princeton university with jianqing fan and weichen wangyiqiaoz/pdf/robustfactormodel.pdfoutline 1...

83
Eigenvector Perturbation Bound and Robust Covariance Estimation Yiqiao Zhong Princeton University with Jianqing Fan and Weichen Wang May 8, 2016 Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Upload: others

Post on 05-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

`∞ Eigenvector Perturbation Bound and RobustCovariance Estimation

Yiqiao Zhong

Princeton Universitywith Jianqing Fan and Weichen Wang

May 8, 2016

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 2: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Outline

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 3: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Outline

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 4: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Matrix eigenvectors (or singular vectors) are often used touncover underlying structure.

Let A be a d×d symmetric matrix.

A = VΣV T =r

∑i=1

λivivTi ,

where V = [v1, . . . ,vr ] and r ≤ d .

Examples:PCA and factor models;Network analysis;Classical MDS.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 5: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Matrix eigenvectors (or singular vectors) are often used touncover underlying structure.

Let A be a d×d symmetric matrix.

A = VΣV T =r

∑i=1

λivivTi ,

where V = [v1, . . . ,vr ] and r ≤ d .

Examples:PCA and factor models;Network analysis;Classical MDS.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 6: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Matrix eigenvectors (or singular vectors) are often used touncover underlying structure.

Let A be a d×d symmetric matrix.

A = VΣV T =r

∑i=1

λivivTi ,

where V = [v1, . . . ,vr ] and r ≤ d .

Examples:PCA and factor models;Network analysis;Classical MDS.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 7: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

However...our data are usually not perfect.

Let A be our data matrix,

A = A + E ,

where symmetric E ∈ Rd×d is perturbation.

Similar decomposition for A.

A =d

∑i=1

λi vi vTi ,

where V = [v1, . . . , vr ].

Want to bound ‖vi − vi‖ for some norm ‖ · ‖.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 8: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

However...our data are usually not perfect.

Let A be our data matrix,

A = A + E ,

where symmetric E ∈ Rd×d is perturbation.

Similar decomposition for A.

A =d

∑i=1

λi vi vTi ,

where V = [v1, . . . , vr ].

Want to bound ‖vi − vi‖ for some norm ‖ · ‖.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 9: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

However...our data are usually not perfect.

Let A be our data matrix,

A = A + E ,

where symmetric E ∈ Rd×d is perturbation.

Similar decomposition for A.

A =d

∑i=1

λi vi vTi ,

where V = [v1, . . . , vr ].

Want to bound ‖vi − vi‖ for some norm ‖ · ‖.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 10: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Eigengap γ: the smallest gap of {λ1, . . . ,λr ,0}.Weyl’s inequality matches eigenvalues:maxi |λi − λi | ≤ ‖E‖2.

Theorem (a simpler version of Davis and Kahan [1970])Suppose γ > 0, and we have

‖vi −ηi vi‖2 ≤2√

2‖E‖2

γ, i = 1, . . . , r

where ηi ∈ {±1} are suitable signs.

Extends to general case (SVD) easily. (Wedin 72’).

Nontrivial only when γ�‖E‖2

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 11: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Eigengap γ: the smallest gap of {λ1, . . . ,λr ,0}.Weyl’s inequality matches eigenvalues:maxi |λi − λi | ≤ ‖E‖2.

Theorem (a simpler version of Davis and Kahan [1970])Suppose γ > 0, and we have

‖vi −ηi vi‖2 ≤2√

2‖E‖2

γ, i = 1, . . . , r

where ηi ∈ {±1} are suitable signs.

Extends to general case (SVD) easily. (Wedin 72’).

Nontrivial only when γ�‖E‖2

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 12: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Question:

Can we go beyond `2 norm perturbation?

Trivial bound ‖ · ‖∞ ≤ ‖ ·‖2 too loose. A

sharper bound?

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 13: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Question:

Can we go beyond `2 norm perturbation?

Trivial bound ‖ · ‖∞ ≤ ‖ ·‖2 too loose. A

sharper bound?

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 14: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Matrix Eigenvector Perturbation

Question:

Can we go beyond `2 norm perturbation?

Trivial bound ‖ · ‖∞ ≤ ‖ ·‖2 too loose. A

sharper bound?

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 15: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Outline

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 16: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

`∞ Eigenvector Perturbation

A first sight: mission impossible!

Consider a d×d low rank matrixA = d(1,0, . . . ,0)T (1,0, . . . ,0). Fix r = 1. Its topeigenvector is just v1 = (1,0, . . . ,0)T , and γ = d .Perturbation matrix E : E12 = E21 = d/4 and 0 elsewhere.

