potential of an ald compatible ferroelectric

31
© Fraunhofer Potential of an ALD compatible ferroelectric Jonas Sundqvist, S. Riedel, W. Weinreich, M. Rudolf, K. Seidel, P. Polakowski, J. Müller V

Upload: jonas-sundqvist

Post on 20-Jul-2015

69 views

Category:

Technology


1 download

TRANSCRIPT

© Fraunhofer

Potential of an ALD compatible

ferroelectric

Jonas Sundqvist, S. Riedel, W. Weinreich, M. Rudolf, K. Seidel, P. Polakowski, J. Müller

V

© Fraunhofer

Outline

high-k Workshop 2014

Jonas Sundqvist

Ferroelectric HfO2

Suitable dopants

3D-integration of FE-HfO2

Motivation for 3D-integration of FE-HfO2

Conventional ferroelectrics vs. FE-HfO2

A new scaling perspective for FRAM

3D FE-HfO2 electrical data

Ease of Manufacturing

3D FE-HfO2

FeFET as embedded memory solution for HKMG

© Fraunhofer

Dopant in HfO2 RIon (Å) experiment ab initio

Al+3 0.39 active active

Gd+3 1.05 active active

Si+4 0.26 active active

Y+3 1.02 active active

Zr+4 0.84 active active

Sr+2 1.26 (like Ca+2) ?

Sc+3 / Ge+4 / Ce+4 0.87/0.39/0.97 active active

Ca+2 / Dy+3 / Er+3 1.12/1.03/1.00 active ?

La+3 1.16 active ?

Sn+4 0.55 ? active

Ti+4 0.42 inactive inactive

C+4 0.29 inactive inactive

Ta+5 0.42 (inactive) ?

literature references:

dopant stabilizes cubic or

tetragonal phase

Ferroelectric HfO2Suitable dopants:

© Fraunhofer

Dopant in HfO2 RIon (Å) experiment ab initio

Al+3 0.39 active active

Gd+3 1.05 active active

Si+4 0.26 active active

Y+3 1.02 active active

Zr+4 0.84 active active

Sr+2 1.26 (like Ca+2) ?

Sc+3 / Ge+4 / Ce+4 0.87/0.39/0.97 active active

Ca+2 / Dy+3 / Er+3 1.12/1.03/1.00 active ?

La+3 1.16 active ?

Sn+4 0.55 ? active

Ti+4 0.42 inactive inactive

C+4 0.29 inactive inactive

Ta+5 0.42 (inactive) ?

literature references:

dopant stabilizes cubic or

tetragonal phase

results from studies:

intemediate FE-Phase

ferroelectricity ALD 3D capability

confirmed +++

confirmed +

confirmed +++

confirmed +

confirmed +++

confirmed +

promising + / +++ / +

promising + / + / +

promising +

promising ++

likely absent ++

absent n/a

likely absent ++

Ferroelectric HfO2Suitable dopants:

© Fraunhofer

3D-integration of FE-HfO2motivation for 3D-integration of FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

Koyanagi, M. et. al, IEDM (1978)

© Fraunhofer

3D-integration of FE-HfO2motivation for 3D-integration of FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

Koyanagi, M. et. al, IEDM (1978)

SEM cross section of a

memory-cell array

of 1-Mbit DRAM in trial

production

memory cell measures 4

μm by 8 μm

1st 3D DRAM Capacitor cell at 1Mbit

© Fraunhofer

3D-integration of FE-HfO2Introduction of high-k devices

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

McAdams et al., IEEE JSSC, 39,

2004

PZT based FRAM

1 µm

3D-integration of FE-HfO2motivation for 3D-integration of FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

65 nm, UBM Techinsights

ZrO2 based DRAM

1 µm

Stack capacitor

Current PZT based FRAM

stagnates at 4Mbit Current DRAM´s at 4Gbit

Enabling FRAM to higher storage densities

with 3D FE-HfO2

26 nm, Chipworks

ZrO2 based DRAM

© Fraunhofer

McAdams et al., IEEE JSSC, 39,

2004

PZT based FRAM

1 µm

3D-integration of FE-HfO2motivation for 3D-integration of FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

