predictingreservoirarchitecture*indeep … preamble*...

26
1 Predicting Reservoir Architecture in Deepwater Systems (PRAX2) EXECUTIVE SUMMARY This proposal consists of a unique combination of digitallybased outcrop studies, and oceanographic studies of modern systems, combined with a decade of previous research including stateoftheart numerical modeling, to understand deepwater depositional systems and their resulting reservoir architecture and properties. Earlier research has focused on: coarsegrained channel systems and their overbank deposits (terraces and levees), and seismic modeling of their architectures; numerical modeling of overbank flow processes; and ponded slope accommodation related to mass transport deposits. The results of this earlier research will form the foundation to the present study, and will be available to sponsors. The present study extends the scope into a more holistic view of deepwater systems, via new field studies, the main focus of which will be: sheetlike sand bodies (lobes, splays and confined/ponded sheets) diversity of channel fills and their overbanks impact of mass transport on reservoir development Deliverables In addition to new proprietary models and data, outputs will include extensive hierarchical reviews of deepwater depositional elements and processes, incorporating the results of our earlier research and integrating it with the existing published literature; the project results will be progressively incorporated as the research proceeds. This will provide a comprehensive overview for those not well versed in deepwater sedimentology and stratigraphy, or for those seeking an upto date refresher. One of the main challenges that sponsors have with JIPs is figuring out how to apply the outcomes in the subsurface. To this this end, in addition to the deepwater subject reviews, we will develop workflows that the end user can apply to their own prospects or fields, including not only the learnings from our own research but also as much as possible of our experience in the analysis and application of background knowledge to deepwater systems in the subsurface.The project will also include at least one training trip annually to one of the field areas of the project. The project will thus provide training and education opportunities for sponsors.

Upload: vanliem

Post on 20-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

 

 

1  

Predicting  Reservoir  Architecture  in  Deep-­‐water  Systems  (PRAX-­‐2)  

   

       

EXECUTIVE  SUMMARY    This  proposal  consists  of  a  unique  combination  of  digitally-­‐based  outcrop  studies,  and  oceanographic  studies  of  modern  systems,  combined  with  a  decade  of  previous  research  including  state-­‐of-­‐the-­‐art  numerical  modeling,  to  understand  deep-­‐water  depositional  systems  and  their  resulting  reservoir  architecture  and  properties.      Earlier  research  has  focused  on:  coarse-­‐grained  channel  systems  and  their  overbank  deposits  (terraces  and  levees),  and  seismic  modeling  of  their  architectures;  numerical  modeling  of  overbank  flow  processes;  and  ponded  slope  accommodation  related  to  mass  transport  deposits.  The  results  of  this  earlier  research  will  form  the  foundation  to  the  present  study,  and  will  be  available  to  sponsors.    The  present  study  extends  the  scope  into  a  more  holistic  view  of  deep-­‐water  systems,  via  new  field  studies,  the  main  focus  of  which  will  be:    

• sheet-­‐like  sand  bodies  (lobes,  splays  and  confined/ponded  sheets)  • diversity  of  channel  fills  and  their  overbanks  • impact  of  mass  transport  on  reservoir  development  

 Deliverables  In  addition  to  new  proprietary  models  and  data,  outputs  will  include  extensive  hierarchical  reviews  of  deep-­‐water  depositional  elements  and  processes,  incorporating  the  results  of  our  earlier  research  and  integrating  it  with  the  existing  published  literature;  the  project  results  will  be  progressively  incorporated  as  the  research  proceeds.  This  will  provide  a  comprehensive  overview  for  those  not  well  versed  in  deep-­‐water  sedimentology  and  stratigraphy,  or  for  those  seeking  an  up-­‐to-­‐date  refresher.  One  of  the  main  challenges  that  sponsors  have  with  JIPs  is  figuring  out  how  to  apply  the  outcomes  in  the  subsurface.  To  this  this  end,  in  addition  to  the  deepwater  subject  reviews,  we  will  develop  workflows  that  the  end  user  can  apply  to  their  own  prospects  or  fields,  including  not  only  the  learnings  from  our  own  research  but  also  as  much  as  possible  of  our  experience  in  the  analysis  and  application  of  background  knowledge  to  deepwater  systems  in  the  subsurface.The  project  will  also  include  at  least  one  training  trip  annually  to  one  of  the  field  areas  of  the  project.    The  project  will  thus  provide  training  and  education  opportunities  for  sponsors.        

 

 