Simple calculation shows ‖vi − vi‖∞ � 1. Already sharp!

Can we do better than a trivial bound?

Answer: Yes! But for structured low rank matrix A.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 17: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

`∞ Eigenvector Perturbation

A first sight: mission impossible!

Consider a d×d low rank matrixA = d(1,0, . . . ,0)T (1,0, . . . ,0). Fix r = 1. Its topeigenvector is just v1 = (1,0, . . . ,0)T , and γ = d .Perturbation matrix E : E12 = E21 = d/4 and 0 elsewhere.

Simple calculation shows ‖vi − vi‖∞ � 1. Already sharp!

Can we do better than a trivial bound?

Answer: Yes! But for structured low rank matrix A.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 18: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

`∞ Eigenvector Perturbation

A first sight: mission impossible!

Consider a d×d low rank matrixA = d(1,0, . . . ,0)T (1,0, . . . ,0). Fix r = 1. Its topeigenvector is just v1 = (1,0, . . . ,0)T , and γ = d .Perturbation matrix E : E12 = E21 = d/4 and 0 elsewhere.

Simple calculation shows ‖vi − vi‖∞ � 1. Already sharp!

Can we do better than a trivial bound?

Answer: Yes! But for structured low rank matrix A.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 19: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

`∞ Eigenvector Perturbation

A first sight: mission impossible!

Consider a d×d low rank matrixA = d(1,0, . . . ,0)T (1,0, . . . ,0). Fix r = 1. Its topeigenvector is just v1 = (1,0, . . . ,0)T , and γ = d .Perturbation matrix E : E12 = E21 = d/4 and 0 elsewhere.

Simple calculation shows ‖vi − vi‖∞ � 1. Already sharp!

Can we do better than a trivial bound?

Answer: Yes! But for structured low rank matrix A.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 20: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

What structure? low rank and incoherent matrices.

Low rank: r = rank(A) is small, e.g. bounded by a constant.

Definition (Candes and Recht [2009])

Let V = [v1, . . . ,vr ] be r columns of orthonormal vectors in Rd .The coherence of V is:

µ(V ) =dr

maxi

r

∑j=1

V 2ij .

Incoherence: µ(V ) is small, e.g. logarithmic in d .

When vi is a uinform vector, µ(V ) = O(logd).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 21: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

What structure? low rank and incoherent matrices.

Low rank: r = rank(A) is small, e.g. bounded by a constant.

Definition (Candes and Recht [2009])

Let V = [v1, . . . ,vr ] be r columns of orthonormal vectors in Rd .The coherence of V is:

µ(V ) =dr

maxi

r

∑j=1

V 2ij .

Incoherence: µ(V ) is small, e.g. logarithmic in d .

When vi is a uinform vector, µ(V ) = O(logd).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 22: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

What structure? low rank and incoherent matrices.

Low rank: r = rank(A) is small, e.g. bounded by a constant.

Definition (Candes and Recht [2009])

Let V = [v1, . . . ,vr ] be r columns of orthonormal vectors in Rd .The coherence of V is:

µ(V ) =dr

maxi

r

∑j=1

V 2ij .

Incoherence: µ(V ) is small, e.g. logarithmic in d .

When vi is a uinform vector, µ(V ) = O(logd).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 23: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

One more thing: need different matrix norms forperturbation E .

For symmetric E ∈ Rd×d , define

‖E‖∞ = maxi

d

∑j|Eij |.

A trivial bound ‖E‖2 ≤ ‖E‖∞.

The two norms usually have the same scale, e.g. all-onematrices.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 24: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

One more thing: need different matrix norms forperturbation E .

For symmetric E ∈ Rd×d , define

‖E‖∞ = maxi

d

∑j|Eij |.

A trivial bound ‖E‖2 ≤ ‖E‖∞.

The two norms usually have the same scale, e.g. all-onematrices.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 25: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

One more thing: need different matrix norms forperturbation E .

For symmetric E ∈ Rd×d , define

‖E‖∞ = maxi

d

∑j|Eij |.

A trivial bound ‖E‖2 ≤ ‖E‖∞.

The two norms usually have the same scale, e.g. all-onematrices.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 26: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

Suppose A,E are symmetric. Recall that γ is the eigengap.

Theorem (Fan, Wang, and Zhong [2016b])

There exists C = C(µ(V ), r) = O(µ(V )1.5r3.5) such that

max1≤k≤r

‖vk −ηk vk‖∞ ≤ C(µ(V ), r)‖E‖∞

γ√

d,

when γ > C‖E‖∞, for suitable signs ηk ∈ {±1}.