65 nm, UBM Techinsights

ZrO2 based DRAM

1 µm

Stack capacitor

Current PZT based FRAM

stagnates at 4Mbit Current DRAM´s at 4Gbit

Enabling FRAM to higher storage densities

with 3D FE-HfO2

26 nm, Chipworks

ZrO2 based DRAM

"To continue scaling for more advanced DRAM, Samsung refined its design

and manufacturing technologies and came up with a modified double

patterning and atomic layer deposition. Samsung’s modified double patterning

technology marks a new milestone, by enabling 20nm DDR3 production using

current photolithography equipment and establishing the core technology for

the next generation of 10nm-class DRAM production. Samsung also

successfully created ultrathin dielectric layers of cell capacitors with an

unprecedented uniformity, which has resulted in higher cell performance.“

[Samsung Press Release 18.3.2014]

© Fraunhofer

Source: Globalfoundries Road Map Press ReleaseSource: Koo et al., IEDM 2006

FinFET FinFEFET ? 3D-FRAM (PZT replacement)

? FE-HfO2 ?

3D-integration of FE-HfO2motivation for 3D-integration of FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

keeping FE-HfO2 based FEFETs compatible to future logic based on

FINFETs requires 3D-capability

the lack of 3D-scaling potential represents one of the major drawbacks of

capacitor-based ferroelectric memories (1T/1C FRAM vs. DRAM)

© Fraunhofer

Koo et al., IEDM (2006)

PZT trench capacitor

- aspect ratio ~ 2:1 -

3D-integration of FE-HfO2conventional ferroelectrics vs. FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase

achieved

Koo et al., IEDM (2006)

3D-integration of FE-HfO2conventional ferroelectrics vs. FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase

achieved

our material choice:

ferroelectric Al:HfO2

excellent ALD-precursors for 3-D

step coverage available

reasonable planar Pr values

3D-MIM

vehicle developed at CNT:

Koo et al., IEDM (2006) J. Müller et al., IEDM (2013)

- CNT confidential -

3D-integration of FE-HfO2conventional ferroelectrics vs. FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase

achieved

FE-HfO2 trench capacitors

- Processflow -

Koo et al., IEDM (2006)

TiN BE+FE-HfO2 TiN TE

Resist+HM RIE etch

Resist+HM Litho 2

SC1 etch Mask removal

- CNT confidential -

J. Müller et al., IEDM (2013)

3D-integration of FE-HfO2conventional ferroelectrics vs. FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT trench capacitor

- aspect ratio ~ 2:1 -

no FE-phase

achieved

FE-HfO2 trench capacitors

- aspect ratio 13:1 -

FE-phase active

excellent SC of Al:HfO2 achievedKoo et al., IEDM (2006)

- CNT confidential -

J. Müller et al., IEDM (2013)

3D-integration of FE-HfO2conventional ferroelectrics vs. FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

- CNT confidential -

3D-integration of FE-HfO23D FE-HfO2 electrical data:

high-k Workshop 2014

Jonas Sundqvist

-3 -2 -1 0 1 2 3

-300

-200

-100

0

100

200

300

E-Field [MV/cm]

planar

1k array

3k array

10k array

30k array

100k trench

pola

riz

ati

on

C/c

m2]

(poje

cte

d a

rea A

*B

)

1k 10k 100k

0

4

8

12

gain

facto

r

trench count

P-E characteristics for different

trench arrays related to the number

of trenches for the projected planar

area

calculated gain factor related to

increase of the capacitor area

Increase of arrays = increase of

projected polarization

maximum gain factor for 100k

arrays of ~10

© Fraunhofer

- CNT confidential -

3D-integration of FE-HfO2

high-k Workshop 2014

Jonas Sundqvist

-3 -2 -1 0 1 2 3

-30

-20

-10

0

10

20

30

E-Field [MV/cm]

planar

1k array

3k array

10k array

30k array

100k array

po

lariz

ati

on

C/c

m2]