2  

PREAMBLE  Profitability  in  today’s  highly  challenging  environment  depends  more  than  ever  on  recovery  efficiency.  Of  the  principal  factors  that  impact  recovery,  sweep  is  the  most  dependent  upon  a  proper  geological  understanding  of  the  architecture  and  structure  of  the  reservoir.    In  depositional  settings  as  complex  and  variable  as  deep  water  it  is  virtually  impossible  to  be  entirely  deterministic  about  the  sedimentary  architecture.  It  is,  however,  possible  to  constrain  the  range  of  possibilities  (and  their  associated  reservoir  properties)  based  upon  a  comprehensive  understanding  of  deep-­‐water  systems  that  draws  on  integration  of  outcrop  analogue  work,  studies  of  modern  deep-­‐water  depositional  systems,  laboratory  experiments  and  computational  fluid  dynamics.  This  can  result  in  some  surprises,  such  as  the  likelihood  that  well  over  half  the  net  sand  in  slope  channel  systems  is  contained  within  thin  beds  with  potentially  predictable  distributions.  It  also  emphasizes  the  value  of  input  from  the  appropriate  disciplines  (sedimentologists/stratigraphers)  at  the  right  time.      Unlike  the  majority  of  depositional  systems,  modern  deep-­‐water  environments  are  difficult  and  expensive  places  in  which  to  make  direct  observations  of  depositional  architecture  and  process.    Consequently  predicting  reservoir  occurrence  (at  exploration  scale),  and  reservoir  architecture  and  properties  (at  production  scale)  are  dependent  on  the  use  of  multiple  analogues  and  models,  and  prone  to  a  high  degree  of  uncertainty.  Generating  such  models,  and  fully  understanding  their  meaningful  application  and  the  surrounding  uncertainty,  requires  an  integrated  approach  utilizing  multiple  techniques  and  data  types.    By  combining  outcrop  data;  shallow  (high  resolution)  seismic  data;  conventional  industry  seismic  data;  marine  geology  (coring,  multichannel  seismic  and  swath  bathymetry),  and  numerical  modeling,  we  bring  a  uniquely  integrated  approach  to  the  understanding  of  deep-­‐water  systems.  The  Principal  Investigators  have  between  them  almost  150  years  of  cumulative  deepwater  experience,  have  participated  in  over  40  research  cruises,  and  have  decades  of  involvement  with  industry  via  research  consortia,  consultancy  and  training.    PROJECT  THEMES  &  DELIVERABLES    The  PRAX-­‐2  JIP  proposal  builds  on  a  rich  10-­‐year  legacy  of  studies  on  all  of  the  major  reservoir  components  in  slope  systems.  The  project  will  add  additional  field  studies  (see  Annex).  However  the  key  for  PRAX-­‐2  is  to  integrate  all  of  this  past  and  current  data  into  formats  that  make  it  easy  for  any  geoscientist  or  engineer  to  access  the  information  in  an  easy  and  practical  way.  The  fundamental  elements  of  this  are  the  following.    Topic  reviews  will  provide  hierarchical  online  summaries  of  knowledge  on  each  element  of  deep-­‐water  systems,  reviewing  and  condensing  both  our  own  JIP  data  and  published  work,  including  outcrop  analogues,  observations  and  interpretations  from  typical  subsurface  data  sets  (seismic,  well  logs,  cores),  and  syntheses  of  stratigraphic  and  facies  models,  highlighting  common  themes  and  uncertainties,  ranging  from  one-­‐page  ‘abstracts’,  via  increasing  levels  of  detail,  to  –  at  the  deepest  level  -­‐  the  results  of  our  own  studies.  

 

 

3  

 Workflows  will  provide  guidance  to  the  description  and  interpretation  of  the  significant  facies  which  contain  and  control  the  distribution  of  reservoirs  (practical  hints  and  tips).  It  will  incorporate  comprehensive  JIP  work  (especially  outcrop  analogues)  to  support  and  demonstrate  the  interpretation  guidelines.    Annual  sponsors’  meetings  will  be  held  to  deliver  results  via  oral  presentations  and  posters  that  will  be  available  to  sponsors  via  the  web.  Costs  of  holding  sponsors’  meetings  outside  of  Aberdeen  will  be  divided  pro-­‐rata  between  attending  sponsors.    Training-­‐oriented  field-­‐trips  will  be  held  when  practical,  in  one  of  the  field  areas  of  the  current  or  previous  projects.  These  will  be  provided  at  cost,  and  the  charges  distributed  pro-­‐rata  between  attendees.    Sponsors  may  wish  to  send  delegates  to  observe  or  participate  in  fieldwork  at  their  own  cost.    PRINCIPAL  INVESTIGATORS    Ben  Kneller  is  a  Professor  in  the  Department  of  Geology  and  Petroleum  Geology  at  University  of  Aberdeen,  with  over  30  years  of  deepwater  experience  and  23  years  experience  of  leading  Joint  Industry  Projects.    Mike  Mayall  was  formerly  the  leader  of  the  sed/strat  network  within  BP,  and  is  now  a  consultant;  he  has  over  30  years  of  subsurface  experience.    Bryan  Cronin  is  an  independent  consultant  and  Honorary  Professor  at  University  of  Aberdeen,  with  extensive  experience  in  marine  geology  research,  consultancy  and  training.    Juan  Pablo  Milana  is  a  Principal  Researcher  with  CONICET  (the  Argentine  national  research  council)  and  a  faculty  member  at  Universidad  Nacional  de  San  Juan,  Argentina.    Fabiano  Gamberi  is  a  Senior  Scientist  at  Istituto  de  Scienze  Marine  in  Bologna,  leader  of  many  research  cruises,  with  extensive  field  geology  experience.    Ian  Kane  is  a  Reader  at  Manchester  University,  who  until  recently  worked  for  Statoil  in  their  deepwater  group.      Associated  Researchers:  Hasan  Çelik  (Firat  University,  Elazig,  Turkey)  Kemal  Gurbuz  (Cukurova  University,  Adana,  Turkey)  Eckart  Meiburg  (University  of  California,  Santa  Barbara,  USA)  Marzia  Rovere  (ISMAR,  Bologna,  Italy)    COST  AND  TIMING  The  three-­‐year  project  followed  on  from  the  previous  Joint  Industry  Project  (Predicting  Reservoir  Architecture  in  Channelised  Slope  Settings)  that  

 

 

4  

terminated  in  March  2015.  Entry  may  be  phased  to  permit  first  payment  in  2016.  The  cost  will  be  £30k  per  year  for  new  sponsors.  Equivalent  fees  in  euros  or  US  dollars  will  be  fixed  at  the  exchange  rate  pertaining  at  the  contract  date.    EXECUTION  The  work  will  be  carried  out  by  the  the  Principal  Investigators,  Post-­‐doctoral  Research  Fellows  and  PhD  students.  Three  of  the  PhD  students  and  one  post-­‐doc  are  already  in  post,  and  an  additional  post-­‐docs  is  due  to  begin  work  in  April  2016.  Extensive  field  infrastructure  is  already  in  place  including  our  own  4-­‐wheel  drive  vehicles  in  Argentina,  Mexico  and  Turkey,  and  we  have  a  large  inventory  of  field  equipment.      Students  will  be  expected  to  integrate  data  from  various  sources  into  their  dissertations,  including  subsurface  data  provided  by  sponsor  companies.  They  will  be  encouraged  to  undertake  internships  with  sponsor  companies  as  an  additional  means  of  technology  transfer.    ANNEX  Fieldwork  themes    1.  Turbidite  sheet  systems.  Many  turbidite  sandstone  bodies  consist  of  sheet-­‐like  beds  of  amalgamated  sandstone  or  non-­‐amalgamated  alternations  of  sandstone  with  siltstone/mudstone,  which  may  appear  tabular  on  a  small  scale.  On  a  reservoir  scale  the  turbidites  within  these  deposits  possess  architectures  that  are  governed  by  at  least  four  controlling  parameters  

