principles of digital communications [1mm] part 1

104
Principles of Digital Communications Part 1 Philippe Ciblat Université Paris-Saclay & Télécom ParisTech

Upload: others

Post on 08-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Principles of Digital Communications [1mm] Part 1

Principles of Digital CommunicationsPart 1

Philippe Ciblat

Université Paris-Saclay & Télécom ParisTech

Page 2: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Outline

Section 1: What are Digital Communications ?Section 2: A toy exampleSection 3: Baseband and carrier signalsSection 4: Continuous-time propagation channelSection 5: Modulation (TX): from discrete-time tocontinuous-timeSection 6: Demodulation (RX): from continuous-time todiscrete-time− Matched filter + sampler− Equivalent discrete-time channel model

Section 7: Detection Theory− Optimal detector− General performances

Section 8: Application to Gaussian channelSection 9: Application to Frequency-Selective channel− Viterbi Algorithm− Linear equalization− OFDM

Philippe Ciblat Digital Communications 2 / 86

Page 3: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 1: What are Digital Communications?

Philippe Ciblat Digital Communications 3 / 86

Page 4: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Introduction

Except audio broadcasting (radio), current communicationsystems are digital− 2G, 3G, 4G, 5G, DVBT, Wifi, Free Space Optical Communications− ADSL, Optical fiber communications− MP3, DVD

Channels: copper twisted pair, powerline, wireless, optical fiber,...

Sources: analog (voice) or digital (data)

Philippe Ciblat Digital Communications 3 / 86

Page 5: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

If analog source, ...

Sampling (no information loss)

Nyquist-Shannon Theorem

Let t 7→ x(t) be a continuous-time signal of bandwidth B. x(t) isperfectly characterized by the sequence {x(nT )}n where T is thesampling period satisfying 1/T ≥ B.

Quantization (information loss)

Example

Let us consider voice signal

Quality Bandwidth Sampling Quantization2G [300Hz, 3400 Hz] 8kHz 8 bitsHifi [20Hz, 20kHz] 44kHz 16 bits

Philippe Ciblat Digital Communications 4 / 86

Page 6: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

What is digital?

Analog system: d(t) analog source

transmit signal : x(t) = f (d(t))

+ Pros: low complexity− Cons: data transmission, multiple access, performance, limited

information processing

Digital system: dn digital source (composed by 0 and 1)

transmit signal : x(t) = f (dn)

Philippe Ciblat Digital Communications 5 / 86

Page 7: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Design parameters

Data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Db bits/sBandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B HzError probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Pe

Transmit power (SNR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .P mW or dBmLatency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L

Goal

max Db with min B,Pe,P,L

but− theoretical limits (information theory)− practical constraints (propagation, complexity)

Practical case: depends on Quality of Service (QoS)− 2G/3G/4G (voice): target L with fixed Db and variable Pe

− ADSL (data): max Db with target Pe and fixed B and P

Philippe Ciblat Digital Communications 6 / 86

Page 8: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

A few systems

System Db B Pe Spectral efficiencyTV 10Mbits/s 8MHz 10−11 1,25 bits/s/Hz

voice 13kbits/s 25kHz 10−2 0,5 bits/s/HzData (ADSL) 500kbits/s 1MHz 10−7 0,5 bits/s/Hz

Philippe Ciblat Digital Communications 7 / 86

Page 9: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Transceiver/Receiver structure.

ModulationSource

Destination

Channelcoding

Channeldecoding

Demodulation

channel

propagation

x(t)

y(t)

an

an

dn

dn

.

Question ?How to design

Modulation/demodulation boxesCoding/decoding boxes

... depending on propagation channel

Philippe Ciblat Digital Communications 8 / 86

Page 10: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 2: A toy example

Philippe Ciblat Digital Communications 9 / 86

Page 11: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

The “old” optical fiberGoal:

Sending a bit stream an ∈ {0,1} at data rate Db bits/sData an will be sent at time nTb with Tb = 1/Db s

How?x(t) = 0 if an = 0 within [nTb, (n + 1)Tb)⇒ No lightx(t) = A if an = 1 within [nTb, (n + 1)Tb)⇒ Light

.

����������������������������������������������������������������������������

1 0 0 1 1 0 1 00

A

Tb

t.

but

Light has a color(∼ wavelength)

xc(t) = x(t) cos(2πf0t)0 1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/Tb

Philippe Ciblat Digital Communications 9 / 86

Page 12: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Mathematical framework

Each data has a shape. Here, the rectangular functionEach shape is multiplied by an amplitude. Here, either A or 0Each data is shifted at the right time

x(t) =∑

n

sng(t − nTs)

withg(t) shaping filter. Here, g(t) rectangular functionsn symbol sequence. Here sn = Aan

Ts symbol period. Here, Ts = Tb

Finallyxc(t) = x(t) cos(2πf0t)

Philippe Ciblat Digital Communications 10 / 86

Page 13: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Degrees of freedom

carrier frequency f0− impact on propagation condition− impact on data rate (see later)

shaping filter g(t)− impact on bandwidth

Sx (f ) ∝ |G(f )|2

with G(f ) Fourier Transform of g(t)− impact on receiver complexity and performance (see later)

symbol sn

− impact on data rate: multi-level− impact on performance (see later)

symbol period Ts

− impact on data rate− impact on bandwidth (through the choice of g(t))

Philippe Ciblat Digital Communications 11 / 86

Page 14: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 3: Baseband/carrier signals

Philippe Ciblat Digital Communications 12 / 86

Page 15: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Questions

xc(t) = x(t) cos(2πf0t)

withxc(t): carrier signalx(t): baseband signal⇒ (complex) envelope

Q1: Is there another way to translate the signal? x(t)→ xc(t)YESI/Q modulatorComplex-valued signal

Q2: How retrieving x(t) from xc(t)?I/Q demodulator

Philippe Ciblat Digital Communications 12 / 86

Page 16: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Mathematical framework

Instead of using only cos, we can use simultaneously cos and sin

xc(t) = xp(t) cos(2πf0t)− xq(t) sin(2πf0t)

= <(

(xp(t) + ixq(t))e2iπf0t)

withxp(t) a baseband real-valued signal of bandwidth B: In-phasexq(t) another real-valued signal of bandwidth B: Quadrature

We may have two streams in baseband for one carrier signal!

