population dynamics, evolutionary games, and biodiversity · 2013-11-15 · population dynamics,...

36
Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice Czech Republic [email protected] www.entu.cas.cz/krivan

Upload: others

Post on 11-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Population dynamics, evolutionary games, and biodiversity

Vlastimil Krivan Biology Center

Ceske Budejovice Czech Republic

[email protected] www.entu.cas.cz/krivan

Page 2: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

 Taken from: Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How Many Species Are There on Earth and in the Ocean? PLoS Biol 9(8): e1001127.

Biodiversity

2  

Page 3: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

• “Higher diversity, then, means longer food chains and more cases of symbiosis(mutualism, parasitism, commensalism, and so forth), and greater possibilitiesfor negative feedback control, which reduces oscillations and hence increasesstability (Odum, 1971)”

• "Complete competitors cannot coexist" (Gause 1934)

“No stable equilibrium is possible if N species are limited by less than N fac-

tors” (Levin, 1970)

3  

Page 4: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Connectance  in  %  

Prob

ability  of  stability  

4  

Page 5: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Connectance

Prob

abili

ty o

f sta

bilit

y

Connectance

Prop

or6o

n  of  su

rviving  species  

Taken from Kondoh (2003)

5  

Page 6: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

• Environmental fluctuations (relative nonlinearity of competition, Hutchin-son (1961), Armstrong and McGehee (1976), Chesson (2000),...)

• Spatial heterogeneity (metapopulation dynamics, colonization-extinctiondynamics, Hu↵aker (1958), Hanski (1999),...)

...

• Neutral theory of biodiversity (all species are ecologically identical, i.e.,they have the same fitness, and species turnover is driven by dispersal,speciation, and extinction, Hubbel 1979),

Some hypothesis for biodiversity

6  

Page 7: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Coexistence mechanisms

• Equalizing mechanisms: tend to decrease average fitness differences between

species. These mechanisms are expressed through evolutionary/behavioral dy-

namics that change individual traits

7  

Page 8: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

8  

• Population dynamics and trait dynamics operate on similar time scales

(e.g., P. Abrams, T. Vincent and J. Brown).

• Trait dynamics are very fast when compared to population dynamics (Pop-

ulation game dynamics, e.g., Cressman and VK). Assumes that traits

equilibriate at the current population abundance. The trait values are

assumed to be evolutionary optimized.

Page 9: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Population game dynamics

9  

Page 10: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Herbert Spencer Charles Darwin

“Survival of the fittest” “Evolution by natural selection”

The fittest strategies do survive

10  

Page 11: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Gi(ui;u, x) = fitness of an individual of the i � th population with strategy ui

in the resident population with strategy u:

Gi(ui;u, x) = fi(x, u)

Frequency and density dependent fitness

11  

Page 12: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Dynamics and constraints: Viability theory

(Aubin and Cellina, 1984)

12  

dx

dt

= f(x, u)

u 2 S(x)

() dx

dt

2 F (t, x) := {f(x, u) | u 2 S(x)}

Page 13: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

ui = predator preference for prey i

(0 ui, u1 + u2 = 1)

13  

Page 14: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 500

2

4

6

8

10

Population dynamics Patch payoffs

Patch  1  

Patch  2  

14  

Page 15: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Barnacles Mussels

15  

Page 16: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Consumer fitness is density dependent:

The optimal strategy set:

S(R1, R2) = {(p1, p2) 2 U | p1 � 0, p2 � 0, p1+p2 = 1, G(p1, p2) = max

(u1,u2)2UG(u1, u2)}

16  

u1(R1, R2) 2 S(R1, R2) =

8><

>:

{1} for e1R1 > e2R2

{0} for e1R1 < e2R2

[0, 1] for e1R1 = e2R2

G(u1, u2, R1, R2) =1

C

dC

dt= e1u1R1 + e2u2R2 �m ! max

u1+u2=1

Page 17: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

R 1

R 2

C

Optimal prey switching equalizes predator fitness in thetwo patches

0 10 20 30 40 500

1

2

3

4

5

6

0 10 20 30 40 50

-0.1

0.0

0.1

0.2

0.3

0.4

Population dynamics Predator fitness in the two patches

17  

Page 18: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

§  Adaptive prey switching relaxes apparent competition between resources and

leads to their persistence

§  This is the consequence of equalizing predator fitness in the two patches.