A similar result for SVD.

The condition γ > C‖E‖∞ is mild: similar to `2 bound.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 27: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

Suppose A,E are symmetric. Recall that γ is the eigengap.

Theorem (Fan, Wang, and Zhong [2016b])

There exists C = C(µ(V ), r) = O(µ(V )1.5r3.5) such that

max1≤k≤r

‖vk −ηk vk‖∞ ≤ C(µ(V ), r)‖E‖∞

γ√

d,

when γ > C‖E‖∞, for suitable signs ηk ∈ {±1}.

A similar result for SVD.

The condition γ > C‖E‖∞ is mild: similar to `2 bound.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 28: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Our result: `∞ Eigenvector Perturbation

Suppose A,E are symmetric. Recall that γ is the eigengap.

Theorem (Fan, Wang, and Zhong [2016b])

There exists C = C(µ(V ), r) = O(µ(V )1.5r3.5) such that

max1≤k≤r

‖vk −ηk vk‖∞ ≤ C(µ(V ), r)‖E‖∞

γ√

d,

when γ > C‖E‖∞, for suitable signs ηk ∈ {±1}.

A similar result for SVD.

The condition γ > C‖E‖∞ is mild: similar to `2 bound.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 29: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Eigenvector Perturbation

Setting:d run from 200 to 2000 with increment 200.

A = ∑3k=1(4− k)γvk vT

k ; vk is an eigenvector of an iid normalrandom matrix.

Generating E : (a) random number in [0,L] by randomly selecting sentries each row; (b) Eij = L′ρ|i−j|.

200 600 1000 1400 18000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

d

err

5.5 6 6.5 7 7.5

−6.5

−5.6

−4.7

−3.8

−2.9

−2

−1.1

log d

log(err)

Figure: The slope is around −0.5. Blue: γ = 10; red: γ = 50; green: γ = 100;and black: γ = 500. We report the largest error over 100 runs.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 30: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Eigenvector Perturbation

200 600 1000 1400 18000

0.005

0.01

0.015

0.02

0.025

0.03

d

err

200 600 1000 1400 1800

5

15

25

35

45

55

65

75

d

err×

γ

d

Figure: γ√

d is fixed for each line. The right plot shows the error multiplied byγ√

d against d. Blue: γ√

d = 2000; red: γ√

d = 3000; green: γ√

d = 4000;and black: γ

√d = 5000. We report the largest error over 100 runs.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 31: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Eigenvector Perturbation

5.5 6 6.5 7 7.5

−5.8

−5

−4.2

−3.4

−2.6

−1.8

−1

5.5 6 6.5 7 7.5

−7.3

−6.3

−5.2

−4.2

−3.2

−2.2

−1.1

5.5 6 6.5 7 7.5

−7

−6

−5.1

−4.1

−3.1

−2.2

−1.2

5.5 6 6.5 7 7.5

−6.6

−5.7

−4.9

−4

−3.1

−2.3

−1.4

log(err)

log d

Figure: log(err) vs. log(d). Top left: L = 10,s = 3; top right: L = 0.6,s = 50;bottom left: L′ = 1.5,ρ = 0.9; bottom right: L′ = 7.5,ρ = 0.5. The slopes arearound −0.5. Blue: γ = 10; red: γ = 50; green: γ = 100; black: γ = 500.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 32: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Outline

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 33: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Factor Model:yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

{yi}ni=1,{fi}n

i=1 are i.i.d. observed over i = 1, . . . ,n.

Assuming Cov(fi ,ui) = 0:

Σ = BΣf BT + Σu, B ∈ Rd×r ,Σ ∈ Rd×d ,Σf ∈ Rr×r ,

where r is a constant and Σu is sparse.

Goal: estimate Σ from observations.

Challenge: yi and ui may possibly have heavy tails.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 34: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Factor Model:yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

{yi}ni=1,{fi}n

i=1 are i.i.d. observed over i = 1, . . . ,n.

Assuming Cov(fi ,ui) = 0:

Σ = BΣf BT + Σu, B ∈ Rd×r ,Σ ∈ Rd×d ,Σf ∈ Rr×r ,

where r is a constant and Σu is sparse.

Goal: estimate Σ from observations.

Challenge: yi and ui may possibly have heavy tails.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 35: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Factor Model:yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

{yi}ni=1,{fi}n

i=1 are i.i.d. observed over i = 1, . . . ,n.

Assuming Cov(fi ,ui) = 0:

Σ = BΣf BT + Σu, B ∈ Rd×r ,Σ ∈ Rd×d ,Σf ∈ Rr×r ,

where r is a constant and Σu is sparse.