Complex envelope

The baseband signal can be represented by the so-called complexenvelope

x(t) =1√2

(xp(t) + ixq(t))

Philippe Ciblat Digital Communications 13 / 86

Page 17: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Mathematical framework (cont’d)

Assuming B/2 < f0, we have

I/Q modulator I/Q demodulator.

+f0

π/2

xp(t)

xq(t)

xc(t)

x

x

.

.

f0

π/2

xq(t)

xc(t)

xp(t)

x

x

.

In practice, we work with complex envelopesmaller bandwidth B instead of 2f0 + Bno cos and sin disturbing terms

.

����������������������������������������������������������������

����������������������������������������������������������������

����������������������������������������������������������������

����������������������������������������������������������������

����������������������������������������������������������������

����������������������������������������������������������������

����������������������������������������������������������������

����������������������������������������������������������������

���� �������� �������� ������������ ��������ChannelI/Q mod I/Q demodan x(t) y(t) an

Supra-channelTX RX

xc(t) yc(t)

.

Philippe Ciblat Digital Communications 14 / 86

Page 18: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

A few wireless systems

When f0 increasespropagation degrades (1/f 2)antenna size decreases (1/f )bandwidth B may increase

System f0 B Antenna sizeIntercont. ∼ 10MHz (HF) 100kHz 100m

DVBT 600MHz (UHF) ∼ 1 MHz 1m2G 900MHz ∼ 1 MHz 10cmWifi 5.4 GHz 10MHz ∼ 1cm

Satellite 11GHz 100MHz –Personal Network 60GHz – –

Philippe Ciblat Digital Communications 15 / 86

Page 19: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 4: Propagation channel

Philippe Ciblat Digital Communications 16 / 86

Page 20: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Multipath channel

typical wireless channelvalid also for ADSL and optical fiber (low SNR)

.

(ρ1, τ1)

(ρ2, τ2)

(ρ0, τ0)

.

y(t) =∑

k

ρk x(t − τk ) + w(t)

= c(t) ? x(t) + w(t)

with noise w(t)

Dispersion time: Td = maxk τk

Coherence bandwidth:Bc = minf arg maxδ {‖C(f )− C(f + δ)‖ < ε}

Bc = O(1/Td )

Philippe Ciblat Digital Communications 16 / 86

Page 21: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Noise property

Let wc(t) be the (random) noise at carrier levelwc(t) is zero-mean (real-valued) Gaussian variablewc(t) is stationary (E[wc(t)2] independent of t)wc(t) is almost white

.

f0

f

N0/2

B.

P =

∫Sw (f )df = N0B

What’s happened for complex envelope w(t)?

Philippe Ciblat Digital Communications 17 / 86

Page 22: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Noise property (cont’d)

w(t) =1√2

(wp(t) + iwq(t))

with1. wp(t) and wq(t) zero-mean (real-valued) stationary Gaussian

variable with the same spectrum.

fB

N0

.

2. wp(t) and wq(t) are independent

Philippe Ciblat Digital Communications 18 / 86

Page 23: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Model: Gaussian channel

Short multipaths (Td ) compared to symbol period (Ts)Holds for Hertzian beamsHolds for SatelliteHolds also for very low data rate transmission

y(t) = x(t) + w(t)

Philippe Ciblat Digital Communications 19 / 86

Page 24: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Model: Frequency-Selective channel

Holds for cellular systems (2G with Td = 4Ts)Holds for Local Area Network (Wifi with Td = 16Ts)Holds for ADSL (Td = 100Ts)Holds also for Optical fiber (the so-called chromatic dispersion)

y(t) = c(t) ? x(t) + w(t)

⇒ InterSymbol Interference (ISI)

RemarkChannel type (ISI?) is modified according to data rateThe higher the rate is, the stronger the ISI is (Td � Ts)

Philippe Ciblat Digital Communications 20 / 86

Page 25: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 5: Modulation (TX):from discrete-time to continuous-time

Philippe Ciblat Digital Communications 21 / 86

Page 26: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Question

.

x(t)Modulation

"Modulation"

an xc(t)I/Q modulator

.

How associating bits an with analog (baseband) signal x(t)?

Philippe Ciblat Digital Communications 21 / 86

Page 27: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Binary modulation

Waveform: x0(t) if bit ’0’ and x1(t) if bit ’1’Binary linear modulation

x0(t) = Ag(t) and x1(t) = −Ag(t)

with symbols −A and A, and the shaping filter g(t)

If the symbol period is Ts, then

x(t) =∑

k

sk g(t − kTs) with sk ∈ {−A,A}

Example (g(t) rectangular function).

t

Ts

A

−A10 1 0 0 1 0 1 0 0 .