• flow  magnitude  • sand/mud  ratios  • flow  concentration  • degree  of  confinement  

The  effects  of  the  first  three  of  these  have  been  studied  qualitatively  in  the  field  and  experimentally  in  the  laboratory,  but  models  of  the  effects  of  flow  confinement  on  architecture  are  not  well  developed.    Frontal  Splay  Architecture  In  turbidite  systems  that  are  ‘underfit’  with  respect  to  the  topography  (ie  are  unconfined)  much  of  the  sand  is  typically  contained  within  frontal  splays  at  the  ends  of  channels.    Sea  floor  and  shallow  seismic  data  splays  show  a  bewildering  variety  of  external  geometries  and  stacking  patterns  for  such  frontal  splays  (Fig.  1),  which  fundamentally  affect  their  reservoir  properties,  yet  the  internal  architectures  of  these  various  different  types  of  frontal  splays  are  largely  unknown.  A  major  theme  of  PRAX-­‐2  will  be  to  compare  different  styles  of  frontal  splay  at  outcrop,  relate  these  to  the  various  geometries  observable  in  modern  systems,  and  establish  criteria  for  differentiating  these  in  the  subsurface.    The  Eastern  and  Western  Fans  in  the  Adana  Basin  (Fig.  2)  are  two  large  deep-­‐water  base-­‐of-­‐slope/basin  floor  fans  formed  during  the  early  Miocene  along  a  70km  exposed  strike  section  of  basin  margin.  The  fans  were  fed  by  fan  deltas  during  periods  of  rapid  sea  level  fall.  The  deep-­‐water  sections,  up  to  2.5  km  thick,  

 

 

5  

include  1.5km  of  sandstone-­‐dominated  fan  dominated  by  frontal  splays  enveloped  by  sheet  sandstones  and  shales  (Fig.  3).      Within  these  two  fans,  dramatic  new  road  sections  provide  excellent  cross-­‐sectional  exposures  of  the  architecture  of  what  are  sheet  like  in  general  aspect,  but  consist  of  alternations  of  thin-­‐bedded  sheets  and  more  pod-­‐like  frontal  splays  that  are  approximately  5  to  8m  thick  and  800  to  1,500  m  wide.  The  distance  from  the  feeder  canyon  and  the  lateral  pinch-­‐out  against  the  adjacent  slope  is  well  known  from  previous  work  (e.g.  Cronin  et  al,  2000;  Satur  et  al,  2007).    The  Maras  Basin  in  eastern  Turkey  is  a  Miocene  foreland  basin  located  three  hours  NE  of  the  Adana  Basin  in  southern  Turkey.    The  Alikayasi  and  Tekir  slope  canyon-­‐channel  systems  (partially  studied  in  in  the  preceding  Joint  Industry  Project)  are  bypass-­‐dominated  slope  channel  complexes  on  the  northern  basin  margin,  which  fed  through  a  channel-­‐lobe  transition  zone  (CLTZ)  into  a  series  of  sheet  systems,  including  frontal  splays,  that  alternate  with  mass  transport  deposits  and  thin-­‐bedded  turbidites  (Fig.  4).      The  sheet  systems  of  the  Maras  Basin  complement  those  of  the  Adana  Basin  frontal  splays,  in  that  they  show  a  variety  of  layered  and  amalgamated  geometries  that  build  into  our  conceptual  descriptional  framework  for  non-­‐channelised  turbidite  systems.  Mapping  of  the  sheet  complexes  will  be  completed  within  the  framework  of  PRAX-­‐2.  Defining  frontal  splay  architecture,  compensational  stacking,  connectivity,  frequency  of  splay  avulsion  and  its  causes,  and  the  downslope  transitions  are  all  themes  of  this  part  of  the  study.    Work  will  be  supported  locally  by  Dr  Hasan  Celik  (Firat  University,  Elazig)  and  Professor  Kemal  Gurbuz  (Cukurova  University,  Adana).    Confined/unconfined  systems  Early  models  for  turbidite  systems  differentiated  what  are  now  commonly  called  basin-­‐floor  fans  (Type  II  systems  of  Mutti  &  Normark,  1991)  from  laterally  extensive  and  less  amalgamated  sheet  systems  (Type  I  systems  of  Mutti  &  Normark;  Fig.  5).  Mutti  &  Normark  suggested  that  they  might  relate  to  different  stages  of  a  sea  level  cycle,  but  subsequent  work  seems  to  indicate  that  in  fact  truly  sheet-­‐like  turbidite  systems  form  when  the  turbidity  currents  are  confined  or  contained  within  a  small  or  narrow  basin.  Their  bed  geometry  and  overall  architecture  is  a  result  of  interaction  between  turbidity  currents  and  the  margins  of  the  basin,  and  so  depends  both  on  the  size  of  the  basin  and  on  the  size  of  the  flows.    Exceptionally  well-­‐exposed  sheet-­‐like  turbidite  systems  in  the  syn-­‐  to  post-­‐glacial  Pennsylvanian  of  western  Argentina  (Fig.  6)  occupy  basins  ranging  in  scale  from  paleofjords,  little  more  than  a  kilometer  across  (Jejenes  Formation  of  San  Juan  province  Fig.  7),  to  sub-­‐basins  of  at  least  10  km  width  (Guandacól  Formation  of  La  Rioja  province;  Fig.  8).  They  present  a  unique  opportunity  to  compare  and  contrast  the  architectures  resulting  from  differing  degrees  on  confinement.  These  systems  (which  have  been  the  subject  of  a  substantial  amount  of  earlier  work  under  our  supervision)  will  be  compared  with  published  

 

 

