polynomialchaos - github pages

54
Polynomial Chaos Workshop on Uncertainty Analysis & Estimation (ACC 2015) Raktim Bhattacharya Intelligent Systems Research Laboratory Aerospace Engineering, Texas A&M University. isrlab.github.io

Upload: others

Post on 04-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PolynomialChaos - GitHub Pages

Polynomial ChaosWorkshop on Uncertainty Analysis & Estimation (ACC 2015)

Raktim Bhattacharya

Intelligent Systems Research LaboratoryAerospace Engineering, Texas A&M University.

isrlab.github.io

Page 2: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

IntroductionWhat is polynomial chaos theory?It provides a non-sampling based method to determine evolution ofuncertainty in dynamical system, when there is probabilistic uncertaintyin the system parameters.Consider a dynamical system

x = −ax, x(t0) = x0 is given (known)

a is an unknown parameter in the range [0, 1] (equally likely values)

Polynomial chaos theory helps us answer these questionsHow does x(t) evolve for various values of a?What is the ensemble behavior of x (mean, variance, PDF)?

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 2 / 54

Page 3: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Monte-Carlo ApproachSummary of Steps

x = −ax, x(t0) = 1

a is an unknown parameter in the range [0, 1] (equally likely values)

Sample a ∈ [0, 1]

Plot x(t) for every value of aEstimate statistics from data

0 5 10 15 20t

0.0

0.2

0.4

0.6

0.8

1.0

x(t

)

State Trajectories

Figure: Sample paths

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 3 / 54

Page 4: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Monte-Carlo ApproachSolution Interpretation

0 5 10 15 20t

0.0

0.2

0.4

0.6

0.8

1.0

x(t

)

State Trajectories

(a) Sample paths

0 5 10 15 20

t

0.0

0.2

0.4

0.6

0.8

1.0

Mea

nan

dVa

rianc

e

Evolution of moments of x(t)

MeanVariance

(b) Moments

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

6

7

8

Den

sity

Evolution of state PDF

t=0st=1s

t=5st=20s

(c) State PDFFigure: Solution from Monte-Carlo simulations

The solution x(t) depends on parameter aMore appropriate to write it as x(t, a)Solution statistics are time varyingState PDF is also time varyingOther methods to characterize x(t, a)?

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 4 / 54

Page 5: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Polynomial ChaosBasic Idea

Approximate x(t, a), solution of x = −ax as

x(t, a) ≈∑i

xi(t)ϕi(a)

ϕi(a) are known polynomials of parameter axi(t) are unknown time varying coefficientsDetermine xi(t) that minimises equation error e(t, a) = ˙x− ax

Galerkin Projection: minimize ∥e(t, a)∥2 Stochastic Collocation: set e(t, a) = 0 at certain locations

Resulting system is in higher dimensional state space doesn’t involve parameter a

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 5 / 54

Page 6: PolynomialChaos - GitHub Pages

Galerkin ProjectionRaktim Bhattacharya

Aerospace Engineering, Texas A&M Universityisrlab.github.io

Page 7: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Stochastic Finite ElementGeneralized Formulation

Let system bex = f(x,∆),

where state x ∈ Rn and parameter ∆ ∈ D∆ ⊆ Rd

More precisely, ∆ := ∆(ω) is a Rd-valued continuous randomvariable

ω is an event in the probability space (Ω,F , P )

A second order process x(t,∆(ω)) can be expressed by polynomialchaos as

x(t,∆(ω)) =

∞∑i=0

xi(t)ϕi(∆(ω))

In practice, approximate with finite terms

x(t,∆) ≈ x(t,∆) =

N∑i=0

xi(t)ϕi(∆)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 7 / 54

Page 8: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Reduced Order System1. Dynamics

x = f(x,∆), (n differential equations)

2. Proposed solution

x(t,∆) =

N∑i=0

xi(t)ϕi(∆)

3. Residuee(t,∆) := ˙x− f(x,∆)

4. Set projection on basis function to zero (best L2 solution)

⟨e(t,∆), ϕi(∆)⟩ = 0, for i = 0, 1, · · · , N

5. This gives n(N + 1) ordinary differential equations to determinen(N + 1) unknowns xi(t) ∈ Rn

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 8 / 54

Page 9: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Inner productDefine

⟨e(t,∆), ϕi(∆)⟩ :=∫D∆

e(t,∆)ϕi(∆)p(∆)d∆,

where p(∆) is the probability density function of ∆.