Philippe Ciblat Digital Communications 22 / 86

Page 28: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Multi-level modulation

Bandwidth of x(t) (B) identical of that of g(t):- If B � 1/Ts, InterSymbol Interference (see rectangular case)- If B � 1/Ts, bandwidth is wasted (signal oscillates at 1/Ts)

B = O(1/Ts)

Spectral efficiency is 1bit/s/Hz in binary modulation

Multi-level modulation: one symbol contains more than one bit

Exemple (M = 4)′00′ 7→ A ′01′ 7→ −A ′10′ 7→ 3A ′11′ 7→ −3A

.

t

Ts

A

−A 0 1 1 0 0 1 0 1 0 0

3A

−3A.

Philippe Ciblat Digital Communications 23 / 86

Page 29: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Constellations

Constellation = set of possible symbols

Pulse Amplitude Modulation (PAM).

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

.

Phase Shift Keying (PSK).

������

������

������

������

������

������

����

����

������

������

������

������

������

������

������

������

����

������

������

����

������

������

����

������

������

����

.

Quadrature Amplitude Modulation (QAM).

������

������

������

������

������

������

������

������

������

������

������

������

������

������

����

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

.

Philippe Ciblat Digital Communications 24 / 86

Page 30: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 6: Demodulation (RX):from continuous-time to discrete-time

Philippe Ciblat Digital Communications 25 / 86

Page 31: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Question

.

I/Q modulator Demodulation Detectoryc(t) y(t) anz(n)

.

Two main boxes:How coming back to discrete-time signal: demodulationHow detecting optimally the transmit bits (from z(n)): detector

GoalDescribing and justifying the demodulation

Philippe Ciblat Digital Communications 25 / 86

Page 32: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

A mathematical tool: signal spaceLet L2 be the space of energy-bounded function

L2 =

{f s.t.

∫|f (t)|2dt < +∞

}L2 is an infinite-dimensional vectorial space

Properties

L2 has an inner product

< f1(t)|f2(t) >=

∫f1(t)f2(t)dt

− leads to “orthogonality” principle: < f1(t)|f2(t) >= 0− leads to a norm: ‖f (t)‖ =

√< f (t)|f (t) >

L2 has an infinite-dimensional orthonormal (otn) basis: {Ψm(t)}m

∀f ∈ L2,∃{βm}m, f (t) =∑

m

βmΨm(t) with βm =< f (t)|Ψm(t) >

Any function is described by complex-valued coefficientsPhilippe Ciblat Digital Communications 26 / 86

Page 33: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

A signal subspaceLet E be a subspace of L2 generated by the functions {fm(t)}m=1,··· ,M

E = span({fm(t)}m=1,··· ,M) =

{M∑

m=1

αmfm(t) for any complex αm

}

Property

This subspace has a finite dimension and a finite otn basis

D = dimC E and E = span{Φ`(t)}`∈{1,··· ,D}

For instance, let f (t) be a function in E

f (t) =D∑`=1

s(`)Φ`(t) with s(`) =< f (t)|Φ` >∈ C

s = [s(1), · · · , s(D)]T corresponds to the analog signal f (t)Usually, we prefer to work with s (which will carry information)

Philippe Ciblat Digital Communications 27 / 86

Page 34: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Exhaustive demodulator

y(t) =∑

k

sk h(t − kTs) + w(t)

with any symbol sk and any filter h(t)

QuestionHow sampling without information loss?

Nyquist-Shannon Theorem: sampling at fe > B. Then y(n/fe)contains all the information on y(t)

Actually information ({sk}) is only a part of y(t)Exhaustive demodulator based on subspace principle

Information {sk} belongs to the subspace E

E = span({h(t − kTs)}k )

Noise w(t) belongs to E and E⊥ (orthogonal of E)

w(t) = wE (t) + wE⊥(t) (wE (t) and wE⊥(t) independent)

Consequently, projection on E contains any information on {sk} in y(t)Philippe Ciblat Digital Communications 28 / 86

Page 35: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Exhaustive demodulator (cont’d)

Projection on E

z(n) = < y(t)|h(t − nTs) >

=

∫y(τ)h(τ − nTs)dτ

= h(−t) ? y(t)|t=nTs

.

h(−t)y(t)

′nT ′s

z(n)

.

Projection = Matched filter + Sampling

Remark: Sampling at Ts and not at Te

Philippe Ciblat Digital Communications 29 / 86

Page 36: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Input/output discrete-time model

.

sn y(t)w(t)

z(n)

h(t)

h(t) h(−t)

.

z(n) =∑`

h(`Ts)sn−` + w(n)

withh(t) = h(−t) ? h(t)w(n) = h(−t) ? w(t)|t=nTs zero-mean complex-valued stationaryGaussian with spectrum

Sw (e2iπf ) = N0h(e2iπf ) = N0|h(e2iπf )|2

Philippe Ciblat Digital Communications 30 / 86

Page 37: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Orthogonal basis caseWhat’s happened when {h(t − kTs)}k is an otn basis⇔ No ISI

z(n) = sn + w(n)

Equivalent proposition

{h(t − kTs)}k otn basish(t) Nyquist filter

h(`Ts) = δ`,0 ⇔∑

k

H(

f − kTs

)= Ts

h(t) square-root Nyquist

h(t) = h(−t) ? h(t)⇔ H(f ) =

√H(f )

In practice, h(t) square-root Nyquist iffGaussian channel . . . . . . .no ISI provided by propagation channelg(t) square-root Nyquist . . . . . . . . no ISI provided by shaping filter

Philippe Ciblat Digital Communications 31 / 86

Page 38: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Nyquist filter

Main property

If h(t) square-root Nyquist, then

B >1Ts

Examples:h(t) rectangular⇔ h(t) triangularh(t) square-root raised cosine (srrc)⇔ h(t) raised cosine

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

h(t)

t

Raised cosine with rho=0.5.

