determ.of eigenvalue & eigenvector

Upload: muhamad-soqhimi

Post on 09-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    1/42

    Noise and VibrationsNoise and Vibrations(BDC4013)(BDC4013)

    DR MUHD HAFEEZ B ZAINULABIDIN

    MOHD NO RIHAN B IBRAHIM

    Universiti Tun Hussein Onn Malaysia

    Determination of Natural Frequencies and Mode ShapesDetermination of Natural Frequencies and Mode Shapes

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    2/42

    2

    Necessity to Use Computational MethodNecessity to Use Computational Method

    In two degrees of freedom system, solvingthe natural frequencies can be conductedby simply calculating the root of the second

    order polynomial.

    4 2 0 A B C

    By assuming 2 0n n

    A B C

    Then the natural frequencies can be found

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    3/42

    3

    Classical MethodsClassical Methods

    Standard Matrix Iteration Method

    Dunkerlys Method

    Rayleighs Method

    Holzers Method

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    4/42

    4

    Standard Matrix IterationStandard Matrix Iteration

    0 M x K x Considering a generalequation of motion

    Assuming harmonicmotion

    ( ) sin( )i i x t X t

    Equation to solve 2 0 M X K X

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    5/42

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    6/42

    6

    Standard Matrix IterationStandard Matrix Iteration(Solution procedures to obtain the lowest(Solution procedures to obtain the lowest natnat freq)freq)

    (1) Identify matrix [K] and [M]

    (2) Calculate [K] -1

    (3) Define the initial trial vector {X} and convergence criteria

    (4) Multiply [K] -1 [M] {X} = {Xnew}

    (5) Normalized the result {Xnew}/ largest Xnew

    (6) Check the convergence , use for a new trial {X}

    (7) When it is converged

    1n

    normalizedX

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    7/42

    Example 1

    Find the natural frequenciesand mode shapes of thesystem as shown for

    k1=k2=k3=kandm1=m2=m3=mby the matrixiteration method.

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    8/42

    Solution

    Flexibility matrix [a]=[k]-1=

    Dynamical matrix is

    Eigenvalue problem:

    321

    221

    1111

    k

    321

    221

    111

    1

    k

    mmk

    21and321

    221

    111

    where

    mkDXXD

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    9/42

    Solution

    1st natural frequency:

    Assume Hence

    By making the first element equal to unity:

    we obtain

    1

    1

    1

    1X

    6

    5

    3

    12 XDX

    m

    kX 5773.0,0.3,

    0000.2

    6667.1

    0000.1

    0.3 112

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    10/42

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    11/42

    Solution

    The various iand are shown below:

    The mode shape and natural frequencyconverged in 8 iterations.

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    12/42

    Solution

    2nd natural frequency:

    Deflated matrix

    Let the normalized vector

    where must be such that

    mXXDD T11112

    24698.2

    80194.1

    00000.11 X

    129591.9

    24698.2

    80194.100000.1

    100

    010001

    24698.2

    80194.100000.1

    2

    211

    m

    mXmX

    T

    T

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    13/42

    Solution

    =0.32799m-1/2 , hence

    73699.0

    59102.0

    32799.02/11

    mX

    25768.019921.022048.0

    19921.023641.002127.0

    22048.002127.045684.0

    100

    010

    001

    73699.0

    59102.0

    32799.0

    73699.0

    59102.0

    32799.0

    04892.5

    321

    221

    111

    2

    T

    D

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    14/42

    Solution

    Let

    By using the iterative scheme, we obtain

    1

    1

    1

    1X

    25763.0

    62885.0

    22695.0

    00000.1

    25763.0

    16201.0

    05847.0

    25763.0

    2

    2

    X

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    15/42

    Solution Continuing the procedure,

    Hence 2=0.64307, 2=1.24701

    80192.0

    44496.0

    00000.1

    , 2Xm

    k

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    16/42

    Solution

    3rd natural frequency:

    Use a similar procedure as before.

