[ppt]calculus for the natural sciences - university of …deturck/m104/notes/seqser.ppt · web...

58
Math 104 Calculus I SEQUENCES and INFINITE SERIES

Upload: duongthuy

Post on 11-May-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

  • Math 104Calculus I

    SEQUENCES and

    INFINITE SERIES

  • Sequences

    The lists of numbers you generate using a numerical method like Newton's method to get better and better approximations to the root of an equation are examples of (mathematical) sequences .

    Sequences are infinite lists of numbers, Sometimes it is useful to think of them as functions from the positive integers into the reals, in other words,

    *

  • The feeling we have about numerical methods like the bisection method, is that if we kept doing it more and more times, we would get numbers that are closer and closer to the actual root of the equation. In other words

    where r is the root.

    Sequences for which exists

    and is finite are called convergent, other sequences are called divergent

    Convergent and Divergent

    *

  • For example...

    The sequence

    1, 1/2, 1/4, 1/8, 1/16, .... , 1/2 , ... is convergent (and converges to zero, since ), whereas:

    the sequence 1, 4, 9, 16, .n , ... is divergent.

    2

    n

    *

  • Practice

    The sequence

    A. Converges to 0

    B. Converges to 1

    C. Converges to n

    D. Converges to ln 2

    E. Diverges

    *

  • Another...

    The sequence

    A. Converges to 0

    B. Converges to 1

    C. Converges to -1

    D. Converges to ln 2

    E. Diverges

    *

  • A powerful existence theorem

    It is sometimes possible to assert that a sequence is convergent even if we can't find the limit right away. We do this by using the least upper bound property of the real numbers:

    If a sequence has the property that a

  • Consider the sequence...

    To get each term from the previous one, you add 2 and then take the square root, i.e. ,

    It is clear that this is a monotonically increasing sequence. It is convergent because all the terms are less than 2. To see this, note that if x

  • QUESTION:

    What is the limit?

    *

  • Series of Constants

    Weve looked at limits and sequences. Now, we look at a specific kind of sequential limit, namely the limit (or sum) of a series.

  • Zenos Paradox

    How can an infinite number of things happen in a finite amount of time?

    (Zeno's paradox concerned Achilles and a tortoise)

    *

  • Discussion Questions

    1. Is Meg Ryans reasoning correct? If it isn't, what is wrong with it?

    2. If the ball bounces an infinite number of times, how come it stops? How do you figure out the total distance traveled by the ball?

  • Resolution

    The resolution of these problems is accomplished by the use of limits.

    In particular, each is resolved by understanding why it is possible to "add together" an infinite number of numbers and get a finite sum.

  • An example

    Meg Ryan worried about adding together

  • Picture This

    The picture suggests that

    the "infinite sum"

    should be 1. This is in fact true, but requires some proof.

    We'll provide the proof, but in a more general context.

    *

  • The idea of a series

    A "series" is any "infinite sum" of numbers. Usually there is some pattern to the numbers, so we can give an idea of the pattern either by giving the first few numbers, or by giving an actual formula for the nth number in the list. For example, we could write

    The things being added together are called terms of the series.

    *

  • Other series we will consider...

  • Two obvious questions

    1. Does the series have a sum? (Officially: "Does the series converge?")

    2. What is the sum? (Officially: "What does the series converge to?")

  • A less obvious question is...

    3. How fast does the series converge?

  • Convergence

    The word convergence suggests a limiting process. Fortunately, we don't have to invent a new kind of limit for series.

    Think of series as a process of adding together the terms starting from the beginning. Then the nth "partial sum" of the series is simply the sum of the first n terms of the series.

  • For example...

    the partial sums of the IQ series are:

    1st partial sum = 1/2

    2nd partial sum = 1/2 + 1/4 = 3/4

    3rd partial sum = 1/2 + 1/4 + 1/8 = 7/8

    and so forth.

    It looks line the nth partial sum of the IQ series is

    *

    whiteboard

  • It is only natural

    It is natural to define (and this is even the official definition!) the sum or limit of the series to be equal to the limit of the sequence of its partial sums, if the latter limit exists.

    For the IQ series, we really do have:

    This bears out our earlier suspicion.

    *

  • This presents a problem...