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1

Ts = 1 et ρ = 0.5

H(f)

f

B

−1+ρ2Ts

−1−ρ2Ts

1−ρ2Ts

1+ρ2Ts

.

with roll-off ρ (ρ = 0.22 in 3G, ρ = 0.05 in DVB-S2, ρ = 0.01 inWDM-Nyquist)

Philippe Ciblat Digital Communications 32 / 86

Page 39: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Consequence on noise

If h(t) square-root Nyquist, then w(n) white noise

w(n) = wR(n) + iwI(n)

wR(n) and wI(n) independentE[wR(n)2] = E[wI(n)2] = N0/2E[|w(n)|2] = N0 and E[w(n)2] = 0

Probability density function (pdf)

pw (x) = pwR ,wI (xR , xI) = pwR (xR)pwI (xI)

=1√πN0

e−x2R

N0 × 1√πN0

e−x2I

N0 =1πN0

e−x2R+x2

IN0

=1πN0

e−|x|2N0

Philippe Ciblat Digital Communications 33 / 86

Page 40: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Non-orthogonal basis case

What’s happened when {h(t − kTs)}k is a non-otn basis

ISIColored noise

Equivalent model

By using whitening filter f , we have

y(n) = f ? z(n) =L∑`=0

h(`)sn−` + w(n)

with w(n) white Gaussian noise

Philippe Ciblat Digital Communications 34 / 86

Page 41: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

General model

Any previous case can be written as follows

y = Hs + w

withy = [y(0), . . . , y(N)]T

s = [s−L, · · · , s−1︸ ︷︷ ︸known

, s0, . . . , sN ]T

Goal: decode the data s from the observations y

Matrix model valid for no-ISI case, ISI case, but alsowireless MIMO, multiple access, multi-core/multi-mode fibers

(with different matrix structures)

Philippe Ciblat Digital Communications 35 / 86

Page 42: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 7: Detection Theory

Philippe Ciblat Digital Communications 36 / 86

Page 43: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Main resultsHow to choose optimally s given y?

y = f (s,w, ...), with s ∈ {sm}m∈C

By optimality, we mean minimal error probability

min Pe, with Pe = Prob(s 6= s)

where s is the output of the detector.

Optimal detectors

If data are not equilikely, then the optimal receiver (minimizingthe error probability) is the Max A Posteriori (MAP),

s = arg maxs

p(s|y)

If data are equilikely, then the optimal receiver (minimizing theerror probability) is the Maximum Likelihood (ML),

sML = arg maxs

p(y|s)

Philippe Ciblat Digital Communications 36 / 86

Page 44: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Decision regionsIf y is seen as a point in a vector space, we can define a regiondecision for any sm as follows

Rm = {y | p(sm|y) ≥ p(sm′ |y),∀m′ 6= m}

.

Rm1

Rm2

sm2

sm1

.

Philippe Ciblat Digital Communications 37 / 86

Page 45: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Application to Gaussian additive noise’s model

We consider

y = d + w

withd = f (s) with s the transmit information vectordm = f (sm), and dm ∈ D (received alphabet)Example: f (s) = Hs

ML = Least Square (LS)

dML = arg mind‖y− d‖2

msML = arg min

s‖y− f (s)‖2

Philippe Ciblat Digital Communications 38 / 86

Page 46: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Application to Gaussian additive noise’s model (cont’d)

Decision regions are described through the medians of the receivedalphabet (if s, or equivalently d, are equilikely)

.

Rm1

Rm2

dm1

dm2

.

Philippe Ciblat Digital Communications 39 / 86

Page 47: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

PerformancesOnly available for Gaussian additive noise’s model

.

dm1

dm2

dmin

.

dmin = minm 6=m′ ‖dm − dm′‖ (= minm 6=m′ ‖f (sm)− f (sm′)‖)Nmin = 1

M

∑Mm=1 Nmin,m with Nmin,m number of points at distance

dmin from dm

Pe ≈ NminQ(

dmin√2N0

)Philippe Ciblat Digital Communications 40 / 86

Page 48: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Section 8: Application to Gaussian Channel

Philippe Ciblat Digital Communications 41 / 86

Page 49: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Signal model

y = s + wwith w Gaussian white noise.

s = arg mins‖y− s‖2

with the Euclidian distance ‖.‖.Main result

If y = [y(1), . . . , y(N)]T and s = [s(1), . . . , s(N)]T, then

s = arg mins

N∑n=1

|y(n)− s(n)|2

s(n) = arg mins(n)|y(n)− s(n)|2

Separable functionComponent per component optimization is still optimal

Philippe Ciblat Digital Communications 41 / 86

Page 50: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Application to linear modulations

y = s + w (scalar)

with s belonging to PAM, or PSK, or QAM.

We look for the nearest constellation point from y (threshold detector,denoted by \: s = \(y))

.

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

����

����

����

����

.