6  

and  unpublished  data  from  other  systems  known  to  show  various  degrees  of  confinement  at  various  scales,  ranging  from  unconfined  lobes/splays  of  the  Permian  Tanqua  Karoo,  via  ponded  mini-­‐basins  of  the  Alpine  foreland  basin  to  elongate  foredeeps  of  the  Eocene  Hecho  Group  (northern  Spain)  and  the  Miocene  Marnoso-­‐Arenacea.  We  will  focus  particularly  on  issues  of  connectivity.    With  sufficient  sponsors  (8  or  more)  we  will  apply  existing  numerical  models  (direct  numerical  simulations  partly  developed  under  earlier  collaboration  with  UC  Santa  Barbara)  to  simulate  the  changes  in  architecture  with  increasing  confinement.    Composite  systems  Many  (if  not  most)  laterally  extensive  sandy  turbidite  systems  (lobes/splays  and  sheets)  contain  not  only  turbidites  but  also  the  deposits  of  other  types  of  sediment  gravity  flow,  including  most  commonly:  debrites;  mega-­‐beds  of  various  types;  and  hybrid  beds  consisting  of  the  deposits  of  flows  with  some  degree  of  non-­‐Newtonian  behavior  –  either  combinations  of  co-­‐genetic  turbidite  and  debrite,  or  flows  with  behavior  transitional  between  the  two  (e.g.  Haughton  et  al.,  2009)  that  generate  ‘dirty’  matrix-­‐rich  sands;  often  these  have  a  detrimental  impact  on  reservoir  properties.  Debrites  have  been  identified  in  the  depositional  lobes  of  several  large  submarine  fans  (Mississippi.  Congo;  Fig.  9),  and  are  commonly  interbedded  with  sandy  or  heterolithic  turbidites  in  outcrop.      The  important  question  concerning  reservoir  architecture  is:  what  determines  bed  stacking  in  composite  systems,  and  how  does  the  interbedding  of  deposits  of  different  processes  influence  the  overall  stacking  pattern?  Systems  built  by  a  mix  of  processes  will  have  different  patterns  to  those  consisting  either  solely  of  turbidites  or  of  debrites,  since  each  type  of  flow  responds  differently  to  the  topography  generated  by  the  other.      In  this  study  we  will  not  only  draw  on  the  results  of  PhDs  previously  supervised  by  the  Principal  Investigators  to  re-­‐visit  systems  where  such  interaction  is  known  to  have  occurred  (e.g.  the  Oligocene  Grès  de  Peira  Cava  in  the  Alpine  foreland  basin),  but  will  undertake  new  studies  in  well-­‐exposed  mixed  turbidite/debrite  lobe  deposits  of  Miocene  age  in  the  Maras  and  Adana  basins  in  central  Turkey  (Fig.  2)  that  have  been  the  subject  of  earlier  reconnaissance  studies.    The  Pennsylvanian  Guandacól  Formation  of  La  Rioja  province,  western  Argentina  (Fig.  6),  contain  several  types  of  hybrid  flow  deposits,  which  can  be  traced  and  correlated  over  several  kilometres,  providing  constraints  on  models  for  the  physical  behavior  of  the  parent  flows.  If  funding  permits  we  will  use  these  constraints  to  develop  numerical  models  for  non-­‐Newtonian  flow  behavior  in  partnership  with  our  longstanding  collaborators  at  University  of  California,  Santa  Barbara  (UCSB),  to  better  understand  the  generation  and  distribution  of  matrix-­‐rich  sands.    Megabeds  within  sheet  systems  are  the  deposits  of  flows  that  are  exceptionally  large  compared  to  the  basin  area,  and  are  typically  substantially  thicker  than  

 

 

7  

most  other  deposits  in  the  same  system.  These  often  consist  of  a  composite  of  turbidite/debrite  ,  and  typically  have  thick  mud  caps.  Not  only  may  these  constitute  good  stratigraphic  markers,  but  they  can  form  reservoirs  in  their  own  right  (North  Sea  Paleocene  and  Jurassic,  e.g.  Pauley,  1995);  moreover  the  mudstones  that  typically  cap  these  beds  may  form  important  intra-­‐reservoir  barriers.        A  comparative  study  of  the  range  in  and  controls  upon  megabeds  will  be  undertaken  as  part  of  the  overall  study  of  sheet-­‐like  systems,  overseen  by  a  post-­‐doctoral  researcher.  Excellent  examples  exist  within  the  Pennsylvanian  Jejenes  and  Paganzo  Formations  (San  Juan  and  La  Rioja  provinces  respectively)  in  western  Argentina  (already  partly  studied  by  the  post-­‐doctoral  candidate;  Fallgatter,  2014;  Fig.  10),  but  also  in  the  Oligocene  Grès  de  Peïra  Cava,  France  (Amy  et  al.,  2000),  the  classic  Miocene  Marnoso  Arenacea,  Italy  (Lucente,  2004),  and  the  Eocene  Hecho  Group,  Spain  (Labaume  et  el.,  1987;  Remacha  et  al.,  2005).          Insights  from  modern  systems  In  the  Tyrrhenian  Sea  (Fig.  11),  the  Capo  d’Orlando  basin  plain  (Fig.  12)  is  fed  by  multiple  slope  channels  that  build  distinct  lobes  with  various  geometry  of  interfingering  and  overlapping  portions.  At  the  present  day,  some  of  the  channels  are  connected  with  the  coastal  systems  and  are  sites  of  turbidity  currents,  whereas  others,  stranded  at  the  shelf  edge  away  from  any  coastal  systems,  are  fed  only  by  mass  transport  deposits.  The  lobes  are  confined  seaward  by  a  volcanic  slope  and  are  also  affected  by  subtle  topography  created  by  seafloor  faulting.  Preliminary  analysis  of  cores  show  that  some  of  the  deposits  can  correspond  to  hybrid  deposits  due  to  various  types  of  flow  transformations.  We  have  selected  this  area,  already  covered  by  an  extensive  integrated  data  set,  to  perform  a  comprehensive  study  of  the  multifaceted  aspects  of  modern  lobe  development.      With  sufficient  sponsorship  (seven  companies  or  more)  the  existing  cores,  bathymetric,  sidescan  sonar  and  sub-­‐bottom  data  will  be  complemented  with  the  acquisition  of  multichannel  high  resolution  seismic  lines  and  additional  seafloor  sampling.  The  integrated  data  set  will  allow  our  research  to  address  both  the  processes  at  the  scale  of  single  flow  units  and  the  processes  at  the  scale  of  thicker  multi-­‐flow  depositional  units.    Issues  that  will  be  addressed  are:    