    The problem is that it is often difficult or impossible to get an explicit expression for the partial sums of a series.

    So, as with integrals, we'll learn a few basic examples, and then do the best we can -- sometimes only answering question 1, other times managing 1 and 2, and still other times 1, 2, and 3.

  • Geometric series

    The IQ series is a specific example of a geometric series .

    A geometric series has terms that are (possibly a constant times) the successive powers of a number.

    The IQ series has successive powers of 1/2.

  • Other examples

  • Convergence of geometric series

    Start (how else?) with partial sums

    Finite geometric sum:

    Therefore

    and so

  • We conclude that...

  • connect

    Which of the geometric series on the previous slide (reproduced on the next slide) converge?

    What do they converge to?

    Some questions

  • Other examples

  • Telescoping series

    Another kind of series that we can sum: telescoping series

    This seems silly at first, but it's not!

    A series is said to telescope if all the terms in the partial sums cancel except perhaps for the first and the last.

  • Example

  • Whats the big deal?

    Well, you could rewrite the series as

    which is not so obvious (in fact, it was one of the examples given near the beginning of todays class).

  • Now you try one...

    A) 1

    B) 3/4

    C) 1/2

    D) 1/4

    E) 1/8

  • Occasionally it helps to recognize a series as a

    telescoping series. One important example of such a

    series is provided by improper integrals.

    Suppose F '(x) = f(x). Then we can think of the

    improper integral

    as being the sum of the series

    Improper integrals

  • Continued...

    Since the nth partial sum of this series is F(n+1) - F(1), it's clear that the series converges to

    just as the integral would

    be equal to

    (Note the subtle difference between the two limits -- the limit of the series might exist even when the improper integral does not).

  • The convergence question

    For a while, well concentrate on the question

    1: Does the series converge?

    One obvious property that convergent series must have is that their terms must get smaller and smaller in order for the limit of the partial sums to exist.

  • Fundamental necessary condition for convergence:

    This is only a test you can use to prove that a series does NOT converge

  • Harmonic

    Just because the nth term goes to zero doesn't mean that the series converges. An important example is the harmonic series

    We can show that the harmonic series diverges by the following argument using the partial sums:

    For the harmonic series,

  • Harmonic (cont.)

    and so on -- every time we double the number of terms, we add at least one more half. This indicates (and by induction we could prove) that

  • Cantilever tower:

    The divergence of the harmonic series makes the following trick possible. It is possible to stack books (or cards, or any other kind of stackable, identical objects) near the edge of a table so that the top object is completely off the table (and as far off as one wishes, provided you have enough objects to stack).

    *

  • Series of positive terms

    Convergence questions for series of positive terms are easiest to understand conceptually.

    Since all the terms a are assumed to be positive, the sequence of partial sums {S } must be an increasing sequence.

    So the least upper bound property discussed earlier comes into play -- either the sequence of partial sums has an upper bound or it doesn't.

    If the sequence of partial sums is bounded above, then it must converge and so will the series. If not, then the series diverges. That's it.

    n

    n

  • Tests for convergence of series of positive terms:

    The upper bound observations give rise to several "tests" for convergence of series of positive terms. They all are based pretty much on common sense ways to show that the partial sums of the series being tested is bounded are all less than those of a series that is known to converge (or greater than those of a series that is known to diverge). The names of the tests we will discuss are...

  • Tests...

    1. The integral test

    2. The comparison test

    3. The ratio test

    4. The limit comparison test (sometimes called the ratio comparison test)

    5. The root test

    TODAY

    TODAY

  • The integral test

    Since improper integrals of the form

    provide us with many examples of telescoping series whose convergence is readily determined, we can use integrals to determine convergence of series:

  • For example, consider the series

    From the following picture, it is evident that the nth partial sum of this series is less than

    Integral test cont.

  • What is the sum?

    The sum of the terms is equal to the sum of the areas of the shaded rectangles, and if we start integrating at 1 instead of 0, the

    improper integral converges

    (question: what is the integral? so what bound to you conclude for the series?).

    Since the value of the improper integral (plus 1) provides us with an upper bound for all of the partial sums, the series must converge.

    It is an interesting question as to exactly what the sum is. We will answer it next week.