Philippe Ciblat Digital Communications 42 / 86

Page 51: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Application to linear modulations (cont’d)

Constellation Performance Q(√

γ EbN0

)M-PAM γ = 6 log2(M)/(M2 − 1)

M-PSK γ = log2(M)(1− cos( 2πM ))

M-QAM γ = 3 log2(M)/(M − 1)

with Eb the energy used per transmit information bit

RemarkQAM > PSK > PAM

Philippe Ciblat Digital Communications 43 / 86

Page 52: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI

Numerical illustrations

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20

Ta

ux E

rre

ur

Sym

bo

le

Eb/No (en dB)

Taux Erreur Symbole en fonction du Eb/No

MDP-2MDP-4MDP-8

MDP-16

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20

Ta

ux E

rre

ur

Sym

bo

leEb/No (en dB)

Taux Erreur Symbole en fonction du Eb/No

MDP-2MAQ-16MDP-16MDA-16

Pe for different M-PSK Pe for different constellations(with fixed M)

Philippe Ciblat Digital Communications 44 / 86

Page 53: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Section 9: Application toFrequency-Selective Channel

Philippe Ciblat Digital Communications 45 / 86

Page 54: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Outline

y = Hs + w

with H a N ′H × NH (non-diagonal) Toeplitz-band matrix

Section 9.1: Optimal receiver− Some special cases− Viterbi algorithm

Section 9.2: Suboptimal receivers− ZF (with or without CSIT)− MMSE− DFE

Section 9.3: OFDM

Philippe Ciblat Digital Communications 45 / 86

Page 55: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Section 9.1 : Optimal receiver

Philippe Ciblat Digital Communications 46 / 86

Page 56: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Optimal detector

sML = arg mins‖y− Hs‖2

Simple optimization without constraint on s

Optimization problem consists in finding out the minimumof a (positive) quadratic form under (nonconvex) conditions

Exhaustive search− complexity in O(MNH ) with M-QAM− ex.: 4× 4 MIMO with 64-QAM leads to 16M s

Special simple cases: NH = 1 or unitary matrixTree approach− suitable for wireless MIMO with small NH ⇒ Sphere decoding

Using the structure of H− suitable for ISI since H Toeplitz⇒ Viterbi algorithm

Suboptimal detectors− Remove constraint and threshold (s = \(H−1y))⇒ ZF− MMSE, DFE

Philippe Ciblat Digital Communications 46 / 86

Page 57: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Optimal detector

sML = arg mins∈CNH

‖y− Hs‖2

Hard optimization due to constraint on s

Optimization problem consists in finding out the minimumof a (positive) quadratic form under (nonconvex) conditions

Exhaustive search− complexity in O(MNH ) with M-QAM− ex.: 4× 4 MIMO with 64-QAM leads to 16M s

Special simple cases: NH = 1 or unitary matrixTree approach− suitable for wireless MIMO with small NH ⇒ Sphere decoding

Using the structure of H− suitable for ISI since H Toeplitz⇒ Viterbi algorithm

Suboptimal detectors− Remove constraint and threshold (s = \(H−1y))⇒ ZF− MMSE, DFE

Philippe Ciblat Digital Communications 46 / 86

Page 58: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Special case: N ′H = NH = 1We consider scalar signal

y = hs + w

We have

sML = arg mins∈C|y − hs|

= arg mins∈C|h|.|h−1y − s|

= arg mins∈C|h−1y − s|

= \(h−1y)

.

h−1y sML

.

ZF=MLEasy to implement

Philippe Ciblat Digital Communications 47 / 86

Page 59: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Special case: SIMO

We consider a multivariate signal (typically N ′H antennas)

y(`) = h`s + w(`) with ` = 1, · · · ,N ′H ⇐⇒ y = hs + w

with h a N ′H × 1 column-vectorWe have

sML = arg mins∈C‖y− hs‖2

= arg mins∈C‖y‖2 + ‖h‖2|s|2 − yHhs − shHy

.

y sMLhH Normalization

1/‖h‖2.

ML=MRC=ZF (with pseudo-inverse h# = (hHh)−1hH = hH/‖h‖2)Easy to implement

Philippe Ciblat Digital Communications 48 / 86

Page 60: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Special case: SIMOWe consider a multivariate signal (typically N ′H antennas)

y(`) = h`s + w(`) with ` = 1, · · · ,N ′H ⇐⇒ y = hs + w

with h a N ′H × 1 column-vectorWe have

sML = arg mins∈C‖y− hs‖2

= arg mins∈C‖h‖2

∥∥∥∥ hHy‖h‖2

∥∥∥∥2

+ ‖h‖2(|s|2 − yHh

‖h‖2 s − shHy‖h‖2

)

.

y sMLhH Normalization

1/‖h‖2.

ML=MRC=ZF (with pseudo-inverse h# = (hHh)−1hH = hH/‖h‖2)Easy to implement

Philippe Ciblat Digital Communications 48 / 86

Page 61: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Special case: SIMOWe consider a multivariate signal (typically N ′H antennas)

y(`) = h`s + w(`) with ` = 1, · · · ,N ′H ⇐⇒ y = hs + w

with h a N ′H × 1 column-vectorWe have

sML = arg mins∈C‖y− hs‖2

= arg mins∈C

∥∥∥∥ hHy‖h‖2 − s

∥∥∥∥2

.

y sMLhH Normalization

1/‖h‖2.

ML=MRC=ZF (with pseudo-inverse h# = (hHh)−1hH = hH/‖h‖2)Easy to implement

Philippe Ciblat Digital Communications 48 / 86

Page 62: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Special case: unitary matrices

We consider HHH = INH , or equivalently, ‖Hx‖ = ‖x‖ for any xWe have

sML = arg mins∈CNH

‖y− Hs‖

= arg mins∈CNH

‖H(HHy− s

)‖

= arg mins∈CNH

‖H−1y− s‖

.

y sMLH−1 = HH

.