• facies,  internal  elements  and  geometry  of  lobes  built  by  debris  flows;    • facies,  internal  elements  and  geometry  of  lobes  built  by  turbidity  

currents;  • mutual  relationships  between  mass  transport  and  turbidite  lobes;    • debris  flow  lobe  as    potential  sealing  units  of  turbidite  reservoirs;    • internal  heterogeneity  of  turbidite  reservoirs;  • thickness  and  facies  variations  imposed  by  seafloor  topography;    • assessment  and  quantification  of  the  influence  of  seafloor  topography  on  

the  thickness  and  quality  of  reservoirs  units;  • hybrid  beds  character  and  distribution;  

 

 

8  

• channel-­‐mouth  deposits  and  their  down-­‐  and  up-­‐dip  continuity;    • temporal  variations  in  stacking  pattern  and  their  linkage  with  auto-­‐  and  

allocyclic  factors.    2.  Channel  diversity  Previous  work  under  the  Slopes  and  PRACSS  consortia  has  established  the  architectural  patterns  of  bypass-­‐dominated  coarse-­‐grained  channel  systems,  and  given  some  idea  of  their  diversity.  It  is  clear,  however,  that  both  fine-­‐grained  (sandy)  channel  systems  and  aggradationally-­‐dominated  coarse-­‐grained  systems  possess  architectures  that  are  distinct  from  coarse-­‐grained  bypass-­‐dominated  systems.  We  propose  comparative  studies  of  both  these  types  of  channel  systems  to  define  end  members  of  the  submarine  channel  spectrum.    Sandy  slope  channel  fills  The  first  element  of  this  proposal  is  a  field-­‐based  study  of  coastal  exposures  of  deep-­‐water  channel-­‐fill  sandstones  of  the  Oligo-­‐Miocene  Cabo  Domingo  Group  of  the  Austral  Basin,  Argentina.  The  Cabo  Domingo  Group  is  exposed  along  the  eastern  coast  of  Tierra  del  Fuego  (Fig.  13),  and  each  cape  reflects  the  presence  of  a  sandy  unit.  A  reconnaissance  of  two  of  these  channel  complexes  (Cabo  Viamonte  and  Cabo  Ladrillero,  Fig.  14a  &  b)  suggests  a  range  of  fill  styles  from  well-­‐stratified  (Cabo  Viamonte)  to  more  massive  (Cabo  Ladrillero).  The  more  complex  fills  show  large  multi-­‐storey  channels  with  a  complex  history  of  relocalization  of  the  active  channel  (cf  Ponce  et  al.,  2008).    The  fill  of  each  channel  usually  begins  with  a  thin  coarser-­‐grained  unit,  typically  an  intra-­‐formational  breccia.  The  main  fill  of  the  channel  consists  of  medium  to  fine  sand  turbidites  (Fig.  14a),  with  typical  upward  fining  profiles.  Some  of  the  uppermost  single  channels  contain  a  fill  of  finer-­‐grained  turbidites  and  hemipelagic  muds  suggesting  channel  abandonment  (Fig.  14a).  The  main  channel  lateral  boundary  separates  the  channel  body  from  a  finer-­‐grained  levee-­‐like  package,  passing  laterally  into  more  muddy  sequences.        The  aim  will  be  to  develop  a  reservoir  model  for  these  types  of  channels,  based  on  facies  architecture  and  spatial  variation  of  poroperm  properties,  as  well  as  defining  the  role  of  different  internal  boundary  surfaces  in  the  compartmentalization  of  the  reservoir.    The  work  would  be  undertaken  by  Masters  students  at  San  Juan  and  a  PhD  student  at  Aberdeen.    Part  of  the  students´  work  will  be  to  explore  the  coast  for  additional  channel  complex  styles.    Aggradational  versus  by-­‐pass  dominated  slope  channels  Coarse-­‐grained  slope  channel  systems  have  previously  been  described  by  some  authors  as  if  they  all  possessed  similar  architectures  (e.g.  Sprague  et  al.,  2005),  yet  there  are  substantial  differences  in  architecture  and  reservoir  properties  between  the  different  systems  that  we  have  studied.      For  example,  comparing  two  coarse-­‐grained  slope  channel  systems:  the  Maastrichtian  San  Fernando  channel  system  of  the  Rosario  Group  (Baja  California,  Mexico;  Dykstra  &  Kneller,  2007;  Fig.  15a  &  b)  has  a  single  bounding  surface,  and  the  fill  is  dominated  by  multiple  hierarchies  of  erosion  surface  (Fig  3c),  separating  depositional  facies  that  are  largely  traction–dominated  –  

 

 