    *

  • The integral test...

  • Discussion and Connect

    -- for which exponents p does the series converge?

    (These are sometimes called p-series, for obvious reasons -- these together with the geometric series give us lots of useful examples of series whose convergence or divergence we know).

    Question

  • Error estimates:

    Using the picture that proves the integral test for convergent series, we can get an estimate on how far off we are from the limit of the series if we stop adding after N terms for any finite value of N.

    If we approximate the convergent series

    by the partial sum

    then the error we commit is less than the value of the integral

  • Take a closer look...

  • Question

    A) Converge

    B) Diverge

  • Question

    A) Converge

    B) Diverge

  • Connect

    For this latter series, find a bound on the error if we use the sum of the first 100 terms to approximate the limit. (answer: it is less than about .015657444)

    Exercise

  • The comparison test

    This convergence test is even more common-

    sensical than the integral test. It says that if

    all the terms of the series are less than

    the corresponding terms of the series

    and if converges, then

    converges also.

  • Reverse

    This test can also be used in reversed -- if

    the b series diverges and the as are bigger

    than the corresponding bs, then

    diverges also.

  • Examples:

  • Question

    A) Converge

    B) Diverge

  • Question

    A) Converge

    B) Diverge

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    whiteboard

    *

    *

    *

    ,...

    ,

    ,

    3

    2

    1

    a

    a

    a

    forth.

    so

    and

    ,

    a(2)

    ,

    a(1)

    2

    1

    a

    a

    =

    =

    n

    n

    a

    lim

    r

    a

    n

    n

    =

    lim

    0

    lim

    2

    1

    =

    n

    n

    +

    +

    ...

    ,

    2

    1

    ,

    ......

    ,

    5

    4

    ,

    4

    3

    ,

    3

    2

    n

    n

    +

    +

    -

    -

    -

    ...

    ,

    2

    1

    )

    1

    (

    ,

    ......

    ,

    5

    4

    ,

    4

    3

    ,

    3

    2

    n

    n

    n

    2

    2

    2

    ,

    2

    2

    ,

    2

    +

    +

    +

    ...

    ,

    2

    2

    2

    ,

    2

    2

    ,

    2

    +

    +

    +

    ...

    16

    1

    8

    1

    4

    1

    2

    1

    +

    +

    +

    +

    n

    n

    n

    =

    =

    +

    +

    +

    +

    1

    n

    1

    2

    1

    as

    or

    2

    1

    as

    ...

    16

    1

    8

    1

    4

    1

    2

    1

    (

    )

    )

    (

    1).

    equal

    to

    defined

    is

    0!

    (since

    !

    1

    or

    ...,

    !

    4

    1

    !

    3

    1

    !

    2

    1

    1

    1

    1

    1

    1

    as

    recognize

    could

    you

    which

    ...,

    30

    1

    20

    1

    12

    1

    6

    1

    2

    1

    series"

    harmonic

    g

    alternatin

    "

    the

    called

    is

    this

    1

    or

    ...

    4

    1

    3

    1

    2

    1

    1

    series"

    harmonic

    "

    the

    called

    sometimes

    is

    this

    1

    or

    ...

    4

    1

    3

    1

    2

    1

    1

    0

    1

    1

    1

    1

    =

    =

    =

    +

    =

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    +

    -

    +

    -

    +

    +

    +

    +

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    2

    1

    2

    -

    1

    2

    1

    2

    lim

    lim

    =

    -

    =

    n

    n

    s

    n

    n

    n

    =

    =

    =

    =

    =

    =

    +

    +

    +

    +

    -

    =

    +

    -

    +

    -

    =

    +

    +

    +

    +

    +

    +

    +

    +

    =

    +

    +

    +

    +

    5

    0

    0

    1

    1

    2

    3

    ...

    256

    3

    128

    3

    64

    3

    32

    3

    7

    1

    5

    ...

    343

    5

    49

    5

    7

    5

    5

    )

    4

    (

    3

    ...

    192

    48

    12

    3

    10

    1

    3

    ...

    10000

    3

    1000

    3

    100

    3

    10

    3

    ...

    3333333

    .

    0

    1

    ...