Goal: estimate Σ from observations.

Challenge: yi and ui may possibly have heavy tails.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 36: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Factor Model:yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

{yi}ni=1,{fi}n

i=1 are i.i.d. observed over i = 1, . . . ,n.

Assuming Cov(fi ,ui) = 0:

Σ = BΣf BT + Σu, B ∈ Rd×r ,Σ ∈ Rd×d ,Σf ∈ Rr×r ,

where r is a constant and Σu is sparse.

Goal: estimate Σ from observations.

Challenge: yi and ui may possibly have heavy tails.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 37: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

-2 -1 0 1 2

-0.06

-0.02

0.02

0.06

Gaussian

quant.n

-6 -4 -2 0 2 4 6

-0.06

-0.02

0.02

0.06

t2

quant.t

quant.ret

-4 -2 0 2 4

-0.06

-0.02

0.02

0.06

t4

-3 -2 -1 0 1 2 3

-0.06

-0.02

0.02

0.06

t6

quant.ret

Figure: Q-Q plots show heavy tails of data: x-axis: base distributionquantiles, y-axis: return data quantiles.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 38: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Antidote: Huber’s M-estimator with suitable a divergingparameter; bias-variance tradeoff.For any i.i.d. Z1, . . . ,Zn with µ? = EZi . Letlα(x) = 2α|x |−α2 when |x | ≥ α and x2 when |x | ≤ α.

µ = argminµ

n

∑t=1

lα(Zt −µ)

Theorem (Fan, Li, and Wang [2014])

Suppose ε ∈ (0,1) and n ≥ 8 log(ε−1). Chooseα =

√(nv2)/ log(ε−1), where v2 is an upper bound of cov(Zt).

Then,

P

(|µ−µ?| ≤ 4v

√log(ε−1)

n

)≥ 1−2ε. (1)

Similar result: Catoni [2012]Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 39: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Antidote: Huber’s M-estimator with suitable a divergingparameter; bias-variance tradeoff.For any i.i.d. Z1, . . . ,Zn with µ? = EZi . Letlα(x) = 2α|x |−α2 when |x | ≥ α and x2 when |x | ≤ α.

µ = argminµ

n

∑t=1

lα(Zt −µ)

Theorem (Fan, Li, and Wang [2014])

Suppose ε ∈ (0,1) and n ≥ 8 log(ε−1). Chooseα =

√(nv2)/ log(ε−1), where v2 is an upper bound of cov(Zt).

Then,

P

(|µ−µ?| ≤ 4v

√log(ε−1)

n

)≥ 1−2ε. (1)

Similar result: Catoni [2012]Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 40: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Antidote: Huber’s M-estimator with suitable a divergingparameter; bias-variance tradeoff.For any i.i.d. Z1, . . . ,Zn with µ? = EZi . Letlα(x) = 2α|x |−α2 when |x | ≥ α and x2 when |x | ≤ α.

µ = argminµ

n

∑t=1

lα(Zt −µ)

Theorem (Fan, Li, and Wang [2014])

Suppose ε ∈ (0,1) and n ≥ 8 log(ε−1). Chooseα =

√(nv2)/ log(ε−1), where v2 is an upper bound of cov(Zt).

Then,

P

(|µ−µ?| ≤ 4v

√log(ε−1)

n

)≥ 1−2ε. (1)

Similar result: Catoni [2012]Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 41: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Antidote: Huber’s M-estimator with suitable a divergingparameter; bias-variance tradeoff.For any i.i.d. Z1, . . . ,Zn with µ? = EZi . Letlα(x) = 2α|x |−α2 when |x | ≥ α and x2 when |x | ≤ α.

µ = argminµ

n

∑t=1

lα(Zt −µ)

Theorem (Fan, Li, and Wang [2014])

Suppose ε ∈ (0,1) and n ≥ 8 log(ε−1). Chooseα =

√(nv2)/ log(ε−1), where v2 is an upper bound of cov(Zt).

Then,

P

(|µ−µ?| ≤ 4v

√log(ε−1)

n

)≥ 1−2ε. (1)

Similar result: Catoni [2012]Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 42: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Cure of high dimensionality: entry-wise estimation.

Now we have Σ X, then:

Σ = BΣf BT︸ ︷︷ ︸

Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Need to exploit the structure and have a refined estimate.

Question: How to denoise? How to disentangle?

Blessing of pervarsive assumption: the top r eigenvalues ofΣ grows linearly with d ; and the elements of B are uniformlybounded.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 43: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Cure of high dimensionality: entry-wise estimation.

Now we have Σ X, then:

Σ = BΣf BT︸ ︷︷ ︸

Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Need to exploit the structure and have a refined estimate.