9  

somewhat  resembling  gravelly  fluvial  deposits    (Fig.  15d);  ‘beds’  (related  to  individual  depositional  events)  are  impossible  to  define,  so  it  is  dominated  by  sediment  bypass  and  reworking  of  coarse  material  as  bed-­‐load.      By  contrast  the  Santonian-­‐Campanian  Cerro  Toro  Formation  of  the  Magellanes  Basin,  southern  Chile  (Fig.  16a),  has  no  single  master  bounding  erosion  surface  (Fig.  16c);  each  channel  complex  set  (or  storey)  has  its  own  bounding  erosion  surface,  and  the  fill  is  dominated  by  laterally-­‐persistent  beds  of  graded  clast-­‐  to  matrix-­‐supported  gravel  and  sand  (Fig.  16d),  many  of  which  can  be  traced  for  at  least  hundreds  of  metres,  as  can  the  occasional  thin-­‐bedded  intervals;  the  fill  is  thus  dominated  by  aggradation.  Nonetheless  this  system  has  previously  been  described  in  similar  architectural  terms  (e.g.  Beaubouef,  2004)  to  bypass-­‐dominated  systems,  such  as  the  Rosario  Formation,  yet  it  is  startlingly  different  in  reservoir  terms.    We  will  continue  to  evaluate  the  differences  between  and  controls  on  these  various  slope  channel  styles,  building  an  outcrop  dataset  for  the  Cerro  Toro  channel  architectures  similar  to  that  which  we  have  acquired  for  the  Rosario  (Mexico)  and  Alikayasi  (Turkey)  systems,  in  order  to  build  more  general  models  for  slope  channel  architecture.    Insights  from  modern  systems  Multibeam  bathymetric  coverage  is  available  on  many  of  the  modern  slope  channels  of  the  Tyrrhenian  Sea  (central  Mediterranean).  The  slope  channels  are  located  both  along  a  passive  (Sardinian  area)  and  an  active  (Sicilian  area)  margin.  With  sufficient  sponsorship  we  shall  examine  the  internal  elements  of  the  different  slope  channels.    The  analysis  will  be  aimed  at  a  quantitative  investigation,  relying  on  property  data  that  allow  for  direct  measurement  of  the  observed  features.  Furthermore,  it  will  complement  and  augment  the  significance  of  the  result  of  the  on-­‐going  review  of  internal  channel  elements  worldwide  from  literature  examples.    In  particular,  the  range  of  diverse  intra-­‐channel  elements  will  be  examined  and  linked  with  their  possible  genetic  processes  with  the  aim  of  developing    tools  for  predicting  the  distribution  of  internal  elements  within  slope  channels.  The  comparison  with  ancient  systems  will  be  carried  out  to  decipher  the  impact  of  intra-­‐channel  features  on  the  character  of  the  resultant  channel  infill.      Long  profiles  of  the  different  channel  systems  will  be  reconstructed  and  tied  to  longitudinal  variations  in  internal  element  distribution  to  evaluate  possible  predictive  tools  linking  channel  architecture  with  gradient  and  planform.    In  large  parts  of  the  Tyrrhenian  Sea,  the  multibeam  bathymetric  data  also  covers  the  continental  shelf  and  the  coastal  areas,  allowing  the  observation  of  the  linkage  between  the  slope  channels  and  their  feeding  systems.  The  effects  of  the  variable  character  of  the  source  areas  and  of  the  mechanisms  of  slope  sediment  delivery  on  channel  architecture  will  be  determined.      Sampling  of  slope  channel  infill  is  a  difficult  task  due  to  the  sandy  or  coarser  nature  of  their  infill.  However,  in  the  area  of  the  Capo  d’Orlando  Basin,  site  of  a  dedicated  cruise  (with  sponsorship  by  seven  or  more  companies)  we  shall  select  

 

 

10  

at  least  one  slope  channel  where  we  can  perform  a  coverage  of  box  coring  sampling  (shallow  recovery).  The  final  results  will  consist  of  the  reconstruction  of  the  distribution  of  surficial  facies  within  channel  infill  and  will  allow  a  preliminary  ground-­‐truthing  of  the  different  internal  architecture  elements  of  slope  channels.      3.  Mass  transport  deposits:  Impact  on  reservoir.  Mass  transport  deposits  (MTDs)  are  one  of  the  most  poorly  understood  elements  of  continental  slope  systems.  They  may  constitute  up  to  50%  or  more  of  the  succession,  and  although  they  are  routinely  imaged  in  high-­‐resolution  3D  seismic  data  volumes.    We  have  previously  developed  models  for  the  distribution  of  partially  ponded  sands  above  MTDs  and  their  length  scales,  but  such  sands  may  be  difficult  to  recognize  and  predict  in  the  subsurface.        Mass  movements  may,  in  some  circumstances,  glide  over  a  basal  slide  surface  with  little  or  no  effect  on  the  underlying  stratigraphy  (Fig.  17).  In  other  cases  they  may  have  a  profound  effect  on  the  underlying  stratigraphy  (including  reservoir),  either  by  removing  substantial  amounts  of  material  and  incorporating  it  into  the  moving  mass  (Figure  18),  or  by  transmitting  strain  downwards  into  more  or  less  in  situ  stratigraphy  below  the  basal  slide  surface,  and  disrupting  it.  It  may  be  hard  to  differentiate  in  situ  material  from  the  MTD.      Superb  examples  of  seismic-­‐scale  (>100m  thick)  MTDs  occur  at  outcrop  in  western  Argentina  (Carboniferous  Guandacól  Formation  near  Villa  Union,  La  Rioja  Province),  some  of  which  have  been  the  subject  of  study  by  our  group  over  recent  years,  while  other  exposures  have  become  accessible  as  fresh  road  cuts  (Guandacól  Formation  in  La  Peña  Canyon,  San  Juan  Province).    The  project  will  examine  the  various  components  of  the  MTD  play  including  :  1)  MTD  itself,    2)  ponded  sands,  3)  trailing-­‐piggyback  mini-­‐basins.  Our  ongoing  work  on  ponded  supra-­‐MTD  sands  has  elucidated  some  of  the  controls  on  the  MTD  topography  that  creates  accommodation  for  turbidite  sands  (e.g.  Fairweather  2014),  but  it  is  not  yet  clear  how  variations  in  the  nature  of  the  turbidity  currents  affect  the  filling  of  this  topography.  We  will  continue  to  investigate  the  variation  in  fill  style  above  MTDs  using  field  examples  from  the  Paganzo  Group,  and  if  funding  permits,  to  apply  high-­‐resolution  numerical  models  to  the  interaction  of  turbidity  currents  with  the  surface  topography  of  MTDs  (e.g.  Nasr-­‐Azadnai  &  Meiburg,  2011;  Tokyay  et  al.,  2011)    Modern  systems  We  will  develop  models  out  of  the  extensive  dataset  of  modern  submarine  landslides  from  existing  seismic  lines  and  bathymetry  data  on  the  modern  seafloor  in  the  Tyrrhenian  Sea.  This  work  will  add  information  on  a)  the  styles  of  MTD  topography  observed  in  a  range  of  depositional  settings  and  b)  define  predictive  trends  based  on  the  extraction  of  digital  elevation  models  of  the  upper  surfaces  of  MTDs  and  the  2D  power  spectra  analysis  (supplementing  work  done  under  a  previous  JIP;  Fairweather,  2014).  This  will  help  to  detect  patterns  and  tendencies  for  sea-­‐floor  topography  alteration  and  thus,  subsequent  ponding.  

