poster 1-13-paper id 207

1
Mul$criteria Energy Minimiza$on with Boundedness, Edge density and Rarity, for Object Saliency in Natural Images Abstract Sudeshna Roy and Sukhendu Das Visualiza$on and Percep$on Lab. Dept. of Computer Science and Engineering, IIT Madras, India Algorithm Overview Results and Evalua$ons on PASCAL VOC 2012 Dataset Image Edge Map Superpixels and Edges Proposed Output Edge Density (ed i ) Saliency (s i ) Boundedness (b i ) Conclusion Mo#vated by saliency and category independent object segmenta#on methods, we predict a single object proposal which captures all the salient objects in an image, within O(number of superpixels) 3 . The CRF parameters are learned using a marginrescaled structSVM approach with (1 IoU) loss func#on. Fast but effec#ve objectness criteria, viz. boundedness and edgedensity. Submodular CRF is minimized using graphcut. Results are shown on the challenging PASCAL VOC 2012 dataset. An efficient method based on saliency in conjunc#on with objectness cues to predict a categoryindependent object segmenta#on, using a CRF based formula#on. Can be a preprocessing step for many highlevel vision task. References Method CPMC [1] OP [2] Proposed IoU Score 0.3319 0.3266 0.4097 [1] [5] [4] [3] [2] 1. Carreira and Sminchisescu, “Constrained parametric mincuts for automa#c object segmenta#on,” CVPR, 2010. 2. Endres and Hoiem, “Category independent object proposals,” ECCV, 2010. 3. Roy and Das, “Saliency detec#on in images using graphbased rarity, spa#al compactness and background prior,” VISAPP, 2014. 4. Yang, et. al., “Saliency detec#on via graphbased manifold ranking,” CVPR, 2013. 5. Perazzi et. al., Saliency filters: Contrast based filtering for salient region detec#on. CVPR. 2012. Input Objectness Image Plane i j Unary Poten$al (Saliency, Objectness) Pairwise Poten$al (based on color) Submodular CRF Inference: Graphcut * * * Considering top 10 proposal masks φ i,j (2) (y i, y j, x i, x j |w 2 ) φ i (1) (y i ,x i |w 1 ) Salient Object Likelihood: φ i (1) (y i ,x i (1) |w 1 )=w s ( (1 y i ) (1s i )+y i s i )+w b ( (1 y i ) (1b i )+y i b i ) +w ed ( (1 y i ) ed i +y i (1ed i )) φ i,j (2) (y i, y j, x i (2) , x j (2) ) = |y i y j | exp( k c ||c i –c j ||) Edge Cost: c i denotes color of ith superpixel in lab space and k c indicates the sensi#vity of color similarity. CRF parameter Learning: Convex in w, given L Itera#vely op#mized, by finding y n using graphcut, and thus L M is the number of training instances. w min 1 2 w 2 + 1 M ξ n n = 1 M subject to, w T v=1 w T φ n w T ˆ φ n L ( y n , ˆ y n ) + ξ n ξ n 0, w 2 > 0 L = (1 IoU) E( y , x, w) = E ( y, x, w ) = φ i (1) i V + λ φ i , j (2) (i , j )E Energy Func#on over superpixels: w = [ w 1 w 2 ] = [ w s w b w ed λ ] T

Upload: sudeshna-roy

Post on 28-Jan-2018

133 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Poster 1-13-Paper ID 207

Mul$-­‐criteria  Energy  Minimiza$on  with  Boundedness,  Edge-­‐density  and  Rarity,  for  Object  Saliency  in  Natural  Images    

Abstract      

Sudeshna  Roy  and  Sukhendu  Das  Visualiza$on  and  Percep$on  Lab.  