Question: How to denoise? How to disentangle?

Blessing of pervarsive assumption: the top r eigenvalues ofΣ grows linearly with d ; and the elements of B are uniformlybounded.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 44: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Cure of high dimensionality: entry-wise estimation.

Now we have Σ X, then:

Σ = BΣf BT︸ ︷︷ ︸

Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Need to exploit the structure and have a refined estimate.

Question: How to denoise? How to disentangle?

Blessing of pervarsive assumption: the top r eigenvalues ofΣ grows linearly with d ; and the elements of B are uniformlybounded.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 45: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Cure of high dimensionality: entry-wise estimation.

Now we have Σ X, then:

Σ = BΣf BT︸ ︷︷ ︸

Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Need to exploit the structure and have a refined estimate.

Question: How to denoise? How to disentangle?

Blessing of pervarsive assumption: the top r eigenvalues ofΣ grows linearly with d ; and the elements of B are uniformlybounded.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 46: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Cure of high dimensionality: entry-wise estimation.

Now we have Σ X, then:

Σ = BΣf BT︸ ︷︷ ︸

Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Need to exploit the structure and have a refined estimate.

Question: How to denoise? How to disentangle?

Blessing of pervarsive assumption: the top r eigenvalues ofΣ grows linearly with d ; and the elements of B are uniformlybounded.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 47: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

When factors f1, . . . , fn are observed, a simple trick works.

Let zTi = (yT

i , fTi ), and estimate Cov(zi) robustly.

Since Σu = Σ−ΣyuΣ−1uu Σuy , we can do

Σ = BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Finally,ΣT = ΣyuΣ−1

uu Σuy + T (Σu)

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 48: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

When factors f1, . . . , fn are observed, a simple trick works.

Let zTi = (yT

i , fTi ), and estimate Cov(zi) robustly.

Since Σu = Σ−ΣyuΣ−1uu Σuy , we can do

Σ = BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Finally,ΣT = ΣyuΣ−1

uu Σuy + T (Σu)

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 49: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

When factors f1, . . . , fn are observed, a simple trick works.

Let zTi = (yT

i , fTi ), and estimate Cov(zi) robustly.

Since Σu = Σ−ΣyuΣ−1uu Σuy , we can do

Σ = BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Finally,ΣT = ΣyuΣ−1

uu Σuy + T (Σu)

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 50: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

When factors f1, . . . , fn are observed, a simple trick works.

Let zTi = (yT

i , fTi ), and estimate Cov(zi) robustly.

Since Σu = Σ−ΣyuΣ−1uu Σuy , we can do

Σ = BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸Σu

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Finally,ΣT = ΣyuΣ−1

uu Σuy + T (Σu)Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 51: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

When factors f1, . . . , fn are observed, a simple trick works.

Let zTi = (yT

i , fTi ), and estimate Cov(zi) robustly.

Since Σu = Σ−ΣyuΣ−1uu Σuy , we can do

Σ = BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Finally,ΣT = ΣyuΣ−1

uu Σuy + T (Σu)

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 52: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

When factors f1, . . . , fn are observed, a simple trick works.

Let zTi = (yT

i , fTi ), and estimate Cov(zi) robustly.

Since Σu = Σ−ΣyuΣ−1uu Σuy , we can do

Σ = BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

Σ− BΣf BT︸ ︷︷ ︸

≈ ΣyuΣ−1uu Σuy

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Finally,ΣT = ΣyuΣ−1

uu Σuy + T (Σu)

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 53: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Step 1: Obtain a robust estimate of Cov(zi) in anentry-wise way.

Step 2: Compute

Σu = Σyy − ΣyuΣ−1uu Σuy ,

and apply adaptive thresholding

T (Σu)ij =

{(Σu)ij , i = j

sij((Σu)ij)1((Σu)ij ≥ τij), i 6= j,

where τij = τ((Σu)ii(Σu)jj)1/2,τ�

√logp/n.

Step 3: Final estimator

ΣT = ΣyuΣ−1uu Σuy + T (Σu).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 54: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Let mq = maxi≤p ∑j≤p(Σu)qij for some q ∈ [0,1]. Assume

pervasiveness, bounded fourth moments and ‖Σu‖,‖Σf‖bounded above and below from 0.

Theorem (Fan, Wang, and Zhong [2016a])

If mq(logd/n)(1−q)/2 = o(1), then

‖ΣT −Σ‖∞ = OP

(√ logdn

),

‖ΣT −Σ‖Σ = OP

(√d logdn

+ mq

( logdn

)(1−q)/2),

‖(ΣT )−1−Σ−1‖= OP

(mq

( logdn

)(1−q)/2),

where ‖A‖Σ = d−1/2‖Σ−1/2AΣ−1/2‖F is the relative Frobeniusnorm.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 55: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Question:

What if the factors are unobserved?