    Before computing [D3], need to normalize

    59102.0

    32794.0

    73700.0

    giveto 22 XX

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    17/42

    DunkerleysFormula

    It gives the approx value of the fundamentalfreq of a composite system.

    Consider the following general n DOF system:

    For a lumped mass system with diagonalmass matrix, the equation becomes:

    01or0 22 maImk

    0

    0...0

    0

    0

    0...0

    ...

    ...

    ...

    10...0

    0

    10

    0...01

    1 2

    1

    21

    22221

    11211

    2

    nnnnn

    n

    n

    m

    m

    m

    aaa

    aaa

    aaa

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    18/42

    DunkerleysFormula

    i.e.

    Expanding:

    0

    1...

    ...1

    ...1

    22211

    22222121

    12121112

    nnnnn

    nn

    nn

    mamama

    mamama

    mamama

    (E.1)0...1

    )...

    ...(

    1...

    1

    2

    211,,1212112

    11,1313311212211

    1

    22221112

    n

    nnnnnn

    nnnnnn

    n

    nnn

    n

    mmaammaa

    mmaammaammaa

    mamama

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    19/42

    DunkerleysFormula

    Let the roots of this equation be 1/12,1/22,, 1/n2. Thus

    Equating coefficients of (1/2)n-1 in (E.1) and(E.2):

    In most cases,

    (E.2)0...11

    ...11111

    ...1111

    1

    222

    2

    2

    1

    2222

    2

    22

    1

    2

    n

    n

    n

    n

    n22211122

    2

    2

    1

    m...mm1

    ...11

    nn

    n

    aaa

    n2,3,...,i,11

    2

    1

    2

    i

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    20/42

    DunkerleysFormula

    Thus

    Can also be written as

    where in=(1/aiimi)1/2=(kii/mi)1/2

    formula)s'(Dunkerley...1 2221112 mamama nni

    22

    2

    2

    1

    2

    1...

    111

    nnnni

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    21/42

    21

    DunkerlyDunkerly FormulaFormula

    (calculation procedures)(calculation procedures)

    2 2 2 2

    11 22

    1 1 1 1

    n nn

    : fundamental (lowest) natural frequency

    n

    nn

    nn

    n

    k

    m

    (1) Identify k11, k22 , knn, m1, m2, mn

    (2) Calculate natural frequency of the individual component

    (3) Predict the fundamental natural frequency of the system

    n nn

    : natural frequency of a SDOF system

    consisting m and spring of stiffness k

    nn

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    22/42

    Example 2

    Estimate the fundamental natural frequencyof a simply supported beam carrying 3identical equally spaced masses, as shown

    below.

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    23/42

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    24/42

    Problem 1

    Estimate the fundamental natural frequenciesof the system shown below. Givenk1=k2=k3=k and m1=m2=m3=m

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    25/42

    Solution

    Flexibility matrix

    Apply the related equations to solve it.

    Does the value of nat. freq. smaller & largerthan the exact valueof nat. frequency?

    How many percent ?

    321

    221111

    1

    ka

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    26/42

    26

    Rayleigh MethodRayleigh Method

    This method predicts the fundamental(lowest) natural frequency

    This method based on energy method

    21

    2T mx

    212

    V kx

    1

    2

    T

    T x M x

    1

    2

    T

    V x K x

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    27/42

    27

    Rayleigh QuotientRayleigh Quotient

    1

    2

    T

    T x M x 1

    2

    T

    V x K x

    sin( )

    cos( )

    x X t

    x X t

    2max1

    2

    T

    T X M X max1

    2

    T

    V X K X

    max maxT V

    2

    T

    T

    X K X

    X M X

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    28/42

    28

    Rayleigh MethodRayleigh Method

    (Calculation procedures)(Calculation procedures)

    Identify [K] and [M]

    Select any trial vector mode {X}

    Predict the fundamental natural frequency

    based on the Rayleigh Quotient

    2

    T

    T

    X K X

    X M X

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    29/42

    Example 3

    Estimate the fundamentalfrequency of vibration of thesystem as shown. Assume thatm