Also

E [e(t,∆)ϕi(∆)] :=

∫D∆

e(t,∆)ϕi(∆)p(∆)d∆

Therefore,⟨e(t,∆), ϕi(∆)⟩ ≡ E [e(t,∆)ϕi(∆)]

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 9 / 54

Page 10: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Basis FunctionsBasis functions are such that

E [ϕi(∆)ϕj(∆)] = 0, when i = j

i.e. orthogonal w.r.t p(∆)∫D∆

ϕi(∆)ϕj(∆)p(∆)d∆ = 0, when i = j

Distribution Polynomial Basis Function Support

Uniform: 12 Legendre x ∈ [−1, 1]

Standard Normal: 1√2π

e−12x2

Hermite x ∈ (−∞,∞)

Beta: 1B(α,β)

xα−1(1 − x)β−1 Jacobi x ∈ [0, 1]

Gamma: xk−1e− x

θ

θkΓ(k)Laguerre x ∈ (0,∞)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 10 / 54

Page 11: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Basis Functions (contd.)In general

ϕi(∆) are orthogonal polynomials with weight p(∆)

L2 exponential convergence in corresponding Hilbert functionalspaceAskey scheme of hypergeometric polynomials for common p(∆)

– Normal, uniform, beta, gamma, etcNumerically generate for arbitrary p(∆):

– Gram-Schmidt– Chebyshev– Gauss-Wigert– Discretized Stieltjes

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 11 / 54

Page 12: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Basis Functions (contd.)Mixed Basis Functions

Let ∆ := [∆1 ∆2]T , ∆1 ∆2 are independent

– ∆1 is uniform over [−1, 1]– ∆2 is standard normal over (−∞,∞)

What is the basis function for ∆?ϕi(∆) is multivariate polynomial

– ψj(∆1): Legendre polynomials– θk(∆2): Hermite polynomials– ϕi(∆): tensor product of ψj(∆1) and θk(∆2)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 12 / 54

Page 13: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: First Order Linear SystemConsider system x = −ax, where a ∈ U[0,1] (uniform distribution)

1. Define a(∆) := 12 (1 + ∆), ∆ ∈ U[−1,1]

Now dynamics is x = −a(∆)x.

2. Approximate solution as x =∑N

i=0 xi(t)ϕi(∆)(ϕi are Legendre polynomials)

3. Residue:

e(t,∆) := ˙x− a(∆)x

=

N∑i=0

xi(t)ϕi(∆)− a(∆)

N∑i=0

xi(t)ϕi(∆)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 13 / 54

Page 14: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: First Order Linear System (contd.)4. Project residue on jth basis function:

⟨e(t,∆), ϕj(∆)⟩ =⟨

N∑i=0

xi(t)ϕi(∆), ϕj(∆)

⟩−

⟨a(∆)

N∑i=0

xi(t)ϕi(∆), ϕj(∆)

=N∑i=0

xi(t)⟨ϕi(∆), ϕj(∆)⟩ −N∑i=0

xi(t)⟨a(∆)ϕi(∆), ϕj(∆)⟩

5. If ⟨ϕi(∆), ϕj(∆)⟩ = 0 for i = j (orthogonal)

⟨e(t,∆), ϕj(∆)⟩ = xj⟨ϕj(∆), ϕj(∆)⟩ −N∑i=0

xi(t)⟨a(∆)ϕi(∆), ϕj(∆)⟩

6. ⟨e(t,∆), ϕj(∆)⟩ = 0 implies

xj =1

⟨ϕj(∆), ϕj(∆)⟩

N∑i=0

xi(t)⟨a(∆)ϕi(∆), ϕj(∆)⟩

7. This gives use N + 1 ordinary differential equations(x ∈ R in this example)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 14 / 54

Page 15: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: First Order Linear System (contd.)The equation

xj =1

⟨ϕj(∆), ϕj(∆)⟩

N∑i=0

xi(t)⟨a(∆)ϕi, ϕj⟩

in more compact form

xj =1

⟨ϕj(∆), ϕj(∆)⟩[⟨a(∆)ϕ0(∆), ϕj(∆)⟩ · · · ⟨a(∆)ϕN (∆), ϕj(∆)⟩

]x0

...xN

Define xpc := (x0 x1 · · · xN )T , then

xpc = Apcxpc

where

Apc := W−1

⟨a(∆)ϕ0, ϕ0⟩ · · · ⟨a(∆)ϕN , ϕ0⟩...