Σ− BΣf BT︸ ︷︷ ︸

how to estimate?

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Need:

a sharp low rank estimate directly from Σ.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 56: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Known

Question:

What if the factors are unobserved?

Σ− BΣf BT︸ ︷︷ ︸

how to estimate?

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Need:

a sharp low rank estimate directly from Σ.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 57: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Outline

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 58: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Recall factor model:

yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

Identifiability: suppose Σf = Ir .

What if factors f1, . . . , fn are unobserved? How to estimatethe low-rank part?

Σ = BBT︸︷︷︸Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Pervasiveness⇔ B spiked eigenvalues + matrixincoherence!

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 59: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Recall factor model:

yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

Identifiability: suppose Σf = Ir .

What if factors f1, . . . , fn are unobserved? How to estimatethe low-rank part?

Σ = BBT︸︷︷︸Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Pervasiveness⇔ B spiked eigenvalues + matrixincoherence!

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 60: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Recall factor model:

yi = Bfi + ui

where yi ,ui ∈ Rd , f ∈ Rr and B ∈ Rd×r .

Identifiability: suppose Σf = Ir .

What if factors f1, . . . , fn are unobserved? How to estimatethe low-rank part?

Σ = BBT︸︷︷︸Low rank

+ Σu︸︷︷︸Sparse

+(Σ−Σ)︸ ︷︷ ︸Noise

.

Pervasiveness⇔ B spiked eigenvalues + matrixincoherence!

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 61: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Solution: directly apply PCA to Σ.

Low rank A := BBT and perturbation E := Σu + (Σ−Σ).

A sharp and uniform bound:

‖vi − vi‖∞ = OP(√ logd

nd+

1√d

), i = 1, . . . , r

So we have sharp uniform bound.

Σ−BΣf BT︸ ︷︷ ︸

use PCA

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 62: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Solution: directly apply PCA to Σ.

Low rank A := BBT and perturbation E := Σu + (Σ−Σ).

A sharp and uniform bound:

‖vi − vi‖∞ = OP(√ logd

nd+

1√d

), i = 1, . . . , r

So we have sharp uniform bound.

Σ−BΣf BT︸ ︷︷ ︸

use PCA

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 63: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Solution: directly apply PCA to Σ.

Low rank A := BBT and perturbation E := Σu + (Σ−Σ).

A sharp and uniform bound:

‖vi − vi‖∞ = OP(√ logd

nd+

1√d

), i = 1, . . . , r

So we have sharp uniform bound.

Σ−BΣf BT︸ ︷︷ ︸

use PCA

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 64: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Solution: directly apply PCA to Σ.

Low rank A := BBT and perturbation E := Σu + (Σ−Σ).

A sharp and uniform bound:

‖vi − vi‖∞ = OP(√ logd

nd+

1√d

), i = 1, . . . , r

So we have sharp uniform bound.

Σ−BΣf BT︸ ︷︷ ︸

use PCA

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 65: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Solution: directly apply PCA to Σ.

Low rank A := BBT and perturbation E := Σu + (Σ−Σ).

A sharp and uniform bound:

‖vi − vi‖∞ = OP(√ logd

nd+

1√d

), i = 1, . . . , r

So we have sharp uniform bound.

Σ−BΣf BT︸ ︷︷ ︸

use PCA

= Σu + (Σ−Σ)︸ ︷︷ ︸T (Σu):thresholding

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 66: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Step 1: Estimate of Σ = Cov(yi) robustly in an entry-wiseway, and denote it as Σ.

Step 2: Compute

Σu = Σy − UΛUT ,

where U and Λ are given by top r eigen-decomposition.Then apply adaptive thresholding on Σu.

Step 3: Final estimator

ΣT = T (Σu) + UΛUT .

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 67: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Theorem (Fan, Wang, and Zhong [2016b])

Let wn =√

logd/n + 1/√

d. Under the same assumptions ofTheorem 4, with the choice of parameter τ� wn and ifmqw1−q

n = o(1) we have

‖Σ>−Σ‖max = OP

(wn

),

‖Σ>−Σ‖Σ = OP

(√d logdn

+ mdw1−qn

),

‖(Σ>)−1−Σ−1‖2 = OP

(mdw1−q

n

).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 68: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Take-home message:

Power of `∞ perturbation bound:

Uniform and sharp bound whenestimating low rank structure.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 69: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Robust Covariance Estimation: Factors Unknown

Take-home message:

Power of `∞ perturbation bound:

Uniform and sharp bound whenestimating low rank structure.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 70: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 71: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting:Simulate n samples of (f T

t ,uTt ) from (i) a multivariate t-distribution

(ii) an i.i.d. t-distribution, with covariance diag{Ir ,5Id}.

