 485

American Naturalist, 113(4), 613–618. https://doi.org/10.1086/283419 486

Barnard, C. J. (1982). Social Mimicry and Interspecific Exploitation. The American 487

Naturalist, 120(3), 411–415. https://doi.org/10.1086/284000 488

Brakefield, P. M. (2006). Evo-devo and constraints on selection. Trends in Ecology and 489

Evolution. https://doi.org/10.1016/j.tree.2006.05.001 490

Clark, W. S., & Wheeler, B. K. (2001). A Field Guide to Hawks of North America (Second). 491

New York: Houghton Miffin Company. 492

Cody, M. L., & Brown, J. H. (1970). Character Convergence in Mexican Finches. 493

Evolution, 24(2), 304. https://doi.org/10.2307/2406806 494

Cuthill, I. C., Partridge, J. C., Bennett, A. T. D., Church, S. C., Hart, N. S., & Hunt, S. 495

Page 22: Plumage convergence in tyrant flycatchers: A

(2000). Ultraviolet Vision in Birds. Advances in the Study of Behavior, 29(C), 159–496

214. https://doi.org/10.1016/S0065-3454(08)60105-9 497

Davies, N. ., & Welbergen, J. . (2008). Cuckoo-hawk mimicry? An experimental test. 498

Proceedings of the Royal Society B: Biological Sciences, 275(1644), 1817–1822. 499

https://doi.org/10.1098/rspb.2008.0331 500

Diamond, J. (1982). Mimicry of Friarbirds by Orioles. The Auk, 99(2), 187–196. 501

Dunning, J. B. (2008). CRC Handbook of Avian Body Masses. Second ed. 502

https://doi.org/10.1017/S0963180113000479 503

Endler, J. A. (1986). Natural Selection in the Wild. Natural Selection in the Wild. 504

Fitzpatrick, J. (1980). Foraging behavior of neotropical tyrant flycatchers. Condor, 82(1), 505

43–57. https://doi.org/10.2307/1366784 506

Fitzpatrick, J. (1981). Search strategies of tyrant flycatchers. Animal Behaviour, 29(3), 507

810–821. https://doi.org/10.1016/S0003-3472(81)80015-2 508

Fitzpatrick, J., Bates, J., Bostwick, K., Isabel, C., Benjamin, C., Farnsworth, A.,Zimmer, K. 509

(2004). Family Tyrannidae. In J. del Hoyo, A. Eliott, & D. A. Christie (Eds.), Handbook 510

of the Birds of the World - Volume 9 Cotingas to Pipits and Wagtails. Barcelona: Lynx 511

Edicions. 512

Gomez-Bahamon, V. (2014). A behavioral polymorphism as an intermediate stage in the 513

evolution of divergent forms: partial migration in new world flycatchers (Aves, 514

Tyrannidae). Universidad de los Andes. 515

Gomez, D., & Théry, M. (2007). Simultaneous Crypsis and Conspicuousness in Color 516

Patterns: Comparative Analysis of a Neotropical Rainforest Bird Community. The 517

American Naturalist, 169(S1), S42–S61. https://doi.org/10.1086/510138 518

Page 23: Plumage convergence in tyrant flycatchers: A

Gotmark, F. (1995). Black-and-white plumage in male pied flycatchers (Ficedula 519

hypoleuca) reduces the risk of predation from sparrowhawks (Accipiter nisus) during 520

the breeding season. Behavioral Ecology, 6(1), 22–26. 521

https://doi.org/10.1093/beheco/6.1.22 522

Håstad, O., Victorsson, J., & Ödeen, A. (2005). Differences in color vision make 523

passerines less conspicuous in the eyes of their predators. Proceedings of the 524

National Academy of Sciences of the United States of America, 102(18), 6391–6394. 525

https://doi.org/10.1073/pnas.0409228102 526

Hilty, S. L., & Brown, B. (1986). A guide to the birds of Colombia. Princenton University 527

Press. 528

Huelsenbeck, J. P., Nielsen, R., & Bollback, J. P. (2003). Stochastic mapping of 529

morphological characters. Systematic Biology, 52(2), 131–158. 530

https://doi.org/10.1080/10635150309342 531

Jønsson, K. A., Delhey, K., Sangster, G., Ericson, P. G. P., & Irestedt, M. (2016). The 532

evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific 533

archipelagos. Proceedings of the Royal Society B: Biological Sciences, 283(1833), 534