ZF=MLEasy to implementNot true in general since usually ‖AB‖ 6= ‖A‖.‖B‖

Philippe Ciblat Digital Communications 49 / 86

Page 63: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Go back to ISI problem

IdeaDue to filtering, H is ToeplitzSuch a structure enables a low-complex optimal detector

Dynamic programming⇒ Viterbi’s algorithm [Viterbi1973]

We remind that

‖y− Hs‖2 =N∑

n=0

∣∣∣∣∣y(n)−L∑`=0

h`sn−`

∣∣∣∣∣2

def .= JN([s0, · · · , sN ]︸ ︷︷ ︸

s(N)

)

Fundamental property

JN(s(N)) = JN−1(s(N−1)) + ∆J(sN ,EN) =N∑

n=0

∆J(sn,En)

with ∆J(sn,En) = |y(n)−∑L`=0 h`sn−`|2 and En = [sn−1, · · · , sn−L]T

Philippe Ciblat Digital Communications 50 / 86

Page 64: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Definition of Trellis

enables to view s(N) through states {En}n

corresponds to the possible transitions between states

Example : M = 2, L = 1⇒ two states E (0) = [−1] et E (1) = [1]

.

’E(0) = −1’

’E(1) = 1’

’received −1’

time 0 node

branch

path (one possible s )

’received1’

.

Branch:− only characterized by sn and En (at time n)− ∆J : Branch metric (cost to go through this branch)

Goal: find optimal path (with the lowest sum of branch metrics)

Philippe Ciblat Digital Communications 51 / 86

Page 65: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Algorithm principle

For sake of simplificationtwo states only E (0) = [−1] et E (1) = [1]

inspecting between time n − 1 and n

.sn = −1

sn =−1

’E(0) = −1’

’E(1) = 1’

s(n−1)

|E(0)

s(n−1)

|E(1)

time n− 1 time n.

Amongst paths arriving at E (0), only one minimizes Jn−1(.)

s(n−1)opt.|E (0) s.t. Jn−1(s(n−1)

opt.|E (0)) ≤ Jn−1(s(n−1)|E (0) )

s(n−1)opt.|E (1) s.t. Jn−1(s(n−1)

opt.|E (1)) ≤ Jn−1(s(n−1)|E (1) ) (similar result for E (1))

Philippe Ciblat Digital Communications 52 / 86

Page 66: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Algorithm principle (cont’d)

What’s happened at time n in state E (0) ?

In other words, what do we know about s(n)|E (0) and s(n)

opt.|E (0)

Jn−1(s(n−1)opt.|E (0)) ≤ Jn−1(s(n−1)

|E (0) )

Philippe Ciblat Digital Communications 53 / 86

Page 67: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Algorithm principle (cont’d)

What’s happened at time n in state E (0) ?

In other words, what do we know about s(n)|E (0) and s(n)

opt.|E (0)

Jn−1(s(n−1)opt.|E (0)) + ∆J(−1,E (0)) ≤ Jn−1(s(n−1)

|E (0) ) + ∆J(−1,E (0))

Philippe Ciblat Digital Communications 53 / 86

Page 68: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Algorithm principle (cont’d)

What’s happened at time n in state E (0) ?

In other words, what do we know about s(n)|E (0) and s(n)

opt.|E (0)

Jn([s(n−1)opt.|E (0) ,−1]) ≤ Jn([s(n−1)

|E (0) ,−1])

Any suboptimal path at time n − 1 remains suboptimal

Philippe Ciblat Digital Communications 53 / 86

Page 69: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Algorithm principle (cont’d)

What’s happened at time n in state E (0) ?

In other words, what do we know about s(n)|E (0) and s(n)

opt.|E (0)

Jn([s(n−1)opt.|E (0) ,−1]) ≤ Jn([s(n−1)

|E (0) ,−1])

Any suboptimal path at time n − 1 remains suboptimal

Finally,s(n)

opt.|E (0) = [s(n−1)opt.|E (0) ,−1] or [s(n−1)

opt.|E (1) ,−1]

according to respective values of Jn

Philippe Ciblat Digital Communications 53 / 86

Page 70: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Complexity analysis

Complexity in O((N + 1).ML+1)

− linear in N− polynomial in M− exponential in L

So M and L have to be small enough

Refresher: maxk τk = LTs, D = log2(M)/Ts and B = 1/Ts

Increasing data rate leads to− either increasing M ⇒ bad news for Viterbi’s algorithm− or increasing B and thus L⇒ bad news for Viterbi’s algorithm

Philippe Ciblat Digital Communications 54 / 86

Page 71: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Numerical example

Filter: h0 = 1 and h1 = 0.25 (L = 1)Noiseless case

Opening: ’−1’Data: ’1,−1,−1’Closing: ’−1’

Sought vector: [−1, s0?, s1?, s2?,−1]

Received vector: [y(−1)?,0.75,−0.75,−1.25,−1.25, y(4)?]

Branch metric (at time n)

∆J = |y(n)− sn − 0.25sn−1|2

Philippe Ciblat Digital Communications 55 / 86

Page 72: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Time 0

.

’1’

’−1’ ’−1’

.

.’−1’

’1

0 4 4

0

0

’−1’

.

Philippe Ciblat Digital Communications 56 / 86

Page 73: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Time 1.

’−1’

’1

0 4

0

0

4

0

4

4

02.25

6.25

0.254.25

’−1’

.

.’−1’

’1

0 0

4

4

0

0

0

’−1’

.Philippe Ciblat Digital Communications 57 / 86

Page 74: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Time 2.

’−1’

’1

0

0

0

0 4 4

0 00

4

0.5

6.25

10.25

4.5

4

’−1’

.

.

’−1’

’1

0

0

0

0

00

0

4

4

’−1’

.Philippe Ciblat Digital Communications 58 / 86

Page 75: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Time 3.

’−1’

’1

0

0

0

0

0 0 0

4

4’−1’0

0

0.25

4.25

.

.

’−1’

’1

0

0

0

0

0 0 0 ’−1’0

0

.