Each element of B is an i.i.d. standard normal. Computeyt = Bft + ut .

Set n = d/2; degree of freedom ν = 3,5 and ∞.

Compare our robust estimator ΣR with (a) ΣS: samplecovariance based method (b) ΣK : Kendall’s tau basedmethod.

Calcuate relative errors Σ−Σ under various norms, e.g.‖ΣR−Σ‖/‖ΣS−Σ‖.The median errors and their IQR over 100 simulations arereported.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 72: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting:Simulate n samples of (f T

t ,uTt ) from (i) a multivariate t-distribution

(ii) an i.i.d. t-distribution, with covariance diag{Ir ,5Id}.

Each element of B is an i.i.d. standard normal. Computeyt = Bft + ut .

Set n = d/2; degree of freedom ν = 3,5 and ∞.

Compare our robust estimator ΣR with (a) ΣS: samplecovariance based method (b) ΣK : Kendall’s tau basedmethod.

Calcuate relative errors Σ−Σ under various norms, e.g.‖ΣR−Σ‖/‖ΣS−Σ‖.The median errors and their IQR over 100 simulations arereported.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 73: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting:Simulate n samples of (f T

t ,uTt ) from (i) a multivariate t-distribution

(ii) an i.i.d. t-distribution, with covariance diag{Ir ,5Id}.

Each element of B is an i.i.d. standard normal. Computeyt = Bft + ut .

Set n = d/2; degree of freedom ν = 3,5 and ∞.

Compare our robust estimator ΣR with (a) ΣS: samplecovariance based method (b) ΣK : Kendall’s tau basedmethod.

Calcuate relative errors Σ−Σ under various norms, e.g.‖ΣR−Σ‖/‖ΣS−Σ‖.The median errors and their IQR over 100 simulations arereported.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 74: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting: observed factors and multivariate t-distribution.

200 300 400 500 600 700 800 9000.

00.

51.

01.

52.

0

Spectral norm error of Sigma_u (Median)

per

ror r

atio

200 300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

Spectral norm error of Sigma_u (IQR)

p

erro

r rat

io

200 300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (Median)

p

erro

r rat

io

200 300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (IQR)

p

erro

r rat

io

200 300 400 500 600 700 800 900

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (Median)

p

erro

r rat

io

200 300 400 500 600 700 800 900

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (IQR)

p

erro

r rat

io

Figure: Blue: relative error of ΣRz ; black: relative error of ΣK

z . Degree offreedom: df = 3 (solid), 5 (dashed) and ∞ (dotted).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 75: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting: observed factors and i.i.d. t-distribution.

200 300 400 500 600 700 800 9000.

00.

51.

01.

52.

0

Spectral norm error of Sigma_u (Median)

per

ror

ratio

200 300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

Spectral norm error of Sigma_u (IQR)

p

erro

r ra

tio

200 300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (Median)

p

erro

r ra

tio

200 300 400 500 600 700 800 900

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (IQR)

p

erro

r ra

tio

200 300 400 500 600 700 800 900

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (Median)

p

erro

r ra

tio

200 300 400 500 600 700 800 900

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (IQR)

p

erro

r ra

tio

Figure: Blue: relative error of ΣRz ; black: relative error of ΣK

z . Degree offreedom: df = 3 (solid), 5 (dashed) and ∞ (dotted).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 76: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting: unobserved factors and multivariate t-distribution.

200 400 600 8000.

00.

51.

01.

52.

02.

53.

0

Spectral norm error of Sigma_u (Median)

per

ror

ratio200 400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of Sigma_u (IQR)

p

erro

r ra

tio

200 400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (Median)

p

erro

r ra

tio

200 400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (IQR)

p

erro

r ra

tio

200 400 600 800

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (Median)

p

erro

r ra

tio

200 400 600 800

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (IQR)

p

erro

r ra

tio

Figure: Blue: relative error of ΣRz ; black and red: relative error of ΣK

z . Degreeof freedom: df = 3 (solid), 5 (dashed) and ∞ (dotted).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 77: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Simulation: Robust Covariance Estimation

Setting: unobserved factors and multivariate t-distribution.

200 400 600 8000.

00.

51.

01.

52.

02.

53.