    1

    1

    1

    1

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    )

    )

    1

    (

    1

    (

    )

    1

    (

    +

    -

    =

    -

    n

    n

    r

    a

    S

    r

    n

    n

    n

    n

    rS

    ar

    ar

    ar

    ar

    ar

    S

    ar

    ar

    ar

    ar

    a

    =

    +

    +

    +

    +

    +

    =

    +

    +

    +

    +

    +

    +

    )

    1

    (

    4

    3

    2

    3

    2

    ...

    ...

    r

    r

    a

    S

    n

    n

    -

    -

    =

    +

    1

    )

    1

    (

    )

    1

    (

    otherwise.

    diverges

    and

    ,

    1

    r

    when

    precisely

    converges

    series

    geometric

    the

    Therefore

    otherwise.

    exist

    not

    does

    and

    ,

    1

    r

    if

    1

    to

    equal

    is

    lim

    p/p

    p-/p

    p/p

    p/p

    pr/p

    pa/p

    pS/p

    pn/p

    pn/p

    p1./p

    p /p

    p to/p

    pconverges/p

    p /p

    pseries/p

    p /p

    p the/p

    pso/p

    p,/p

    p1/p

    pn/p

    p1/p

    p-/p

    p1/p

    p /p

    pis/p

    p /p

    pseries/p

    p /p

    p this/p

    pof/p

    p /p

    psum/p

    p /p

    ppartial/p

    pnth /p

    p /p

    pe/p

    pClearly th/p

    p.../p

    p)/p

    p1/p

    p1/p

    p1/p

    p...(/p

    p)/p

    p4/p

    p1/p

    p3/p

    p1/p

    p(/p

    p)/p

    p3/p

    p1/p

    p2/p

    p1/p

    p(/p

    p)/p

    p2/p

    p1/p

    p1/p

    p(/p

    p+/p

    p+/p

    p+/p

    p-/p

    p+/p

    p-/p

    p+/p

    p-/p

    p+/p

    p-/p

    pn/p

    pn/p

    p.../p

    p)/p

    p1/p

    p(/p

    p1/p

    p.../p

    p12/p

    p1/p

    p6/p

    p1/p

    p2/p

    p1/p

    p+/p

    p+/p

    p+/p

    p+/p

    p+/p

    p+/p

    pn/p

    pn/p

    p?/p

    p1/p

    p1/p

    p /p

    pseries/p

    p /p

    p the/p

    pof/p

    p /p

    psum/p

    p /p

    p the/p

    pis/p

    pWhat /p

    p2/p

    pk/p

    p2/p

    p/p

    p/p

    p=/p

    p-/p

    pk/p

    p/p

    p/p

    p1/p

    p)/p

    p(/p

    pf/p

    pdx/p

    px/p

    p.../p

    pF(3))/p

    p-/p

    p(F(4)/p

    pF(2))/p

    p-/p

    p(F(3)/p

    pF(1))/p

    p-/p

    p(F(2)/p

    p.../p

    p)/p

    p(/p

    pf/p

    p)/p

    p(/p

    pf/p

    p)/p

    p(/p

    pf/p

    p4/p

    p3/p

    p3/p

    p2/p

    p2/p

    p1/p

    p+/p

    p=/p

    p+/p

    p=/p

    p+/p

    p+/p

    p+/p

    p/p

    p/p

    p/p

    pdx/p

    px/p

    pdx/p

    px/p

    pdx/p

    px/p

    pF(1)/p

    p))/p

    p(/p

    pF/p

    plim/p

    p(/p

    p-/p

    p/p

    p/p

    pn/p

    pn/p

    pF(1)/p

    p))/p

    p(/p

    pF/p

    plim/p

    p(/p

    p-/p

    p/p

    p/p

    px/p

    px/p

    p0/p

    plim/p

    p /p

    punless/p

    p /p

    pconverge/p

    pcannot /p

    p /p

    p /p

    pseries/p

    pA /p

    p1/p

    p=/p

    p/p

    p/p

    p/p

    p=/p

    p/p

    pn/p

    pn/p

    pn/p

    pn/p

    pa/p

    pa/p

    p/p

    p/p

    p/p

    p=/p

    p/p

    p=/p

    p+/p

    p1/p

    p1/p

    p1/p

    p))/p

    parctan(/p

    p /p

    pdoes/p

    p /p

    pas/p

    p /p

    pdiverges,/p

    p /p

    p /p

    p(e.g.,/p

    pn/p

    pn/p

    pn/p

    pn/p

    pn/p

    p/p

    p/p

    p=/p

    p1/p

    p1/p

    pn/p

    pn/p

    p2/p

    p5/p