20160409. https://doi.org/10.1098/rspb.2016.0409 535

Laiolo, P. (2017). Phenotypic similarity in sympatric crow species: Evidence of social 536

convergence? Evolution, 71(4), 1051–1060. https://doi.org/10.1111/evo.13195 537

Leighton, G. M., Lees, A. C., & Miller, E. T. (2018). The hairy-downy game revisited: an 538

empirical test of the interspecific social dominance mimicry hypothesis. Animal 539

Behaviour, 137, 141–148. https://doi.org/10.1016/j.anbehav.2018.01.012 540

Lopes, L. E., Chaves, A. V., de Aquino, M. M., Silveira, L. F., & dos Santos, F. R. (2017). 541

Page 24: Plumage convergence in tyrant flycatchers: A

The striking polyphyly of Suiriri : Convergent evolution and social mimicry in two 542

cryptic Neotropical birds. Journal of Zoological Systematics and Evolutionary 543

Research, (September), 1–10. https://doi.org/10.1111/jzs.12200 544

Losos, J. B., Jackman, T. R., Larson, A., De Queiroz, K., & Rodríguez-Schettino, L. 545

(1998). Contingency and determinism in replicated adaptive radiations of island 546

lizards. Science. https://doi.org/10.1126/science.279.5359.2115 547

Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., & Shawkey, M. D. (2013). pavo: An R 548

package for the analysis, visualization and organization of spectral data. Methods in 549

Ecology and Evolution, 4(10), 906–913. https://doi.org/10.1111/2041-210X.12069 550

Maia, R., & White, T. (2017). Comparing colours using visual models. BioRxiv, 1–41. 551

https://doi.org/10.1101/175992 552

Maia, R., White, T., Eliason, C., & Bitton, P. P. (2017). Package ‘pavo.’ Retrieved from 553

https://cran.r-project.org/web/packages/pavo/pavo.pdf 554

McGhee, G. (2012). Convergent Evolution: Limited forms most beautiful. Evolution & 555

Development, 14(3), 311–312. https://doi.org/10.1111/j.1525-142X.2012.00547.x 556

Miller, E. T., Leighton, G. M., Freeman, B. G., Lees, A. C., & Ligon, R. A. (2018). Climate, 557

habitat, and geographic range overlap drive plumage evolution. BioRxiv. Retrieved 558

from http://biorxiv.org/content/early/2018/07/23/375261.abstract 559

Motta-Junior, J. C. (2007). Ferruginous Pygmy-owl (Glaucidium brasilianum) predation on 560

a mobbing Fork-tailed Flycatcher (Tyrannus savana) in south-east Brazil. Biota 561

Neotropica, 7(2), 76–79. https://doi.org/10.1590/S1676-06032007000200038 562

Moynihan, M. (1968). Social mimicry: character convergence versus character 563

displacement. Evolution, 22(2), 315–331. https://doi.org/10.2307/2406531 564

Page 25: Plumage convergence in tyrant flycatchers: A

Mueller, H. C. (1971). Oddity and specific searching image more important than 565

conspicuousness in prey selection. Nature, 233(5318), 345–346. 566

https://doi.org/10.1038/233345a0 567

Mueller, H. C. (1975). Hawks Select Odd Prey. Science, 188(4191), 953–954. 568

https://doi.org/10.1126/science.188.4191.953 569

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G. L., Solymos, P. M., … & 570

Wagner, H. (2008). The vegan package. Community Ecology Package, 190. 571

https://doi.org/10.4135/9781412971874.n145 572

Olsson, P., Lind, O., & Kelber, A. (2017). Chromatic and achromatic vision: parameter 573

choice and limitations for reliable model predictions. Behavioral Ecology, 00, 1–10. 574

https://doi.org/10.1093/beheco/arx133 575

Paradis, E., Blomberg, S., Bolker, B., Brown, J., Claude, J., Sien-Cuong, H., … de Vienne, 576

D. (2017). Package ‘ape.’ 577

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and 578

evolution in R language. Bioinformatics, 20(2), 289–290. 579

https://doi.org/10.1093/bioinformatics/btg412 580

Price, T., & Pavelka, M. (1996). Evolution selection of a colour pattern : history , 581

development and selection. Journal of Evolutionary Biology, 9, 451–470. 582

Prum, R. O. (2014). Interspecific social dominance mimicry in birds. Zoological Journal of 583

the Linnean Society, 172(4), 910–941. https://doi.org/10.1111/zoj.12192 584

Prum, R. O., & Samuelson, L. (2012). The Hairy-Downy Game: A model of interspecific 585

social dominance mimicry. Journal of Theoretical Biology, 313, 42–60. 586

https://doi.org/10.1016/j.jtbi.2012.07.019 587

Page 26: Plumage convergence in tyrant flycatchers: A

Prum, R. O., & Samuelson, L. (2016). Mimicry Cycles, Traps, and Chains: The 588

Coevolution of Toucan and Kiskadee Mimicry. The American Naturalist, 187(6), 753–589