0

Spectral norm error of Sigma_u (Median)

per

ror

ratio200 400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of Sigma_u (IQR)

p

erro

r ra

tio

200 400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (Median)

p

erro

r ra

tio

200 400 600 800

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Spectral norm error of inverse Sigma (IQR)

p

erro

r ra

tio

200 400 600 800

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (Median)

p

erro

r ra

tio

200 400 600 800

0.0

0.4

0.8

1.2

Relative Frobenius norm error of Sigma (IQR)

p

erro

r ra

tio

Figure: Blue: relative error of ΣRz ; black and red: relative error of ΣK

z . Degreeof freedom: df = 3 (solid), 5 (dashed) and ∞ (dotted).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 78: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

1 Matrix Eigenvector PerturbationDavis-Kahan TheoremOur result: `∞ Eigenvector Perturbation

2 Robust Covariance Estimation via Factor ModelsKnown factorsFactors unknown

3 Simulations

4 Real Data Analysis: Portfolio Risk Estimation

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 79: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Real Data Analysis: Portfolio Risk Estimation

Daily returns of 393 stocks from S&P 500 index from 2005to 2013.

Factors: Fama-French three-factor model.

Y: 393×2013 data matrix, and F : 2013×3.

Let Σ be the true covariance matrix of Y . Then wT Σw isthe porfolio risk given weights w .

Compare risk estimation errors:

RR(w) =1

2013

2013

∑t=1

∣∣wT ΣRt w− (wT

γt)2∣∣,

RS(w) =1

2013

2013

∑t=1

∣∣wT ΣSt w− (wT

γt)2∣∣.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 80: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Real Data Analysis: Portfolio Risk Estimation

Daily returns of 393 stocks from S&P 500 index from 2005to 2013.

Factors: Fama-French three-factor model.

Y: 393×2013 data matrix, and F : 2013×3.

Let Σ be the true covariance matrix of Y . Then wT Σw isthe porfolio risk given weights w .

Compare risk estimation errors:

RR(w) =1

2013

2013

∑t=1

∣∣wT ΣRt w− (wT

γt)2∣∣,

RS(w) =1

2013

2013

∑t=1

∣∣wT ΣSt w− (wT

γt)2∣∣.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 81: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Real Data Analysis: Portfolio Risk Estimation

xyplot[, 1, idx.plot]

xypl

ot[,

2, id

x.pl

ot]

2.65

33.4

3.85

4.36

xyplot[, 1, idx.plot]

xypl

ot[,

2, id

x.pl

ot]

xyplot[, 1, idx.plot]

xypl

ot[,

2, id

x.pl

ot]

2.36 2.64 2.97 3.33 3.74

2.65

33.4

3.85

4.36

xyplot[, 1, idx.plot]

xypl

ot[,

2, id

x.pl

ot]

2.36 2.64 2.97 3.33 3.74

Error RR(w) of Robust Covariance Method (10−4)

Err

or RS(w) o

f Rob

ust E

mpi

rical

Cov

aria

ce M

etho

d (10−4 )

Figure: (RR(w),RS(w)) for multiple randomly generated w. Errorcomparison with different exposure c. (upper left: no short selling; upperright: c = 1.4; lower left: c = 1.8; lower right: c = 2.2).

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 82: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

References I

Emmanuel J Candes and Benjamin Recht. Exact matrix completion via convexoptimization. Foundations of Computational mathematics, 9(6):717–772, 2009.

Olivier Catoni. Challenging the empirical mean and empirical variance: a deviationstudy. In Annales de l’Institut Henri Poincare, Probabilites et Statistiques,volume 48, pages 1148–1185. Institut Henri Poincare, 2012.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by aperturbation. iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

Jianqing Fan, Quefeng Li, and Yuyan Wang. Robust estimation of high-dimensionalmean regression. arXiv preprint arXiv:1410.2150, 2014.

Jianqing Fan, Weichen Wang, and Yiqiao Zhong. Robust covariance estimation forapproximate factor models. arXiv preprint arXiv:1602.00719, 2016a.

Jianqing Fan, Weichen Wang, and Yiqiao Zhong. An `∞ eigenvector perturbationbound and its application to robust covariance estimation. arXiv preprintarXiv:1603.03516, 2016b.

Yiqiao Zhong (Princeton University) Robust Covariance Estimation

Page 83: Princeton University with Jianqing Fan and Weichen Wangyiqiaoz/pdf/RobustFactorModel.pdfOutline 1 Matrix Eigenvector Perturbation Davis-Kahan Theorem Our result: ‘¥ Eigenvector

Thank you!

Yiqiao Zhong (Princeton University) Robust Covariance Estimation