 

 

11  

The  methodology  thus  developed  will  be  then  used  to  evaluate  subsurface  MTDs  in  order  to  search  for  similar  signals.    With  sufficient  sponsorship  new  data  will  collected  during  the  oceanographic  cruise,  and  will  be  studied  to  evaluate  the  geometry  of  basal  shear  surfaces  and  their  eventual  potential  to  act  as  a  seal  for  potential  reservoirs.  The  make-­‐up  of  mass-­‐transport-­‐complexes  and  their  relationships  with  interbedded  turbiditic  units  will  also  be  addressed.        References    Amy,  L.,  Kneller,  B.C.  &  McCaffrey,  W.D.,  2000.  Evaluating  the  links  between  turbidite  characteristics  and  gross  system  architecture:  upscaling  insights  from  the  turbidite  sheet  system  of  Peira  Cava,  SE  France.  In  in  Weimer,  P.,  Slatt,  R.M.,  Coleman,  J.,  Rosen,  N.C.,  Nelson,  H.,  Bouma,  A.H.,  Styzen,  M.J.,  and  Lawrence,  D.T.,  eds.,  Deep-­‐water  reservoirs  of  the  world  .  SEPM  Gulf  Coast  Section,  Houston,  1-­‐15.    Beaubouef,  R.T.,  2004.  Deep-­‐water  leveed-­‐channel  complexes  of  the  Cerro  Toro  Formation,  Upper  Cretaceous,  southern  Chile.  AAPG  Bulletin,  88,  ,  1471–1500.    Cronin,  B.T.,  Hurst,  A.,  Celik,  H.  &  Türkmen,  I.,  2000.    Superb  exposure  of  a  channel,  levee  and  overbank  complex  in  an  ancient  deep-­‐water  slope  environment.  Sedimentary  Geology,  132,  205-­‐216.    Dykstra,  M.&  Kneller,  B.,  2007.  Canyon  San  Fernando,  Mexico:  A  Deep-­‐water,  Channel-­‐levee  Complex  Exhibiting  Evolution  from  Submarine  Canyon  —  Confined  to  Unconfined.  In  Nilsen,  T,  Studlick,  J.  &  Steffens  G.,  Atlas  of  Deepwater  Outcrops,  Studies  in  Geology,  56.  American  Association  of  Petroleum  Geologists,  Tulsa,  226-­‐230.    Fairweather,  L.,  2014.  Mechanisms  of  supra  MTD  topography  generation  and  the  interaction  of  turbidity  currents  with  such  deposits.  University  of  Aberdeen,  PhD  thesis  (unpubl.).  243pp.    Fallgatter,  C.,  2014.  High  resolution  stratigraphy  in  gravity-­‐flows  systems  of  Paraná  (Brazil)  and  Paganzo  (Argentina)  basins.  Universidade  do  Vale  do  Rio  Sinos.  MSc  thesis  (unpubl.).    159pp.    Haughton.  P.,  Davis,  C.,  McCaffrey,  W.  &  Barker,  S.,  2009.    Hybrid  sediment  gravity  flow  deposits  –  Classification,  origin  and  significance.  Marine  and  Petroleum  Geology,  26,  1900–1918.    Labaume,  P.,  Mutti,  E.  &  Séguret,  M.,  1987,  Megaturbidites:  a  depositional  model  from  the  Eocene  of  the  SW-­‐Pyrenean  foreland  basin,  Spain:  Geo-­‐Marine  Letters,  7,  91–101.  

 

 

12  

 Lucente,  C.C.,  2004.  Topography  and  palaeogeographic  evolution  of  a  middle  Miocene  foredeep  basin  plain  (Northern  Apennines,  Italy).  Sedimentary  Geology,  170,  107–134.    Mutti,  E.,  &  Normark,  W.  R.  (1991).  An  integrated  approach  to  the  study  of  turbidite  systems.  In  P.  Weimer,  &  H.  Link  (Eds.),  Seismic  facies  and  sedimentary  processes  of  submarine  fans  and  turbidite  systems,  Ann  Arbor  (pp.  75–106).  New  York:  Springer.    Nasr-­‐Azadnai,  M.M.  &  Meiburg,  E.,  2011.  TURBINS:  An  immersed  boundary,  Navier–Stokes  code  for  the  simulation  of  gravity  and  turbidity  currents  interacting  with  complex  topographies.  Computers  &  Fluids,  45,  14–28.    Olivero,  E.B.  and  Malumián  N.  2008,  Mesozoic-­‐Cenozoic  stratigraphy  of  the  Fuegian  Andes,  Argentina.  AAPG  Hedberg  Research  Conference:  Sediment  Transfer  from  Shelf  to  Deepwater  -­‐  Revisiting  the  Delivery  Mechanisms.  Ushuaia,  Field  Guide  Book,  p.9-­‐24.    Pauley,  J.C.,  1995.  Sandstone  megabeds  from  the  Tertiary  of  the  North  Sea.  In  Hartley,  A.  J.  &  Prosser,  D.  J.  (eds),  1995,  Characterization  of  Deep  Marine  Clastic  Systems,  Geological  Society  Special  Publication  No.  94,  103-­‐114    Remacha.  E.,  Fernández,  L.P.  &  Maestro,  E.,  2005.  The  transition  between  sheet-­‐like  lobe  and  basin-­‐plain  turbidites  in  the  Hecho  basin  (south-­‐central  Pyrenees,  Spain).  Journal  of  Sedimentary  Research,  75,  798–819.    Satur,  N.,  Hurts,  A.,  Kelling,  G.,  Cronin,  B.T.  et  al,  2007.  Components  of  feedetr  systems  to  a  deepmarine  fan,  Miocene  ages  Cingoz  Fm,  Soutehrn  Turkey,  In  Nilsen,  T,  Studlick,  J.  &  Steffens  G.,  Atlas  of  Deepwater  Outcrops,  Studies  in  Geology,  56.  American  Association  of  Petroleum  Geologists,  Tulsa.    Tokyay,  T.,  Constantinescu,  G.  &  Meiburg,  E.,  2011.  Tail  structure  and  bed  friction  velocity  distribution  of  gravity  currents  propagating  over  an  array  of  obstacles.  Journal  of  Fluid  Mechanics,  694,  252_291.      