§  There is no stabilizing mechanism in population dynamics so that the system

does not settle to an equilibrium

18  

Page 19: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

19  

Patch payo↵ fi(uix) (measured as the per capita population growth rate in

patch i) depends on current population distribution

Frequency dependent fitness: The Habitat selectiongame (Cressman and VK, 2006)

Page 20: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

20  

Page 21: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

21  

Page 22: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

22  

Payo↵ in patch i: fi

= ri

(1� xiKi

)

The overall population size: x = x1 + · · ·+ xn

The IFD for the logistic population growth

(VK and Sirot, 2002; Cressman and VK 2010)

Page 23: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

23  

0 5 10 15 20 25 300.6

0.7

0.8

0.9

1.0

Preferen

ce

fo

rp

atch

1(p 1

)

Page 24: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

24  0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 2 4 6 8 10

0.0

0.5

1.0

1.5

Logistic population dynamics

(Krivan and Sirot, 2002)

Population dynamics

K1 = 20, K2 = 10

Fixed preference Adaptive preference

Patch payoffs

Page 25: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

M = m1 +m2, N = n1 + n2, pi =miM , qi =

niN

Species 1 payo↵ in habitat i : Vi(p, q;M,N) = ri

✓1� piM

Ki� ↵iqiN

Ki

◆i = 1, 2

Species 2 payo↵ in habitat j: Wj(p, q;M,N) = sj

✓1� qjN

Lj� �jpjM

Lj

◆j = 1, 2.

25  

Page 26: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

The Ideal Free Disribution for two competing populations

26  

Page 27: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Proposition 1 (Cressman et al. 2004) Let us assume that the interior Nash equilib-

rium for the distribution of two competing species at population densities M and Nexists. If

r1s1K2L2(1�↵1�1)+r1s2K2L1(1�↵1�2)+r2s1K1L2(1�↵2�1)+r2s2K1L1(1�↵2�2) > 0

then this distribution is a 2-species ESS (2-species IFD).

27  

Page 28: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Population-distributional stability

0 10 20 30 40 50

5

10

15

20

25

30

0 10 20 30 40 500.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 500.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 500.0

0.2

0.4

0.6

0.8

Population dynamics

28  

• Conditions for population stabilization without dispersal:

1� ↵1�1 > 0, 1� ↵2�2 > 0

• Conditions for distributional stability holds (fitness equalization), i.e.,

r1s1K2L2(1�↵1�1)+r1s2K2L1(1�↵1�2)+r2s1K1L2(1�↵2�1)+r2s2K1L1(1�↵2�2) > 0

Page 29: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Population distribution is not an ESS

29  

Population-distributional instability

Page 30: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Population dynamics

0 50 100 150 200

5

10

15

0 50 100 150 2000.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

-1.5

-1.0

-0.5

0.0

0.5

0 50 100 150 200

-1.5

-1.0

-0.5

0.0

0.5

30  

Population-distributional instability

Page 31: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Conclusion: Fitness maximization can destabilize otherwise stable population equilibrium and may not lead to fitness equalization

31  

Page 32: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Specialized predators Generalist predators

32  

Page 33: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Specialists   Non-­‐flexible  generalists   Flexible  generalists  

33  

Page 34: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

With  fitness  equaliza6on  

Without  fitness  equaliza6on  

34  

Still more complex food webs (Berec et al, 2010)

Page 35: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

Conclusions

35  

Page 36: Population dynamics, evolutionary games, and biodiversity · 2013-11-15 · Population dynamics, evolutionary games, and biodiversity Vlastimil Krivan Biology Center Ceske Budejovice

36