    1=m

    2=m

    3=m, k

    1=k

    2=k

    3=k, and

    the mode shape is

    3

    2

    1

    X

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    30/42

    Solution

    Stiffness matrix

    Mass matrix

    Substitute the assumed mode shape into

    110

    121012

    kk

    100

    010

    001

    mm

    XR

    m

    k

    m

    k

    m

    k

    XR 4629.02143.0

    3

    2

    1

    100

    010

    001

    321

    3

    2

    1

    110

    121

    012

    321

    2

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    31/42

    HolzersMethod

    A trial-and-error method to find naturalfrequencies of systems

    Requires several trials

    The method also gives mode shapes

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    32/42

    32

    HolzerHolzer MethodMethod

    1 1 1 1 2

    2 2 1 2 1 2 2 3

    3 3 3 3 2

    ( )

    ( ) ( )

    ( )

    t

    t t

    t

    I k

    I k k

    I k

    2

    1 1 1 1 2

    2

    2 2 1 2 1 2 2 3

    2

    3 3 3 3 2

    ( )

    ( ) ( )

    ( )

    t

    t t

    t

    I k

    I k k

    I k

    2

    1

    0n

    i i

    i

    I

    )cos( tii

    Assume

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    33/42

    33

    HolzerHolzer MethodMethod

    (calculation)(calculation)

    2

    1 12 1

    1

    2

    2 3 2 2 1 2 1 2 2

    2

    1 2 23 2 2 1

    2 2

    2 2

    1 1 2 23 2

    2 2

    2

    3 2 1 1 2 2

    2

    ( )

    ( )

    t

    t t t

    t

    t t

    t t

    t

    I

    k

    k k k I

    k I

    k k

    I I

    k k

    I Ik

    2

    1 1 1 1 2

    2

    2 2 1 2 1 2 2 3

    ( )

    ( ) ( )

    t

    t t

    I k

    I k k

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    34/42

    34

    HolzerHolzer MethodMethod

    (summary calculation)(summary calculation)

    Torsion Translation

    1

    2

    1 12 1

    12

    3 2 1 1 2 2

    2

    2 1

    1

    11

    1

    2,3,

    t

    t

    i

    i i k k

    kti

    I

    k

    I Ik

    Ik

    i n

    1

    2

    1 12 1

    12

    3 2 1 1 2 2

    2

    2 1

    1

    11

    1

    2,3,

    i

    i i k k

    ki

    X

    m XX X

    k

    X X m X m X k

    X X m X k

    i n

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    35/42

    35

    HolzerHolzer MethodMethod

    (calculation procedures)(calculation procedures)

    Set initial =0 and set the sweep increment of with a value

    Station 1:

    X1=1 (or 1=1), calculate M1=2m1X1 (or

    2I11)

    Station 2:

    Calculate X2 (or 2), calculate M2=M1+ 2m2X2 (or

    2I22)

    Station 3:

    Calculate X3 (or 3), calculate M3=M2+ 2m3X3 (or

    2I33)

    Station n:

    Calculate Xn (or n), calculate Mn=Mn-1+ 2mnXn (or

    2Inn)

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    36/42

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    37/42

    37

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    38/42

    38

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    39/42

    Example 5

    The arrangement of the compressor, turbineand generator in a thermal power plant isshown below. Find the natural frequenciesand mode shapes of the system.

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    40/42

    Solution This is an unrestrained torsional system.

    The table below shows its parameters andthe sequence of computations.

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    41/42

    Torsional Systems

    The graph below plots the torque Mtappliedat the last disc against the chosen .

    The natural frequencies are the at whichMt=0.

    The amplitudes i(i=1,2,,n) are the modesha es of the s stem

  • 8/8/2019 Determ.of Eigenvalue & Eigenvector

    42/42

    42

    Problem 1Problem 1

    I1=2 kg m2

    I2=4 kg m2

    I3=2 kg m2

    kt1=3 MNm/ radKt2=2 MNm/ rad

    Calculate the naturalfrequencies and modeshapes