 

‘LOBE’'

   Figure  1.  Potential  range  of  frontal  splay  styles    

Figure  2.  Location  map  for  Adana  Basin  (red)  and  Maras  Basin  (blue)    

 

 Figure  3.  Alternating  frontal  splay  (5-­‐8m  thick)  and  splay  fringe  deposits,  Eastern  Fan,  Adana  Basin  (photo  courtesy  of  Alessandro  Amato)    

 Figure  4.  Alternating  mass  transport  deposits  and  layered/amalgamated  sheet  complexes  within  the  Tekir  System,  Maras  Basin  (photo  courtesy  of  Alessandro  Amato)  

 

   Figure  5.  Turbidite  system  classification  of  Mutti  &  Normark,  1987.            

Figure  6.  Location  map  for  Paganzo  Group;  Jejenes  Formation  (blue),  and  Guandocól  Formation  (red).  

Figure  7.  Fjord-­‐confined  tabular  turbidites  of  the  Jejenes  Formation,  Quebrada  de  Las  Lajas,  San  Juan  Province,  Argentina.  Height  of  exposure  130  m.  

 

 Figure  8.  Basin  floor  turbidites  of  the  Guandocól  Formation,  Cerro  Bola,  La  Rioja  Province,   Argentina.    Left;  typical  exposure;  height  of  cliff  c.100m.  Right:  correlation  over  8  km  (from  Fallgatter,  2014)    

   Figure  9  Deep-­‐tow  side-­‐scan  sonar  image  of  debris  flow  deposits  on  the  surface  of  a  modern  lobe  of  the  Congo  Fan  ,  from  Savoye,  2009.  

B  

 

Figure  10.  Megabeds  from  Cerro  Bola  section  of  Paganzo  Group,  Argentina.  A)  Interpreted  photomosaic  of  Hybrid  Megabed.1.  B)  Line  drawing  of  photo  A  showing  debrite-­‐turbidite.    C)  correlated  section  of  megabeds  (from  Fallgatter  2014)  

 

   Figure  11  Regional  map  of  Capo  d’Orlando  Basin  area,  Tyrrhenian  Sea,  showing  core  locations,  seismic  lines  and  seismicity.  

 

 

   Figure  12  Depositional  element  map  of  the  Capo  d’Orlando  Basin  area.  

 

 Figure  13..  Location  and  geological  map  (A),  stratigraphic  setting  (B)  and  coastal  sections  revised  (C,D,E)  by  BK  and  JPM  (see  Fig.  2  a  and  b).  Line  drawings  from  Olivero  and  Malumián  2008.  

 

 Figure  14A.  Photomontage  taken  walking  along  a  coastal  tidal  flat  of  Cabo  Viamonte,  see  Fig.  1  for  location.  Note  that  there  is  a  main  channel  below  that  becomes  fragmented  into  two  main  arms  (A  and  B),  while  the  sediment  fill  becomes  finer  grained,  better  stratified  and  less  massive.    

 

   Figure  14B:  Similar  to  Fig  2A,  a  channel  in  Cabo  Ladrillero,  but  in  this  case  not  composite,  quite  massive  and  its  geometry  altered  by  a  significant  amount  of  sand  injections      

 

Figure  15A  (left)  Location  map  of  Canyon  San  Fernando,  Rosario  Formation,  Baja  California,  Mexico.    Figure  15B  (right)  Composite  cross  section  of  the  San  Fernando  channel  system.  

 

 

 

 

Figure  15C.  Architecture  of  the  lower  part  of  a  channel  complex  set  within  the  San  Fernando  channel  system.  

Figure  15D.  Typical  tractional  (bypass-­‐related)  fabric  of  the  San  Fernando  channel  system.  

 

incised and steep composite eastern margin

amalgamated axis contemporaneous thin beds

2.5 km

 

 

 

Figure  16A  (above  left).  Location  map  for  Cerro  Toro  Formation.    Figure  16B  (above  right)  composite  cross  section  of  a  channel  body  

Figure  16  C)  (left)  Architecture  of  axial  part  of  channel  system.  Length  of  log  is  15m.  D)  (right)  5m  thick  graded  gravel  bed  representing  a  single  flow.    

 

 

 4Figure  17.  Mass  transport  deposit  within  Paganzo  Group,  La  Peña  Canyon,  showing  only  minimal  basal  interaction  with  subjacent  strata  of  hemipelagic  siltstone.  Height  of  outcrop  approximately  7  meters.    

 Figure  18    A)  blocks  of  substrate  incorporated  into  mass  transport  deposit  due  to  grooving  of  basal  contact;  Paganzo  Group,  Cerro  Bola.  Thickness  of  MTD  approximately  140  meters.    

 

 Figure  18    B)  Grooves  in  the  substrate  below  the  basal  scar  of  a  near-­‐surface  mass  transport  deposit;  offshore  Trinidad.  Width  of  view  c.  3  km      

 Figure  18  C)  Grooves  carved  in  the  sea-­‐floor  beneath  a  frontally-­‐emergent  near-­‐surface  mass  transport  deposit,  offshore  Brazil.  Width  of  view  c.  35  km.  Image  courtesy  of  K.  Garyfalou.