    p8/p

    p1/p

    p8/p

    p1/p

    p8/p

    p1/p

    p8/p

    p1/p

    p2/p

    p4/p

    p8/p

    p1/p

    p7/p

    p1/p

    p6/p

    p1/p

    p5/p

    p1/p

    p4/p

    p1/p

    p3/p

    p1/p

    p2/p

    p1/p

    p8/p

    p2/p

    p4/p

    p4/p

    p1/p

    p4/p

    p1/p

    p2/p

    p3/p

    p4/p

    p1/p

    p3/p

    p1/p

    p2/p

    p1/p

    p4/p

    p2/p

    p3/p

    p2/p

    p1/p

    p2/p

    p1/p

    p1/p

    p1/p

    p1/p

    p1/p

    p=/p

    p+/p

    p+/p

    p+/p

    p+/p

    p/p

    p+/p

    p+/p

    p+/p

    p+/p

    p+/p

    p+/p

    p+/p

    p=/p

    p=/p

    p+/p

    p+/p

    p>

    +

    +

    +

    =

    =

    +

    =

    =

    S

    S

    S

    S

    diverges.

    series

    harmonic

    the

    so

    ,

    lim

    that

    case

    y the

    necessaril

    is

    it

    so

    ,

    2

    3

    2

    =

    >

    -

    n

    n

    n

    S

    S

    n

    1

    dx

    )

    x

    (

    f

    =

    1

    1

    2

    n

    n

    +

    n

    x

    1

    dx

    1

    2

    1

    1

    2

    dx

    x

    1

    =

    1

    1

    1

    1

    integral

    the

    of

    divergence

    knew the

    already

    we

    -because

    -

    series

    harmonic

    the

    of

    divergence

    the

    of

    proof

    easier

    new,

    a

    us

    gives

    This

    integral).

    for the

    checked

    be

    to

    needs

    infinity

    at

    e

    convergenc

    (only

    diverge

    both

    or

    converge

    both

    either

    f

    integral

    improper

    the

    and

    f

    series

    the

    ,

    decreasing

    and

    positive

    is

    f(x)

    function

    the

    if

    that

    says

    .

    dx

    dx

    )

    x

    (

    )

    x

    (

    x

    x

    =

    1

    1

    n

    n

    p

    =

    1

    )

    (

    f

    n

    n

    =

    =

    N

    n

    N

    n

    s

    1

    )

    (

    f

    N

    dx

    x

    )

    (

    f

    1.6

    n

    bigger tha

    little

    a

    is

    sum

    actual

    the

    -

    -

    off

    far

    t

    isn'

    estimate

    this

    laer,

    see

    shall

    we

    (As

    .

    sum

    infitie

    the

    from

    0.2,

    or

    ,

    than

    less

    by

    differs

    This

    1.46.

    ely

    approximat

    is

    which

    ,

    1

    sum

    the

    example,

    For

    1

    1

    5

    1

    5

    1

    3600

    5269

    25

    1

    16

    1

    9

    1

    4

    1

    2

    2

    =

    =

    =

    +

    +

    +

    +

    n

    n

    x

    dx

    diverge?

    or

    converge

    series

    the

    Does

    1

    1

    2

    =

    +

    n

    n

    n

    diverge?

    or

    converge

    series

    the

    Does

    1

    1

    )

    arctan(

    2

    =

    +

    n

    n

    n

    =

    1

    n

    n

    a

    =

    1

    n

    n

    b

    diverges.

    converges.

    1

    )

    sin(

    1

    2

    1

    =

    +

    =

    +

    n

    n

    n

    n

    n

    n

    n

    diverge?

    or

    converge

    series

    the

    Does

    5

    2

    1

    =

    -

    k

    k

    diverge?

    or

    converge

    series

    the

    Does

    1

    2

    1

    2

    =

    +

    n

    n

    n