1k 10k 100k

60

80

100n

orm

to

pla

na

r P

r

[%]

trench count

Normalized polarization

(real capacitor area)

relative polarization in relation to

the planar capacitor value

almost same P-E behavior for all

trench arrays stable FE-

Phase for whole trench

3D FE-HfO2 electrical data:

© Fraunhofer

- CNT confidential -

Endurance up to 2*109 cycles for saturated polarization @ 2.5MV/cm

3D-integration of FE-HfO23D FE-HfO2 electrical data:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

FE-HfO2 trench capacitor array

minimal Pr penalty for 3D-integration

- CNT confidential -

J. Müller et al., IEDM (2013)

3D-integration of FE-HfO2Renewed scaling potential:

no significant loss of FE-

Phase stability observed

compared to planar

structures

area gain factor completly

transfered to gain in

polarisation per planar

area-4 -2 0 2 4

-400

-200

0

200

400

electric field (MV/cm)

po

lari

zati

on

C/c

m2)

(pro

ject

ed a

rea A

*B)

2D vs. 3D

x10

AB

3D

AB

2D

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT-based eDRAM

~ 10:1~ 2:1

Samsung Intel

Koo et al. IEDM (2006)

Non-Volatile

Brain et al. VLSI (2013)

VolatileJ. Müller et al., IEDM (2013)

Ease of Manufacturing3D FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT-based FE-HfO2 eDRAM

our work

Non-Volatile

~ 10:113:1~ 2:1

Samsung Intel

Koo et al. IEDM (2006)

Non-Volatile

Brain et al. VLSI (2013)

VolatileJ. Müller et al., IEDM (2013)

Ease of Manufacturing3D FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

PZT-based FE-HfO2 eDRAM

our work

~ 10:113:1~ 2:1

J. Müller et al., IEDM (2013)

Samsung Intel

Koo et al. IEDM (2006) Brain et al. VLSI (2013)

Possibility to scale FRAM with DRAM

Ease of Manufacturing3D FE-HfO2:

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

Gate First

Ease of ManufacturingFeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014

Jonas Sundqvist

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Gate First Gate Last

Ease of ManufacturingFeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014

Jonas Sundqvist

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Gate First Gate Last FinFET

Ease of ManufacturingFeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014

Jonas Sundqvist

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Gate First Gate Last FinFET

Ease of ManufacturingFeFET as Embedded Memory Solution for HKMG:

high-k Workshop 2014

Jonas Sundqvist

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

2D Fe-HfO2

metal electrode

fill metal

SiO2

silicon

3D Fe-HfO2

metal electrode

fill metal

© Fraunhofer

Conclusions

FE-HfO2 ALD is 3D capable and scalable with DRAM and eDRAM

technology

Embedded FRAM for integration in BEOL, <400°C Thermal budget proven

Embedded FEFETs in FEOL

High-k first planar : proven

Replacement Gate 3D : ongoing

FinFET : demonstration needed

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer

… and for funding to:

For your attention …

…K. Biedermann, J. Paul and our eBeam Team…

© Fraunhofer

… please feel

free to ask…

high-k Workshop 2014

Jonas Sundqvist

© Fraunhofer high-k Workshop 2014

Jonas Sundqvist

Intel’s e-DRAM Shows Up In The Wild

http://electroiq.com/chipworks_real_chips_blog/2014/02

/07/intels-e-dram-shows-up-in-the-wild/

When Intel launched their Haswell series chips last

June, they stated that the high-end systems would have

embedded DRAM, as a separate chip in the package;

and they gave a paper at the VLSI Technology

Symposium [1] that month, and another at IEDM [2].

© Fraunhofer high-k Workshop 2014

Jonas Sundqvist