764. https://doi.org/10.1086/686093 590

Ree, R. H. (2005). Detecting the historical signature of key innovations using stochastic 591

models of character evolution and cladogenesis. Evolution, 59(2), 257–265. 592

https://doi.org/10.1111/j.0014-3820.2005.tb00986.x 593

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and 594

other things). Methods in Ecology and Evolution, 3(2), 217–223. 595

https://doi.org/10.1111/j.2041-210X.2011.00169.x 596

Revell, L. J. (2013a). A comment on the use of stochastic character maps to estimate 597

evolutionary rate variation in a continuously valued trait. Systematic Biology. 598

https://doi.org/10.1093/sysbio/sys084 599

Revell, L. J. (2013b). Two new graphical methods for mapping trait evolution on 600

phylogenies. Methods in Ecology and Evolution, 4(8), 754–759. 601

https://doi.org/10.1111/2041-210X.12066 602

Revell, L. J. (2017). Package “phytools.” 603

Schoener, T. W. (1983). Field Experiments on Interspecific Competition. The American 604

Naturalist. https://doi.org/10.1086/284133 605

Selas, V. (1993). Selection of avian prey by breeding sparrowhawks Accipiter nisus in 606

southern Norway: the importance of size and foraging behaviour of prey. Ornis 607

Fennica, 70(3), 144–154. 608

Slagsvold, T., Dale, S., & Kruszewicz, A. (1995). Predation favours cryptic coloration in 609

breeding male pied flycatchers. Animal Behaviour, 50(4), 1109–1121. 610

Page 27: Plumage convergence in tyrant flycatchers: A

https://doi.org/10.1016/0003-3472(95)80110-3 611

Stoddard, M. C. (2012). Mimicry and masquerade from the avian visual perspective. 612

Current Zoology, 58(4), 630–648. https://doi.org/10.1093/czoolo/58.4.630 613

Thomson, R. L., Tomás, G., Forsman, J. T., Broggi, J., & Mönkkönen, M. (2010). Predator 614

proximity as a stressor in breeding flycatchers: Mass loss, stress protein induction, 615

and elevated provisioning. Ecology, 91(6), 1832–1840. https://doi.org/10.1890/09-616

0989.1 617

Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B., & Menzel, R. (2001). Colour 618

thresholds and receptor noise: Behaviour and physiology compared. Vision 619

Research, 41(5), 639–653. https://doi.org/10.1016/S0042-6989(00)00288-1 620

Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. 621

Proceedings of the Royal Society B: Biological Sciences, 265(1394), 351–358. 622

https://doi.org/10.1098/rspb.1998.0302 623

Wallace, A. R. (1863). List of birds collected in the island of Bouru (one of the Moluccas), 624

with descriptions of the new species. Proceedings of the Zoological Society of 625

London, 18–36. Retrieved from http://wallace-626

online.org/converted/pdf/1863_Bouru_S072.pdf 627

Wallace, A. R. (1869). The Malay Archipielago: The land of the orangutan, and the bird of 628

paradise. A narrative of travel, with studies of man and nature. Macmillan and Co. 629

Weckstein, J. D. (2005). Molecular phylogenetics of the Ramphastos toucans: implications 630

for the evolution of morphology, vocalizations, and coloration. The Auk, 122(4), 1191–631

1209. https://doi.org/10.1642/0004-8038(2005)122[1191:MPOTRT]2.0.CO;2 632

633

Page 28: Plumage convergence in tyrant flycatchers: A

Figure 1. Plumage patches measured to characterize coloration and compare

plumage among species of “kiskadee-like” flycatchers.

Page 29: Plumage convergence in tyrant flycatchers: A

Figure 2. Stochastic mapping of the binary discrete character kiskadee-like shown in yellow and non-kiskadee like shown

in brown indicating that plumage similarity reflects convergence due to repeated evolution of the same plumage pattern.

Asterisks point edges corresponding to kiskadee-like clades or species. Pictures show examples of the diversity of

phenotypes in the clade including the species studied. Photo credits: Nick Bayly and Laura Céspedes.

Page 30: Plumage convergence in tyrant flycatchers: A

Figure 3. Overview of the results of perceptual analysis considering upper breast,

lower breast, belly and flank plumage patches. While all four hypothetical models

are distinguishable from P. sulphuratus, three out of four species are

indistinguishable from M. pitangua.

Page 31: Plumage convergence in tyrant flycatchers: A

Figure 4. Statistical and perceptual distinction of patches using the UVS and VS model. Patches that are statistically

different are shown in yellow (a≥0.05 for the PERMANOVA). Patches that are perceptually different (JNDS>1) are shown

with an asterisk.