...⟨a(∆)ϕ0, ϕN ⟩ · · · ⟨a(∆)ϕN , ϕN ⟩

, W := diag (⟨ϕ0, ϕ0⟩ · · · ⟨ϕN , ϕN ⟩)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 15 / 54

Page 16: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Reduced Order SystemTherefore

x = −a(∆)x︸ ︷︷ ︸stochastic in R

Polynomial Chaos−−−−−−−−−−→ xpc = Apcxpc︸ ︷︷ ︸deterministic in RN+1

In general

x = f(x,∆)︸ ︷︷ ︸stochastic in Rn

Polynomial Chaos−−−−−−−−−−→ xpc = F pc(xpc)︸ ︷︷ ︸deterministic in Rn(N+1)

where xpc :=

x0

...xN

and x =∑N

i=0 xi(t)ϕi(∆)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 16 / 54

Page 17: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Initial Condition UncertaintyTransform uncertainty in dynamics as

x = f(x,∆)Polynomial Chaos−−−−−−−−−−→ xpc = F pc(xpc)

xpc :=

x0

...xN

and x =

N∑i=0

xi(t)ϕi(∆)

Let I.C. uncertainty be: x0(∆)

Initialize xpc asxi(t0) := ⟨x0(∆), ϕi(∆)⟩

Random variable ∆ is

∆ :=

(∆0

∆p

),

∆0 is I.C. uncertainty∆p is system parameter uncertainty

Basis functions ϕi(∆) are defined w.r.t ∆Workshop on Uncertainty Analysis & Estimation (ACC 2015) 17 / 54

Page 18: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Linear SystemsConsider Linear System

x = A(∆)x, with x(t0) := x0(∆), and ∆ :=

(∆0

∆p

)

System has random parameters in A matrix and I.C.x ∈ Rn and ∆ ∈ Rd

Define basis function vector Φ(∆) := (ϕ0(∆) · · ·ϕN (∆))T

Approximate solution is

x :=

N∑i=0

xiϕi(∆) = XΦ(∆),

X = [x0 x1 · · · xN ] ∈ Rn×(N+1)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 18 / 54

Page 19: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Linear Systems (contd.)Approximate solution

x = XΦ(∆), X = [x0 x1 · · · xN ]

Define

xpc := vec (X) ≡

x0

...xN

Therefore,

vec (x) = vec (XΦ)

x = (ΦT ⊗ In)xpc vec (ABC) ≡ (CT ⊗ A)vec (B)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 19 / 54

Page 20: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Linear Systems (contd.)Residue

e(t,∆) := ˙x−A(∆)x = XΦ(∆)−A(∆)X

vec (e) = e = vec(XΦ(∆)−A(∆)XΦ(∆)

)= (ΦT ⊗ In)xpc −

(ΦT (∆)⊗A(∆)

)xpc

⟨e, ϕi(∆)⟩ = 0 implies

xi = (⟨ϕi(∆), ϕi(∆)⟩ ⊗ In)−1

⟨ΦT (∆)⊗A(∆), ϕi(∆)

⟩xpc

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 20 / 54

Page 21: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Linear Systems (contd.)Deterministic linear dynamics

xpc = Apc xpc

xpc ∈ Rn(N+1),Apc ∈ Rn(N+1)×n(N+1)

Apc is defined as

Apc := (W ⊗ In)−1

⟨ΦT ⊗A(∆), ϕ0

⟩...⟨

ΦT ⊗A(∆), ϕN

RecallW := diag (⟨ϕ0, ϕ0⟩ · · · ⟨ϕN , ϕN ⟩)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 21 / 54

Page 22: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Computation of MeanGiven x(∆) := XΦ(∆)

E [x(∆)] = E [XΦ(∆)]

= XE [Φ(∆)]

= X (1 0 · · · 0)T

= x0

Also

E [x(∆)] = E[(ΦT ⊗ In)xpc

]=

(E[ΦT

]⊗ In

)xpc =

(F T ⊗ In

)xpc

where F T = (1 0 · · · 0).