Philippe Ciblat Digital Communications 59 / 86

Page 76: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Section 9.3 : Suboptimal receivers

Philippe Ciblat Digital Communications 60 / 86

Page 77: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Principle

GoalViterbi’s algorithm not applicable due to high data rateDesign a simple receiver (but suboptimal)Idea: linear compensation for linear interference

⇒ linear receivers

.

s H

w

y z s

ISIinput ISIoutput

Equalizer P

.

Question: how choosing matrix P ?

Philippe Ciblat Digital Communications 60 / 86

Page 78: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

ZF equalizer

Principle

Forcing interference to be zero⇒ Zero-Forcing (ZF)Mathematically,

PH = I⇔ PZF = H−1

Soz = s + w′ with w′ = H−1w

Drawback : noise enhancement (we so derive the SNR percomponent)

SNRinput =Es

2N0

trace(HHH

)NH

SNRoutput =Es

2N0

1trace(H−1H−H)

NH

Thanks to convexity of x 7→ 1/x , one can prove

SNRoutput ≤ SNRinput

with equality when HHH = I, i.e., unitary matrix (cf. slide 49)Philippe Ciblat Digital Communications 61 / 86

Page 79: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Precompensation: ZF at the transmitter side!

If H known at the transmitter side, one can precompensate it!How? by sending x instead of s with

x = Ps

where P corresponds to a linear precoderHow choosing P ? e.g. ZF principle

Drawback:No noise enhancement anymore, butP =

√aH−1 with a = NH/trace

(H−1H−H

)(for energy purpose),

then

SNRw/o comp =Es

2N0

trace(HHH

)NH

SNRcomp =Es

2N0

1trace(H−1H−H)

NH

Same SNR issue (just not located at the same place!)

Solution suitable if CSIT and unitary transformation

Philippe Ciblat Digital Communications 62 / 86

Page 80: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

MMSE equalizer

Principle

Choosing P s.t. Py close to s

PMMSE = arg minP

Es,w[‖Py− s‖2]

After algebraic manipulations,

PMMSE = Es(EsHHH + 2N0I

)−1 HH

Remarks :At high SNR: PMMSE ≈ PZF

At low SNR: PMMSE ∝ HH

Philippe Ciblat Digital Communications 63 / 86

Page 81: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

DFE equalizer

Principle

Using previous decision on s for removing interferenceDecision Feedback Equalizer (DFE)Problem: causality principle in MIMO

Solution: the so-called QR decomposition

H = QR

with a unitary matrix Q and a upper triangular matrix R

z = QHy = Rs + w′

where w′ is still white Gaussian noise

.

s H

w

yQH z s

R

DFE equalizer

.

ZF-DFE: decode first sNH , thensNH−1 based on(zNH−1 − rNH−1,NH sNH ), and so on

Philippe Ciblat Digital Communications 64 / 86

Page 82: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Implementation issue

When NH is high, implementation issue for matrix inversion

When H corresponds to ISI,equivalence between Toeplitz matrices and filteringImplementation through filtering

Example: ZF

PZFH = I⇐⇒ pZF ? h = δ

sopZF(e2iπf ) =

1h(e2iπf )

Philippe Ciblat Digital Communications 65 / 86

Page 83: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Numerical illustrations

We assumeL = 1 with

h0 =1√

1 + ρ2and h1 =

ρ√1 + ρ2

Matrix implementation of introduced equalizers

The larger ρ is, the stronger ISI is

Philippe Ciblat Digital Communications 66 / 86

Page 84: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Viterbi’s algorithm performance

Eb/N

0 (dB)

0 1 2 3 4 5 6 7 8

BE

R

10 -4

10 -3

10 -2

10 -1

10 0

ρ=0ρ=0.2ρ=0.4ρ=0.6ρ=0.8ρ=1

ISI can not be totally removed

Philippe Ciblat Digital Communications 67 / 86

Page 85: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Performance of various equalizers for weak ISI

ρ = 0.2

Eb/N

0 (dB)

0 2 4 6 8 10 12 14

BE

R

10 -4

10 -3

10 -2

10 -1

10 0Performance with rho=0.2

Viterbi

No equalizer

ZF

MMSE

ZF-DFE

Close performance between any solution

Philippe Ciblat Digital Communications 68 / 86

Page 86: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Performance of various equalizers for strong ISI

ρ = 0.8

Eb/N

0 (dB)

0 2 4 6 8 10 12 14

BE

R

10 -4

10 -3

10 -2

10 -1

10 0Performance with rho=0.8

Viterbi

No equalizer

ZF

MMSE

ZF-DFE

DFE outperforms linear equalizers

Philippe Ciblat Digital Communications 69 / 86

Page 87: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Section 9.3 : OFDM

Philippe Ciblat Digital Communications 70 / 86

Page 88: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Refresher: Input/Ouput model

Letx(n) be the transmitted signal (may be different from symbols sn)y(n) be the received signal{h`}`=0,··· ,L be the filter associated with propagation channel

y(n) =L∑`=0

h`x(n − `)

Let us consider one block of size N→ y = [y(N − 1), · · · , y(0)]T

→ x = [x(N − 1), · · · , x(0)]T

→ x = [x(−1), · · · , x(−L)]T

Philippe Ciblat Digital Communications 70 / 86

Page 89: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Matrix model for Input/Output

y = T1x + T2xT1: N × N Toeplitz matrix whose the k -th row is given by− [0k−1, h0, h1, · · · , hL, 0N−L−k ] (if k ≤ N − L)− [0k−1, h0, h1, · · · , hN−k−1] (if k > N − L)

T2: N × L Toeplitz matrix whose the k -th row is given by− 0L (if k ≤ N − L)− [hL, hL−1, · · · , hN−k+1, 0N−k ] (if k > N − L)

In noisy case, we find again

y = Hx + wwhen null guard interval between blocks: H = T1 and x = 0when guard interval x is not empty and linearly depends oncurrent bloc, i.e., x = T3x: H = T1 + T2T3

Question: how obtaining an interference-free system at thereceiver side (by modifying the transmitter) ?