Patch/ Species

Upper breast

Lower breast Belly Crown Back Flank Throat Rump Upper

breastLower breast Belly Crown Back Flank Throat Rump

M. pitangua/ M. cayanensis * *M. pitangua/

M. similisM. pitangua/ P. inornata

M. pitangua/ P. lictor * * * *

P. sulphuratus/ M. cayanensis * * * * * * * *P. sulphuratus/

M. similis * * * * * * * *P. sulphuratus/

P. inornata * * * * * * * * P. sulphuratus/

P. lictor * * * * * * * *

UVS VS

Page 32: Plumage convergence in tyrant flycatchers: A

Figure 5. A pair of hypothetical model and mimic species that are

indistinguishable. A) Comparison of the chromatic contrast of the centroids for

each patch using the UVS (yellow) and the VS (black) models. B) Distribution of

the color volume of each species in the tetrahedral colorspace using UVS and VS

models. C) Comparison of the reflectance curves of all patches of both species.

A

B C

Page 33: Plumage convergence in tyrant flycatchers: A

Figure 6. A pair of hypothetical model and mimic species that are distinguishable.

A) Comparison of the chromatic contrast of the centroids for each patch using the

UVS (yellow) and the VS (black) models. B) Distribution of the color volume of

each species in the tetrahedral colorspace using UVS and VS models. C)

Comparison of the reflectance curves of all patches of both species.

A

B C

Page 34: Plumage convergence in tyrant flycatchers: A

Supplementary Figure 1. Comparison between M. pitangua and M. cayanensis, a

pair of hypothetical model and mimic that are indistinguishable except for the rump

patch A) Comparison of the chromatic contrast of the centroids for each patch

using the UVS (yellow) and the VS (black) models. B) Distribution of the color

volume of each species in the tetrahedral colorspace using UVS and VS models.

C) Comparison of the reflectance curves of all patches of both species.

A

B C

Page 35: Plumage convergence in tyrant flycatchers: A

Supplementary Figure 2. Comparison between M. pitangua and P. lictor, a pair of

hypothetical model and mimic that are distinguishable given middle breast and

flank patches A) Comparison of the chromatic contrast of the centroids for each

patch using the UVS (yellow) and the VS (black) models. B) Distribution of the

color volume of each species in the tetrahedral colorspace using UVS and VS

models. C) Comparison of the reflectance curves of all patches of both species.

A

B C

Page 36: Plumage convergence in tyrant flycatchers: A

Supplementary Table 1. Complete specimen information.