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 22 / 54

Page 23: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Computation of VarianceGiven x(∆) := XΦ(∆)

x(∆)xT (∆) = XΦ(∆)ΦT (∆)XT

E[x(∆)xT (∆)

]= E

[XΦ(∆)ΦT (∆)XT

]= XE

[Φ(∆)ΦT (∆)

]XT

= X

⟨ϕ0, ϕ0⟩ 0 . . . 0

0 ⟨ϕ1, ϕ1⟩ . . . 0...

... . . . ...0 0 . . . ⟨ϕN , ϕN ⟩

XT

= XWXT

Then

Var [x] := E[(x− E [x]) (x− E [x])

T]= X(W − FF T )XT

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 23 / 54

Page 24: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Computation of Statistics – summaryMean

E [x] = XF = x0

Variance

Var [x] = X(W − FF T )XT

where

F = E [Φ(∆)] =

10...0

, W = E[ΦΦT

]=

⟨ϕ0, ϕ0⟩ 0 . . . 0

0 ⟨ϕ1, ϕ1⟩ . . . 0...

.... . .

...0 0 . . . ⟨ϕN , ϕN ⟩

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 24 / 54

Page 25: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Polynomial NonlinearityPolynomials xn(∆), x ∈ R can be written as

xn(∆) = (XΦ(∆))n

⟨xn(∆), ϕi(∆)⟩ = ⟨(XΦ(∆))n, ϕi⟩

=

N∑i1=0

· · ·N∑

in=0

xi1 · · ·xin ⟨ϕi1 · · ·ϕin , ϕi⟩

Essentially integration of polynomials analytical or numerical (exact).

Inner product ⟨ϕi1 · · ·ϕin , ϕi⟩ can be computed offline stored in sparse, symmetric tensor

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 25 / 54

Page 26: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Rational polynomialsFunctions such as xn(∆)

ym(∆) , x, y ∈ R can be approximated as

z(∆) =xn(∆)

ym(∆)

ZΦ(∆) =(XΦ(∆))

n

(Y Φ(∆))m

(Y Φ)mZΦ = (XΦ)

n

⟨(Y Φ)mZΦ, ϕi)⟩ = ⟨(XΦ)

n, ϕi⟩ , i = 0, 1, · · · , N

Given X,Y solve system of linear equations to obtain Z⟨ΦT ⊗ (Y Φ)m, ϕ0

⟩...⟨

ΦT ⊗ (Y Φ)m, ϕN

⟩zpc =

⟨(XΦ)n, ϕ0⟩...

⟨(XΦ)m, ϕN ⟩

Polynomial integrations

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 26 / 54

Page 27: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Transcendental FunctionsLet f(x) be a transcendental function:

e.g. xa, ex, x1/x, log(x), sin(x), etc.

Use Taylor series expansion about meanDefine x := x0 + d, d is deviation from mean x0

Expand

f(x) = f(x0 + d) = f(x0) + f ′(x0)d+ f ′′(x0)d2

2!+ · · ·

x(∆) := x0 +

N∑i=1

xiϕi(∆)︸ ︷︷ ︸d(∆)

Therefore

⟨f(x(∆)), ϕi(∆)⟩ ≈ f(x0)⟨1, ϕi⟩+f ′(x0)⟨d, ϕi⟩+f ′′(x0)

2!⟨d2, ϕi⟩+· · ·

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 27 / 54

Page 28: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Transcendental Functions (contd.)Taylor Series Approximation

⟨f(x(∆)), ϕi(∆)⟩ ≈ f(x0)⟨1, ϕi⟩+ f ′(x0)⟨d, ϕi⟩+f ′′(x0)

