presentation euromech 18min paul grandgeorge -2 -...

26
Fiber coiling inside a droplet provides highly compressible device Paul Grandgeorge Arnaud Antkowiak Sébastien Neukirch 1 Sorbonne Université, UPMC Paris 06, CNRS, Institut Jean Le Rond d'Alembert, UMR 7190, Paris Liquid wires

Upload: dodieu

Post on 05-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Fiber coiling inside a droplet provides highly compressible device

Paul GrandgeorgeArnaud Antkowiak

Sébastien Neukirch

1

Sorbonne Université, UPMC Paris 06, CNRS, Institut Jean Le Rond d'Alembert, UMR 7190, Paris

Liquid wires

Nephila golden orb weaver

Biological inspiration

Interesting properties of its capture silk

2

1mm

Nephila spider capture silk thread coated with small water droplets. Throughout the compression, the fiber does not sag,

it remains under tension. Video credit: Hervé Elettro

3

Nephila capture silkIts highly compressible property

Compression

1mm

50μm

4

During the compression, the thread spools inside the water droplets.

Nephila capture silkA closer look inside the droplets

5

Droplet on a hair

2 mm

Silicone oil droplet on a strand of my very own hair. Note the significant absence of anything noteworthy happening.

The disappointing reality of a rainy day

Elastocapillarity

Review article :

B. Roman, J. BicoJournal of Physics: Condensed Matter 2010

6

When liquids deform elastic structures

C. Py et al. 2007Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98 156103

7

ElastocapillarityCapillary Origami

Linderman et al, Development of the micro rotary fan Sens. Actuators (2002)

8

Folding by surface tension of Pb:Sn solder spheres

ElastocapillarityIndustrial micro-fabrication

Microfan with polysilicone 180 rpm micro-fluidic system

9

Elastocapillary in-drop spoolingThe movie

Silicone oil droplet on a RTV (silicone polymer) fiber. The system is immersed in a water bath.

Fiber: radius a≈35 μm, Young's modulus E≈1 Mpa. Droplet : radius R=1.5 mm, Δ!≈40 mN/m.

10

VA = PL1�sv + PL2�sl + L21

2

EI

R2+ P�l�sv

VB = PL1�sv + PL2�sl + L21

2

EI

R2+ P�l�sl +�l

1

2

EI

R2

Elastocapillary in-drop spoolingThe energetic approach

Solid-vapor interface energy

Solid-vapor interface energy

Solid-liquid interface energy

Bending energy

11

�V = �l

✓1

2

EI

R2� P��

T = ��V

�l=

✓P�� � 1

2

EI

R2

T T

Circular cross section fiber of

radius : a

Typical values (spider silk):

If it is thin and elastic enough, a thread can coil inside a droplet!

R ⇠ 100µm

E ⇠ 10 MPa

⇠ 10µm

VA = PL1�sv + PL2�sl + L21

2

EI

R2+ P�l�sv

VB = PL1�sv + PL2�sl + L21

2

EI

R2+ P�l�sl +�l

1

2

EI

R2

�� ⇠ 50 mN/m

T > 0 ?

a <3

r16R2��

E

P = 2⇡a

I =⇡a4

4

Elastocapillary in-drop spoolingThe energetic approach

12

Elastocapillary coiling inside a dropletElastocapillary in-drop spooling

Silicone oil droplet on a thermoplastic polyurethane microfiber. An artificial ultra compressible/extensible device.

Fiber: radius a=3.4 μm, Young's modulus E=17 Mpa. Droplet : radius R=106 μm, Δ!≈20 mN/m.

2 mm

The movie II

13

Figure: Elettro et al. (2016) submitted

Silicone oil droplet on a thermoplastic polyurethane microfiber. Mechanical behaviour under extension.

Fiber: radius a=1 μm, Young's modulus E=17 Mpa. Droplet : radius R=31 μm, Δ! = 20 mN/m.

Elastocapillary in-drop spoolingThe mechanical response

14

With great power comes great stiffness

Electrically conducting materials usually have high Young's moduli E ~ 1-10 GPa for conducting polymers

E ~10 -100 GPa for metals

To spool conducting fibers, we need sub-micronic fibers.

Difficult to manufacture!

⇠ 0.1� 1µma <3

r16R2��

E

15

Coiling the uncoilable

Rigid thin fiber E1, P1, I1

16

Rigid thin fiber + DropletRigid thin fiber (��, R)(E1, P1, I1)

Coiling the uncoilable

17

It won't coil : P1�� <1

2

E1I1R2

Rigid thin fiber + DropletRigid thin fiber (��, R)(E1, P1, I1)

Coiling the uncoilable

18

Rigid thin fiber (E1, P1, I1) (��, R)+ Droplet

Coiling the uncoilable

19

Rigid thin fiber (E1, P1, I1)(E1, P1, I1)Rigid thin fiber

Coiling the uncoilable

20

Soft big fiber (E2, P2, I2)+

(E1, P1, I1)Rigid thin fiber

Coiling the uncoilable

21

+ Droplet (��, R)

the soft tutor

Soft big fiber (E2, P2, I2)+

(E1, P1, I1)Rigid thin fiber

Coiling the uncoilable

22

It coils: (P1 + P2)�� >1

2

E1I1 + E2I2R2

Soft big fiber(E2, P2, I2)++ Droplet (��, R)(E1, P1, I1)Rigid thin fiber

The soft tutorCoiling the uncoilable

Pe↵��

1

2

EIe↵R2

1

23

2 mm

Coiling the uncoilableUncoilable

Silicone oil droplet on a poly-actif acid microfiber. Fiber: radius a=4.1 μm, Young's modulus E=2.7 GPa.

Droplet : radius R=256 μm, Δ!≈20 mN/m.

24

Coiling the uncoilable

Silicone oil droplet on a composite poly-actif acid (PLA) microfiber + polyvinyl siloxane (PVS) tutor fiber.

PLA fiber: radius a=4.1 μm, Young's modulus E=2.7 GPa. PVS fiber: width w=100 μm, height h = 35 μm, Young's modulus E=200 kPa,

Droplet: radius R=430 μm, Δ!≈20 mN/m.

The coilabe composite fiber

2 mm

25100 μm

Coiling the uncoilableCoiled!

26

Thank you!