Species Museum Cataloguenumber Yearcollected Mass(g) Sex1 Pitangussulphuratus IAvH 4609 1984 58 Female2 Pitangussulphuratus IAvH 6198 1986 N Male3 Pitangussulphuratus IAvH 5996 1975 N N4 Pitangussulphuratus IAvH 1785 1976 53,9 Female5 Pitangussulphuratus IAvH 1877 1976 53,5 Male6 Pitangussulphuratus IAvH 4608 1984 64 Male7 Pitangussulphuratus IAvH 14281 2007 49 Female8 Pitangussulphuratus IAvH 2916 N N N9 Pitangussulphuratus IAvH 2888 1979 N N10 Pitangussulphuratus IAvH 6197 1986 N Female11 Pitangussulphuratus IAvH 6010 1986 60 Male12 Pitangussulphuratus IAvH 6009 1987 51 Female13 Pitangussulphuratus IAvH 7514 1994 45,9 Male14 Pitangussulphuratus IAvH 2189 1975 N Female15 Pitangussulphuratus IAvH 0772 1969 53,7 N16 Pitangussulphuratus IAvH 0330 1970 N Male17 Pitangussulphuratus IAvH 12916 2004 58 Female18 Pitangussulphuratus IAvH 14759 2008 60,6 Male19 Pitangussulphuratus ANDES 00079 1974 N N20 Pitanguslictor IAvH 5068 1977 24,4 Male21 Pitanguslictor IAvH 2841 1979 N Female22 Pitanguslictor IAvH 5067 1977 22 Female23 Pitanguslictor IAvH 5066 1977 23,6 Male24 Pitanguslictor IAvH 1816 1976 19,1 Female25 Pitanguslictor IAvH 1856 1976 23,8 Male26 Pitanguslictor ICN 5315 1974 22,548 Male27 Pitanguslictor ICN 30825 1989 N Male28 Pitanguslictor ICN 31383 1990 N Female29 Pitanguslictor ICN 38414 2011 25 Male30 Myiozetetessimilis IAvH 1738 1977 27 Male31 Myiozetetessimilis IAvH 5993 1975 N N32 Myiozetetessimilis ICN 39344 2015 27 Male33 Myiozetetessimilis ICN 39359 2011 28,9 Female34 Myiozetetessimilis ICN 34869 2004 26 Female35 Myiozetetessimilis ICN 2552 1977 24,672 Male36 Myiozetetessimilis ICN 38415 2011 25,5 Male37 Myiozetetessimilis ICN 32435 1978 N Female38 Myiozetetessimilis ICN 7094 1960 N Male39 Myiozetetessimilis ICN 28523 1984 23,5 Female40 Myiozetetescayanensis IAvH 1114 1975 N Male41 Myiozetetescayanensis IAvH 4620 1984 28 Male42 Myiozetetescayanensis IAvH 4621 1984 27 Female43 Myiozetetescayanensis IAvH 11483 2000 24 Male44 Myiozetetescayanensis IAvH 6047 N N N45 Myiozetetescayanensis IAvH 5037 1977 28 Male46 Myiozetetescayanensis IAvH 3687 1976 26,4 Male47 Myiozetetescayanensis IAvH 5117 1976 28,9 Female48 Myiozetetescayanensis IAvH 5295 1974 N Male49 Myiozetetescayanensis IAvH 13754 2004 24 Male50 Myiozetetescayanensis IAvH 13755 2004 22 Female51 Phelpsiainornata IAvH 14737 2008 25,5 Female52 Phelpsiainornata ICN 31033 1991 30 Male53 Phelpsiainornata ICN 31003 1991 27 Female54 Phelpsiainornata ICN 31032 1991 27 Male55 Phelpsiainornata ICN 31026 1991 31 Female56 Phelpsiainornata ICN 38372 2011 22,5 Female57 Phelpsiainornata ICN 31040 1991 23 Female58 Megarhynchuspitangua IAvH 13685 2004 56 Male59 Megarhynchuspitangua IAvH 1855 1975 70,1 Male60 Megarhynchuspitangua IAvH 15109 2009 51 Male61 Megarhynchuspitangua IAvH 15919 2017 69 Male62 Megarhynchuspitangua ANDES 0192 1972 N Male63 Megarhynchuspitangua ANDES 00076 1975 N N64 Megarhynchuspitangua ICN 38860 2013 68 Female65 Megarhynchuspitangua ICN 34202 2002 56,8 Male66 Megarhynchuspitangua ICN 35274 2005 62 Female67 Megarhynchuspitangua ICN 38418 2011 54,4 Female68 Megarhynchuspitangua ICN 31589 1991 48,6 Female

Page 37: Plumage convergence in tyrant flycatchers: A

Supplementary Table 2. Pseudo-f, R2 and significance (a=0.05) for the PERMANOVA using the UVS and VS models.

Patches that are statistically different are bolded and highlighted in gray.

Patch/ Species

Upper breast

Lower breast Belly Crown Back Flank Throat Rump Upper

breastLower breast Belly Crown Back Flank Throat Rump

M. pitangua/ M. cayanensis

0.4676 0.02402 (0.665)

1.8493 0.09317 (0.137)

1.3606 0.07837

0.277

6.0436 0.25136 (0.012)

6.2252 0.25697 (0.004)

1.2018 0.07418 (0.268)

0.71904 0.03841 (0.545)

13.995 0.43742 (0.001)

0.359 0.01854 (0.726)

2.0894 0.10401 (0.126)

1.3721 0.07898 (0.25)

5.5125 0.23445 (0.021)

6.5988 0.26826 (0.007)

1.5874 0.0957 (0.214)

0.1473 0.00812 (0.892)

16.351 0.476

(0.001)

M. pitangua/ M. similis

1.1536 0.05724 (0.348)

1.6763 0.0852 (0.191)

2.131 0.1139 (0.112)

4.2569 0.19126 (0.02)

2.303 0.11931 (0.103)

1.2509 0.06177 (0.288)

1.7602 0.09911 (0.171)

1.4301 0.0736 (0.253)

1.4012 0.06868 (0.233)

1.535 0.07858 (0.193)

2.6618 0.13538 (0.065)

3.4388 0.1604 (0.048)

2.4883 0.12768 (0.106)

1.0049 0.05023 (0.36)

1.7724 0.0973 (0.16)

2.311 0.11378 (0.093)

M. pitangua/ P. inornata

0.50355 0.03051 (0.627)

5.3743 0.26378 (0.011)

1.7371 0.11038 (0.13)

0.69618 0.4435 (0.62)

1.8724 0.11097 (0.157)

2.4138 0.13109 (0.103)