2!⟨d2, ϕi⟩+ · · ·

⟨dn, ϕi⟩ is integration of polynomialsStraightforwardComputationally efficientSevere inaccuracies for higher order PC approximations

RemediesApproximate f(x) using polynomials, piecewise polynomialsNon-intrusive: multi-dimensional integrals via sampling,tensor-product quadrature, Smolyak sparse grid, or cubatureRegression Approach: L2 optimization

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 28 / 54

Page 29: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: First Order Linear SystemDynamics:

x = −a(∆)x, a ∈ U[0,1]

Analytical Statistics:

x(t) =1− e−t

t, σ(t) =

1− e−2t

2t−(1− e−t

t

)2

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Mea

n

(a) Mean.

0 5 10 15 20 25 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

Varia

nce

(b) Variance.

Figure: Errors in estimates obtained from gPC for x = −a(∆)x. Analytical: (red solid); gPC: 2nd

order(*), 3rd order(o), 5th(+).Workshop on Uncertainty Analysis & Estimation (ACC 2015) 29 / 54

Page 30: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Errors Due to Finite TermsDynamics:

x = −a(∆)x, a ∈ U[0,1]

Analytical Solution:x(t,∆) = x(t0)e

−a(∆)t

PC Solution:

x(t,∆) =

P∑i=0

xi(t)ϕi(∆)

Error: Finite term approximation of exponential.

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Mea

n

(a) Mean

0 5 10 15 20 25 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

Varia

nce

(b) Variance

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 30 / 54

Page 31: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Eigen Analysis – Linear F-16 Aircraft

A(∆) =

0.1658 −13.1013 −7.2748(1 + 0.2∆) −32.1739 0.27800.0018 −0.1301 0.9276(1 + 0.2∆) 0 −0.0012

0 −0.6436 −0.4763 0 00 0 1 0 00 0 0 0 −1

Linearized about flight condition V = 160 ft/s and α = 35o

Uncertainty due to damping term Cxq

Difficult to model at high angle of attack20% uncertainty about nominal

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 31 / 54

Page 32: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Eigen Analysis – Linear F-16 Aircraft

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure: 5th Order PC ODE Eigen Values, Sampled ODE Eigen Values

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 32 / 54

Page 33: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Eigen Analysis – Linear F-16 Aircraft

Figure: PC eigen values bounded by convex hull of sampled ODE eigen values (conservative!)∗∗ Eigenvalues of the Jacobian of a Galerkin-Projected Uncertain ODE System, Sonday, et al.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 33 / 54

Page 34: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Spread of Spectrum – Linear F-16 Aircraft

Better characterization of spectrum spread is needed.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 34 / 54

Page 35: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Nonlinear System – Lorenz AttractorDynamics:

x = σ(y − x), y = x(ρ− z)− y, z = xy − βz.

Initial Condition:

[x, y, z]T= [1.50887,−1.531271, 25.46091]

T

Parameters:

σ = 10(1 + 0.1∆1), ρ = 28(1 + 0.1∆2), β = 8/3, ∆ ∈ U[−1,1]2 .

x(t,∆) ≈P∑

i=0

xi(t)ϕi(∆)

y(t,∆) ≈P∑

i=0

yi(t)ϕi(∆)

z(t,∆) ≈P∑

i=0

zi(t)ϕi(∆)

⟨ϕ2k⟩xk(t) =

P∑i=0

⟨σϕiϕk⟩(yi − xi)

⟨ϕ2k⟩yk(t) =

P∑i=0

⟨ρϕiϕk⟩xi −P∑

i=0

P∑j=0

⟨ϕiϕjϕk⟩xizj − ⟨ϕ2k⟩yk

⟨ϕ2k⟩zk(t) =

P∑i=0

P∑j=0

⟨ϕiϕjϕk⟩xiyj − β⟨ϕ2k⟩zk

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 35 / 54

Page 36: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Nonlinear System – Lorenz AttractorIntegrals:

⟨ϕk(∆)2⟩

⟨σ(∆)ϕi(∆)ϕk(∆)⟩⟨ρ(∆)ϕi(∆)ϕk(∆)⟩⟨ϕi(∆)ϕj(∆)ϕk(∆)⟩

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

‖e‖2

Numb e r of Quadratu re Points

Figure: Error – Analytical vsNumerical Integration

analyticalnumerical

non intrusive (blackbox) quadratures defined by roots of ϕN (·) tensor product of univariate quadratures Here we use 7th order PC approximation Highest order polynomial integrated is 21 in

⟨ϕi(∆)ϕj(∆)ϕk(∆)⟩ N = 11 will exactly integrate polynomials of order

≤ 22,i.e.