Dept.  of  Computer  Science  and  Engineering,  IIT  Madras,  India  

Algorithm  Overview    

Results  and  Evalua$ons  on  PASCAL  VOC  2012  Dataset  

Image  

Edge  Map    

Superpixels  and  Edges  

Proposed  Output  Edge  Density  (edi)  

Saliency  (si)  

Boundedness  (bi)    

Conclusion  

•  Mo#vated  by  saliency  and  category   independent  object  segmenta#on  methods,  we  predict  a  single  object  proposal  which  captures  all  the  salient  objects  in  an  image,  within  O(number  of  superpixels)3.  

•  The  CRF  parameters  are  learned  using  a  margin-­‐rescaled  struct-­‐SVM  approach  with  (1-­‐  IoU)  loss  func#on.  •  Fast   but   effec#ve   objectness   criteria,   viz.   boundedness   and   edge-­‐density.   Submodular   CRF   is  minimized   using   graph-­‐cut.  

Results  are  shown  on  the  challenging  PASCAL  VOC  2012  dataset.  

•  An  efficient  method  based  on  saliency  in  conjunc#on  with  objectness  cues   to  predict  a  category-­‐independent  object  segmenta#on,  using  a  CRF  based  formula#on.  

•  Can  be  a  preprocessing  step  for  many  high-­‐level  vision  task.  

References  

Method   CPMC  [1]   OP  [2]   Proposed  IoU  Score   0.3319     0.3266     0.4097    

[1]  [5]   [4]   [3]   [2]  

1.  Carreira  and  Sminchisescu,  “Constrained  parametric  min-­‐cuts  for  automa#c  object  segmenta#on,”    CVPR,  2010.    2.  Endres  and  Hoiem,  “Category  independent  object  proposals,”    ECCV,  2010.    3.  Roy  and  Das,  “Saliency  detec#on  in  images  using  graph-­‐based  rarity,  spa#al  compactness  and  background  

prior,”    VISAPP,  2014.    4.  Yang,  et.  al.,  “Saliency  detec#on  via  graph-­‐based  manifold  ranking,”    CVPR,  2013.  5.  Perazzi  et.  al.,  Saliency  filters:  Contrast  based  filtering  for  salient  region  detec#on.  CVPR.  2012.    

Input    

 

Objectness    

Image  Plane  

i  

j  

Unary  Poten$al  (Saliency,  Objectness)  

Pairwise  Poten$al      (based  on  color)  

Submodular  CRF  Inference:  Graph-­‐cut  

*   *  

*  Considering  top  10  proposal  masks  

φi,j(2)  (yi,  yj,  xi,  xj|w2)  

φi(1)(yi,xi|w1)  

Salient  Object  Likelihood:    φi(1)(yi,  xi(1)|w1)  =  ws  (  (1-­‐  yi)  (1-­‐si)  +  yisi  )  +  wb  (  (1-­‐  yi)  (1-­‐bi)  +  yibi  )    

+  wed  (  (1-­‐  yi)  edi  +  yi  (1-­‐edi)  )    

φi,j(2)  (yi,  yj,  xi(2),  xj(2))  =  |yi  -­‐  yj|  exp(-­‐  kc||ci  –  cj||)    Edge  Cost:  

ci  denotes  color  of  ith  superpixel  in  lab  space  and  kc  indicates  the  sensi#vity  of  color  similarity.  

CRF  parameter  Learning:  •  Convex  in  w,  given  L •  Itera#vely  op#mized,  by  finding  yn  using  graph-­‐cut,  and  thus  L • M  is  the  number  of  training  instances.  •     

wmin

12w 2 +

1M

ξnn=1

M∑

subject to, wTv =1

wTφn −wTφn ≤ L (yn,yn )+ξn

ξn ≥ 0,w2 > 0L  =  (1-­‐  IoU)

E(y, x,w) =

E(y, x,w) = φi(1)

i∈V∑ +λ φi, j

(2)

(i, j)∈E∑Energy  Func#on  over  superpixels:  

w = [w1 w2 ]= [ws wb wed λ]T