1.5899 0.09584 (0.203)

5.5515 0.25759 (0.002)

0.32459 0.01988 (0.723)

5.6185 0.2725 (0.021)

2.1776 0.12461 (0.053)

0.65478 0.04183 (0.659)

2.0913 0.12236 (0.131)

2.3717 0.12909 (0.096)

1.2396 0.07633 (0.252)

6.878 0.30064 (0.001)

M. pitangua/ P. lictor

0.98412 0.04925 (0.359)

13.047 0.42024 (0.001)

1.5509 0.07932 (0.188)

0.69368 0.03711 (0.544)

7.8419 0.30346 (0.001)

12.735 0.40129 (0.001)

2.2121 0-11514 (0.115)

6.21 0.24633 (0.001)

0.99554 0.04979 (0.354)

12.756 0.41475 (0.001)

4.0197 0.18255 (0.015)

0.69357 0.0371 (0.525)

7.6763 0.29897 (0.004)

12.4 0.39491 (0.002)

1.3432 0.07323 (0.264)

6.7053 0.26085 (0.001)

P. sulphuratus/ M. cayanensis

24.051 0.47111 (0.001)

18.568 0.41662 (0.001)

24.434 0.52621 (0.001)

13.104 0.3351 (0.002)

1.1484 0.0423 (0.343)

16.196 0.42402 (0.001)

1.0884 0.04018 (0.367)

1.2281 0.04683 (0.284)

19.848 0.42367 (0.001)

17.059 0.39618 (0.001)

20.645 0.48411 (0.001)

11.653 0.30948 (0.002)

1.43 0.05213 (0.243)

15.764 0.41743 (0.002)

1.3302 0.04867 (0.278)

1.4213 0.05379 (0.253)

P. sulphuratus/ M. similis

49.262 0.64596 (0.001)

35.999 0.58064 (0.001)

21.038 0.47772 (0.001)

9.651 0.27071 (0.002)

1.0894 0.04176

0.307

29.831 0.53431 (0.001)

5.9367 0.19831 (0.003)

4.3567 0.1484 (0.016)

50.007 0.64938 (0.001)

37.753 0.59218 (0.001)

22.32 0.4925 (0.001)

8.185 0.23943 (0.004)

1.1592 0.04431 (0.307)

33.882 0.56581 (0.001)

5.9003 0.19733 (0.007)

4.4667 0.15159 (0.014)

P. sulphuratus/ P. inornata

26.683 0.52647 (0.001)

49.66 0.68346 (0.001)

17.321 0.46411 (0.001)

1.1874 0.04909 (0.294)

0.17224 0.00743 (0.884)

34.964 0.6032 (0.001)

0.68955 0.02911 (0.549)

1.0092 0.04203 (0.373)

28.594 0.54367 (0.001)

46.531 0.66921 (0.001)

18.545 0.48113 (0.001)

1.094 0.0454 (0.329)

0.24154 0.01039 (0.829)

40.732 0.63911 (0.001)

0.87835 0.03678 (0.439)

1.0931 0.04537 (0.34)

P. sulphuratus/ P. lictor

33.653 9.55485 (0.001)

92.421 0.78045 (0.001)

57.321 0.70487 (0.001)

0.72764 0.02722 (0.449)

1.5972 0.05788 (0.186)

96.641 0.788

(0.001)

0.33579 0.01325 (0.732)

1.2281 0.04511 (0.299)

33.905 0.55668 (0.001)

86.933 0.76978 (0.001)

63.237 0.72489 (0.001)

0.5704 0.02147 (0.533)

1.8885 0.06772 (0.154)

101.21 0.79562 (0.001)

0.15652 0.00622 (0.883)

1.0949 0.04041 (0.339)

UVS VS

Page 38: Plumage convergence in tyrant flycatchers: A

Supplementary Table 3. Upper, mean and lower values of JND resulting of the bootstrap analysis using the UVS and VS

models. Patches that are perceptually different are bolded and highlighted in gray