⟨ϕi(∆)ϕj(∆)ϕk(∆)⟩ =∑r

wrϕi(∆r)ϕj(∆r)ϕk(∆r)

Approximate for non polynomial integrands Multidimensional moments can be computed

efficiently from products of one dimensional momentsmultivariate ϕi’s are tensor products of univariate functions

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 36 / 54

Page 37: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Nonlinear System – Lorenz AttractorMC: 1000 samples

using MATLAB rand(...)

PC: 7th order approximation36 basis functions

0 1 2 3 4 5 6 7 8 9 10−20

−10

0

10

20

t

x1

Mean Trajectories

0 1 2 3 4 5 6 7 8 9 10−40

−20

0

20

x2

t

0 1 2 3 4 5 6 7 8 9 1010

20

30

40

50

x3

t

PCMC

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 37 / 54

Page 38: PolynomialChaos - GitHub Pages

Stochastic CollocationRaktim Bhattacharya

Aerospace Engineering, Texas A&M Universityisrlab.github.io

Page 39: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Basic IdeaSample domain D∆ suitably

roots of basis functions – ϕ(∆) same as Galerkin projection multi-dimension samples ⇔ tensor product of roots or sparse grid

Enforce stochastic dynamics at each sample point Time varying coefficient at each sample point

Interpolate (Lagrangian) for intermediate points

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 39 / 54

Page 40: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Algorithm1. Given stochastic dynamics with uncertainty ∆

x = f(x,∆)

2. For pth order approximation: sample domain D∆ with roots of p+ 1 order polynomial tensor grid, sparse grid, etc. samples ∆ := ∆i, i = 0, · · · , p.

3. Coefficient xi evolves according to

xi = f(xi,∆i), deterministic solution

4. Approximate stochastic solutionx(t,∆) :=

p∑i=0

xi(t)Li(∆)

Li are Lagrangian interpolants Li(y) =∏p

j=0,j =iy−yj

yi−yj.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 40 / 54

Page 41: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Computation of StatisticsMean

E [x(t)] ≈ E[

p∑i=0

xi(t)Li(∆)

]=

p∑i=0

xi(t)E [Li(∆)]

Computation of E [Li(∆)] involves high-dimensional polynomialintegration

analytical numerical: quadratures, sparse grids, etc

Higher order statistics: similar to computation of mean.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 41 / 54

Page 42: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Linear First Order SystemDynamics:

x = −a(∆)x, a ∈ U[0,1]

Analytical Statistics:x(t) =

1− e−t

t,

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

$t$

$\ba

rx

$

Analytical SolutionStochastic CollocationGalerkin Projection

(a) MC (3 samples)

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Analytical SolutionMonte−Carlo

(b) SC & Galerkin (3rd order)Workshop on Uncertainty Analysis & Estimation (ACC 2015) 42 / 54

Page 43: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Nonlinear System – Lorenz AttractorDynamics:

x = σ(y − x), y = x(ρ− z)− y, z = xy − βz.

Initial Condition:[x, y, z]T = [1.50887,−1.531271, 25.46091]T

Parameters:σ = 10(1 + 0.1∆1), ρ = 28(1 + 0.1∆2), β = 8/3, ∆ ∈ U[−1,1]2 .

0 1 2 3 4 5 6 7 8 9 10−20

−10

0

10

20

t

x1

Mean Trajectories

0 1 2 3 4 5 6 7 8 9 10−40

−20

0

20

x2

t

0 1 2 3 4 5 6 7 8 9 1010

20

30

40

50

x3

t

PCMCSC

MC: 1000 samples using MATLAB rand(...)

SC: 11 quadrature points same as 7th order PC 121 grid points in 2D

SC performance is poor for nonlinearsystems!

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 43 / 54

Page 44: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Example: Nonlinear System – Lorenz Attractor

0 1 2 3 4 5 6 7 8 9 10−20

−10

0

10

20

t

x1

Mean Trajectories

0 1 2 3 4 5 6 7 8 9 10−40

−20

0

20

x2

t

0 1 2 3 4 5 6 7 8 9 1010

20

30

40

50

x3

t

PC−7MC−1000SC−11MC−121

SC performance is poor for nonlinear systems!But, better than MC with same sample budget.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 44 / 54

Page 45: PolynomialChaos - GitHub Pages

Karhunen-Loève ExpansionRaktim Bhattacharya

Aerospace Engineering, Texas A&M Universityisrlab.github.io

Page 46: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Basic IdeaGiven a random process X(t, ω) := Xt(ω)t∈[t1,t2]

Xt(ω) ∈ L2(Ω,F , P ) finite second moment

– L2(Ω,F, P ) := X : Ω 7→ R :∫Ω|X(ω)|2dP (ω) < ∞

Auto CorrelationRX(t1, t2) := E [Xt1Xt2 ]

Auto Covariance

CX(t1, t2) := RX(t1, t2)− µt1µt2

= RX(t1, t2)− µ2 stationary

CX(t1, t2) is bounded, symmetric and positive definite, thus

CX(t1, t2) =

∞∑i=0

λifi(t1)fi(t2) spectral decomposition

where λi and fi(·) are eigenvalues and eigenvectors of thecovariance kernel.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 46 / 54

Page 47: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Eigenvalues and Eigenfunctionsλi and fi(·) are solutions of∫

DCX(t1, t2) fi(t) dt1 = λi fi(t2), Fredholm integral equation of second kind

with∫Dfi(t)fj(t)dt = δij .

Write X(t, ω) := X(t) + Y (t, ω), where

Y (t, ω)m.s.=

∞∑i=0

ξi(ω)√λi fi(t), and ξi(ω) =

1

λi

∫DY (t, ω)fi(t)dt.

Reproducing Kernel Hilbert Space Congruence between two Hilbert spaces! fi(t) 7→ X(t, ω) or equivalently fi(t) 7→ ξi(ω)

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 47 / 54

Page 48: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Solution of Integral EquationHomogeneous Fredholm integral equation of the second kind,∫

DCX(t1, t2) fi(t) dt1 = λi fi(t2) well studied problem

CX(t1, t2) is bounded, symmetric, and positive definite, implies

1. The set fi(t) of eigenfunctions is orthogonal and complete.

2. For each eigenvalue λk, there correspond at most a finite number oflinearly independent eigenfunctions.

3. There are at most a countably infinite set of eigenvalues.

4. The eigenvalues are all positive real numbers.

5. The kernel CX(t1, t2) admits of the following uniformly convergentexpansion

CX(t1, t2) =

∞∑i=0

λifi(t1)fi(t2)

Applicable to wide range of processesWorkshop on Uncertainty Analysis & Estimation (ACC 2015) 48 / 54

Page 49: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Rational Spectra: Special Case1D random processStationary output of a linear filter, excited by white noise

Spectral density of the form S(s2) = H(jω)H(−jω) = N(s2)D(s2)

N and D are polynomials in s2 suchthat ∫ ∞

−∞S(−ω

2)dω < ∞

s = jω, here ω is frequency

Degree of D(s2) must exceed degree ofN(s2) by at least two.

No roots of D(s2) on the imaginary axis S(ω) ≥ 0, ⇒ purely imaginary zeros of

N(s2) of even multiplicity

Finite dimensional Markovian process effect of infinite past on the present is negligible

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 49 / 54

Page 50: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Important KernelStudy specific kernel

CX(t1, t2) = e−c|t1−t2|

1/c is the correlation time or length.Many applications.Other kernels also possible

Solve integral equation∫DCX(t1, t2) fi(t) dt1 = λi fi(t2).