Patch/ Species

Upper breast

Lower breast

Belly Crown Back Flank Throat RumpUpper breast

Lower breast

Belly Crown Back Flank Throat Rump

M. pitangua/ M. cayanensis

1.84782 0.68578 0.25508

2.77256 1.33060 0.32700

1.56837 0.51545 0.12514

2.13576 1.31581 0.44122

2.73130 1.74257 0.86145

3.50514 1.42195 0.21538

0.66411 0.18632 0.05894

2.89343 2.04907 1.28297

1.93170 0.73610 0.39510

3.07365 1.50165 0.46793

1.63226 0.70648 0.25162

2.04874 1.27193 0.46927

2.68273 1.76733 0.80649

4.36253 1.83271 0.33683

0.61005 0.08608 0.05094

2.93722 2.13473 1.30281

M. pitangua/ M. similis

1.93882 0.60853 0.21472

2.33756 1.14127 0.23330

1.99843 0.83440 0.27023

1.50689 0.91157 0.46097

1.85784 0.93243 0.28598

2.44313 1.08735 0.33553

1.05471 0.47050 0.18538

1.34028 0.714910 0.29431

1.89696 0.71750 0.32759

2.35033 1.15275 0.33534

2.51170 1.18425 0.42560

1.29852 0.75663 0.39680

1.76760 0.93755 0.28370

2.39822 0.96852 0.38626

1.07435 0.44536 0.15348

1.41686 0.76207 0.27497

M. pitangua/ P. inornata

1.97583 0.71140 0.31527

3.21930 2.03920 1.00077

3.68630 1.09585 0.44695

1.97085 0.42465 0.13360

2.18689 1.02144 0.23618

2.68352 1.36010 0.50710

0.73109 0.46270 0.32513

2.57742 1.73330 0.94297

1.99593 0.49674 0.34038

3.28193 2.09526 0.99656

4.27167 1.65670 0.84323

1.97986 0.44594 0.12552

2.29990 1.03450 0.23350

2.60943 1.38725 0.83435

0.73396 0.34375 0.15773

2.70387 1.81234 0.99737

M. pitangua/ P. lictor

2.91661 1.15470 0.35040

4.16115 2.95553 1.86160

1.47045 0.78637 0.43842

1.39716 0.19251 0.10320

2.60196 1.76965 0.89673

4.70175 3.31084 2.05997

1.18237 0.71101 0.54635

2.62467 1.73456 0.94500

3.01910 1.36010 0.81078

4.27714 3.01592 1.88757

1.86265 1.32183 0.96910

1.45659 0.16680 0.09489

2.60761 1.73697 0.87897

4.83556 3.41051 2.05276

1.01570 0.50566 0.37102

2.76860 1.79276 1.02133

P. sulphuratus/ M. cayanensis

4.17953 3.19090 2.27200

4.61246 3.43020 2.50836

4.86849 3.87286 3.00945

2.59696 1.81950 0.90270

2.18092 1.17552 0.56565

5.83154 4.04628 2.35257

0.98754 0.55568 0.29010

1.50774 0.69169 0.50565

4.24660 3.24158 2.20196

4.87178 3.53406 2.48152

5.00820 3.99124 3.06008

2.63886 1.77925 0.90430

2.38593 1.29107 0.57346

6.07556 4.29448 2.50053

0.97195 0.52192 0.24353

1.60011 0.74035 0.54342

P. sulphuratus/ M. similis

5.13938 4.23297 3.42743

4.65684 3.84603 3.07083

4.76579 3.70523 2.85261

1.95003 1.36178 0.81214

1.52995 0.94237 0.76610

4.95356 3.93950 2.97652

1.51430 1.06415 0.74402

2.41040 1.53307 0.95995

5.21327 4.38335 3.60477

4.85727 4.01543 3.41980

4.95482 3.95028 3.38276

1.82078 1.18211 0.57281

1.68346 0.99025 0.82523

5.18412 4.19673 3.44696

1.50028 0.93954 0.53602

2.28780 1.48238 1.04066

P. sulphuratus/ P. inornata

4.77582 3.73910 2.80516

5.47310 4.63119 3.90392

5.00762 3.45081 2.09976

2.44194 0.92861 0.18933

1.64297 0.67550 0.51740

5.06601 4.20333 3.43885

0.56807 0.15761 0.08126

1.59253 0.81647 0.74274

5.11202 4.08020 3.21150

5.62168 4.82160 4.18121

5.53453 4.02480 3.17691

2.64407 0.96210 0.21586

1.86924 0.78144 0.60124

5.29528 4.60677 4.04456

0.51196 0.21962 0.14521

1.58372 0.90471 0.84920

P. sulphuratus/ P. lictor

6.41404 4.81370 3.45111

6.50857 5.61481 4.79610

5.32662 4.58320 3.83827

1.82199 0.69452 0.15865

2.14781 1.20597 0.56369

7.06043 6.09806 5.12313

0.91613 0.11853 0.05180

1.60850 0.84235 0.72661

6.55423 5.01182 3.67403

6.62168 5.77015 4.97097

5.76014 5.03370 4.44598

1.93793 0.68216 0.09781

2.27481 1.34426 0.69570

7.42043 6.50724 5.63451

0.73439 0.01071 0.03557

1.68630 0.91171 0.82904

UVS VS

Page 39: Plumage convergence in tyrant flycatchers: A

Supplementary Table 4. Comparison of descriptive variables for all species using the UVS and VS models.