Or equivalently solve

ODE: f(t) + ω2f(t) = 0, ω2 =2c− c2λ

λ, −a ≤ t ≤ a

Boundary Condition: cf(a) + f(a) = 0, cf(−a)− f(−a) = 0.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 50 / 54

Page 51: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Basis FunctionsEquivalently solve for ω, ω∗

Odd i Even ic− ω tan(ωa) = 0, λi =

2c

ω2i + c2

ω∗ + c tan(ω∗a) = 0, λ∗i =

2c

ω∗2

i + c2

fi(t) =cos(ωit)√a+ sin(2ωia)

2ωi

f∗i (t) =

sin(ω∗i t)√

a− sin(2ω∗i a)

2ω∗i

2 2.5 3 3.5 4 4.5 5 5.5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Index i

Eigenvaluesλ

i

1/c=101/c=51/c=11/c=0.51/c=0.1

(a) Eigenvalues

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5−1.5

−1

−0.5

0

0.5

1

1.5

2

t

fi(t)

f1(t)

f2(t)

f3(t)

f4(t)

f5(t)

(b) Eigenfunctions

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 51 / 54

Page 52: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

CoefficientsRecall X(t, ω) := X(t) + Y (t, ω),ω here is an event in the probability space (Ω,F, P )

Y (t, ω)m.s.=

∞∑i=0

ξi(ω)√

λi fi(t)

=∞∑i=0

[ξi(ω)

√λi fi(t) + ξ∗i (ω)

√λ∗i f

∗i (t)

]ξi(ω), ξ

∗i (ω) are uncorrelated random variables determined from

Y (t, ω)

ξi(ω), ξ∗i (ω) model the distribution of amplitude of Y (t, ω)

fi(t), f∗i (t) models the distribution of signal power over time or

among frequenciesIf Y (t, ω) is a Gaussian process

ξi(ω), ξ∗i (ω) Gaussian independent random variables

KL – expansion is almost surely convergentWorkshop on Uncertainty Analysis & Estimation (ACC 2015) 52 / 54

Page 53: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

UQ ApplicationDynamical system with process noise n(t, ω)

x = f(t,∆, x) + n(t, ω)

Replace

n(t, ω) ≈N∑i=0

[ξi(ω)

√λi fi(t) + ξ∗i (ω)

√λ∗i f

∗i (t)

]Define new parameter vector

∆′ :=(∆T , ξ0, ξ

∗0 , · · · , ξN , ξ∗N

)TRewrite dynamics as

x = F (t,∆′, x),

Process noise converted to parametric uncertainty.Use PC, SC, or simplified FPK equation to determine x(t,∆′)

Increases number of parameters ⇒ increases computational complexity

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 53 / 54

Page 54: PolynomialChaos - GitHub Pages

Introduction Galerkin Projection Stochastic Collocation Karhunen-Loève Expansion

Publications1. J. Fisher, R. Bhattacharya, Stability Analysis of Stochastic Systems using Polynomial Chaos,

American Control Conference 2008.2. A. Prabhakar and R. Bhattacharya, Analysis of Hypersonic Flight Dynamics with

Probabilistic Uncertainty in System Parameters, AIAA GNC 2008.3. A. Prabhakar, J. Fisher, R. Bhattacharya, Polynomial Chaos Based Analysis of Probabilistic

Uncertainty in Hypersonic Flight Dynamics, AIAA Journal of Guidance, Control, andDynamics, Vol.33 No.1 (222-234), 2010.

4. J. Fisher, R. Bhattacharya, Optimal Trajectory Generation with Probabilistic SystemUncertainty Using Polynomial Chaos, Journal of Dynamic Systems, Measurement andControl, volume 133, Issue 1, January 2011.

5. J. Fisher, R. Bhattacharya, Linear Quadratic Regulation of Systems with StochasticParameter Uncertainties, Automatica, 2009.

6. Roger G. Ghanem, Pol D. Spanos, Stochastic Finite Elements: A Spectral Approach,Revised Edition (Dover Civil and Mechanical Engineering

7. Olivier Le Maitre, Omar M Knio, Spectral Methods for Uncertainty Quantification: WithApplications to Computational Fluid Dynamics, Scientific Computation.

8. Dongbin Xiu, Numerical Methods for Stochastic Computations: A Spectral MethodApproach, ISBN: 9780691142128, Princeton Press.

Workshop on Uncertainty Analysis & Estimation (ACC 2015) 54 / 54