M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratus M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratusTotalvolume 0.00058 0.00084 0.00042 0.00056 0.00080 0.00109 0.00026 0.00039 0.00019 0.00024 0.00035 0.00053

Relativevolume 0.00266 0.00393 0.00194 0.00259 0.00367 0.00503 0.00125 0.00179 0.00088 0.00112 0.00166 0.00246MeanColorSpan 0.12838 0.12560 0.11621 0.12980 0.13245 0.12168 0.12157 0.11887 0.11317 0.12414 0.13019 0.10721

VarianceColorSpan 0.00724 0.00620 0.00625 0.00727 0.00808 0.00579 0.00714 0.00614 0.00657 0.00742 0.00857 0.00468MeanHueDisparity 0.47437 0.40336 0.31162 0.48567 0.56387 0.68113 0.32513 0.32007 0.23890 0.36101 0.49453 0.58716

VarianceHueDisparity 0.17914 0.11101 0.06905 0.20825 0.38809 0.41527 0.09420 0.06902 0.09217 0.12719 0.39639 0.37552MeanSaturation 0.46350 0.47155 0.49650 0.48308 0.52034 0.38563 0.42362 0.46456 0.44662 0.43672 0.46616 0.42695

MaximumSaturation 0.79879 0.82006 0.82484 0.80652 0.84461 0.74497 0.77300 0.82104 0.78692 0.74963 0.80286 0.78610

VSUVS

Page 40: Plumage convergence in tyrant flycatchers: A

Supplementary Table 5. Comparison of centroid values of underpart patches for all species using the UVS and VS

models.

M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratus M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratusucentroid 0.14033 0.13016 0.13410 0.12556 0.13642 0.12876 0.08573 0.08090 0.08397 0.08570 0.08654 0.09722scentroid 0.07265 0.07783 0.06695 0.07238 0.06354 0.12285 0.11865 0.12706 0.10920 0.11294 0.10250 0.17621mcentroid 0.37774 0.37909 0.37540 0.37484 0.37166 0.36446 0.38203 0.37936 0.37941 0.37488 0.37705 0.35408lcentroid 0.40926 0.41291 0.42352 0.42722 0.42836 0.38393 0.41356 0.41269 0.42740 0.42644 0.43391 0.37253

M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratus M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratusucentroid 0.13994 0.11624 0.12870 0.12137 0.12151 0.11452 0.08996 0.07394 0.08335 0.07633 0.07318 0.08572scentroid 0.08001 0.07367 0.06924 0.06119 0.05308 0.11946 0.12644 0.12139 0.11219 0.10252 0.09210 0.17597mcentroid 0.37574 0.38461 0.37979 0.38105 0.38387 0.37097 0.37762 0.38240 0.38115 0.38316 0.38837 0.35779lcentroid 0.40429 0.42546 0.42226 0.43635 0.44155 0.39504 0.40596 0.42225 0.42329 0.43799 0.44633 0.38052

M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratus M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratusucentroid 0.10875 0.10101 0.12559 0.12893 0.12142 0.10940 0.06734 0.06270 0.08140 0.08910 0.07739 0.07915scentroid 0.06419 0.06632 0.06883 0.07521 0.05991 0.11538 0.10901 0.11497 0.11209 0.11355 0.09860 0.17425mcentroid 0.39160 0.39476 0.38168 0.36843 0.37891 0.37466 0.39020 0.39008 0.38240 0.36952 0.38166 0.36110lcentroid 0.43544 0.43789 0.42388 0.42741 0.43972 0.40056 0.43342 0.43223 0.42409 0.42781 0.44235 0.38548

M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratus M.pitangua M.cayanensis M.similis P.inornata P.lictor P.sulphuratusucentroid 0.14215 0.12342 0.14417 0.13942 0.12169 0.13744 0.09236 0.07307 0.08846 0.08780 0.07200 0.09371scentroid 0.08074 0.06985 0.06887 0.06597 0.05082 0.11966 0.12626 0.11822 0.11323 0.10765 0.08841 0.17975mcentroid 0.37521 0.38475 0.37650 0.37462 0.38166 0.3662 0.37743 0.38590 0.38211 0.37958 0.38745 0.35825lcentroid 0.40188 0.42196 0.41045 0.41999 0.44581 0.37670 0.40394 0.42279 0.41618 0.42498 0.45211 0.36826

UVS VS

UVS VSMiddlebreast

UpperBreast

UVS VS

UVS VS

Flank

Belly