Philippe Ciblat Digital Communications 71 / 86

Page 90: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Lemma 1

Assumption:Perfect CSIT (H known at the transmitter side)Actually, extension of ZF principle described in slide 23

Let H = UHΛV be the singular value decomposition (svd) of H with U,V two unitary matrices, and Λ = diag(λ0, · · · , λN−1)

Instead of sending x = s, we send x = VHs (no energy purpose)Instead of detecting on y, we detect on z = Uy

⇒ z = Λs + w′

with w′ = Uw still white Gaussian noise

RemarksInformation located in eigenvectors (not interfer in-between!)Eigenvectors usually depend on HIssue: perfect CSIT assumption unrealistic in wireless

Philippe Ciblat Digital Communications 72 / 86

Page 91: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Lemma 2

Let C be a N × N circulant matrix associated with {h`}`=0,··· ,L

C =

h0 h1 · · · hL 0 · · · 00 h0 h1 · · · hL 0 0· · · · · · · · · · · · · · · · · · · · ·h1 · · · hL 0 · · · 0 h0

Properties of C

Eigenvectors: Fourier vectors (independent of the channel!)Eigenvalues: filter responses at Fourier frequencies

C = FHΛF

withF FFT matrix (so, FH = F−1)

λn = H(e2iπn/N) =∑L`=0 h`e−2iπ `n

N

Philippe Ciblat Digital Communications 73 / 86

Page 92: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

OFDM principle

If x = [x(N − 1), · · · , x(N − L)]T, then

y = T1x + T2x⇔ y = Cx

Thus we havez = Λs

with z = Fy and x = F−1sFinally, for the k -th block and the n-th subcarrier, we get

z(k)n = H(e2iπn/N)s(k)

n ∀n, k

Remarkscyclic prefix transforms Toeplitz into Circulant (who diagonalizeswithin a basis independent of the channel, so no required CSIT !)OFDM: Orthogonal Frequency Division Multiplexing

Philippe Ciblat Digital Communications 74 / 86

Page 93: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Another way for introducing OFDM

The historical way

.

���������

���������

Bcoh

|C(f)|

f

.

y(t) = c(t) ? x(t)

with c(t) propagation channel

Bc : coherence bandwidth B: signal bandwidth

If B < Bc , almost no ISI.

���������

���������

|C(f)|

f

|X(f)|

f0

Y (f ) ≈ C(f0)X(f ) ⇒ y(t) ≈ C(f0)x(t) .

If B > Bc , ISI.

���������

���������

|C(f)|

f

|X(f)|

Y (f ) = C(f )X(f ) ⇒ y(t) = c(t) ⋆ x(t).

How being always in the configuration B < Bc?

Philippe Ciblat Digital Communications 75 / 86

Page 94: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Another way... naive ideaIdea: as B = 1/Ts (symbol period),splitting symbols sequence into Nsubsequence (with period T = NTs) s.t.

1T< Bc

Then each subsequence n transmitted todifferent subcarriers fn

.

������������������������

������������������������

|C(f)|

f

· · · · · ·

|X0(f)| |Xn(f)| |XN−1(f)|

fnf1f0 fN−1

.

On each subcarrier, no ISI

Let s(k)n = skN+n be a subsequence, the transmitted signal is

x(t) =N−1∑n=0

∑k∈Z

s(k)n g(t − kT )e2iπfnt

N: subcarriers number∑N−1n=0 s(k)

n e2iπfnt : OFDM symbol with period T = NTs

Philippe Ciblat Digital Communications 76 / 86

Page 95: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Another way... orthogonality principle

x(t) =∑k∈Z

N−1∑n=0

s(k)n Φn,k (t) with Φn,k (t) = g(t − kT )e2iπfnt

Orthogonal subcarriers⇔∫R

Φn,k (t)Φn′,k ′(t)dt = δn,n′δk,k ′

We force {Φn,k (t)}n,k to be orthonormal basis.

f f

(ii)(i)

Without overlap With overlap .

Case (ii) : OFDM (Orthogonal Frequency Division Multiplexing)fn equally spaced⇒ fn = n∆fg(t) rectangular function of support [0,T ]

orthogonality iff ∆f = 1/T = 1/NTs

Philippe Ciblat Digital Communications 77 / 86

Page 96: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Another way... transmitter description

Bandwidth: almost same spectral efficiency than single carrier

Btot = NBsc ≈ N1T

= N1

NTs=

1Ts

x (k)(m) = x(kT + mTs)

=1√N

N−1∑n=0

s(k)n e2iπ nm

N

︸ ︷︷ ︸inverse FFT

.

S/P

IFFT

Rate 1/Ts Rate 1/T Rate 1/T

x(t)ADC

s(k)N−1

s(k)0

sn

x(k)(0)

x(k)(N − 1)

.

Remarksx in time domain. k OFDM block number and m time index(within block)s in frequency domain. n frequency index

Philippe Ciblat Digital Communications 78 / 86

Page 97: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Another way... receiver description

z(k)(n) =

∫R

y(t)Φn,k (t)dt

=

√Ts√N

N−1∑m=0

y (k)(m)e−2iπ nmN

with y (k)(m) = y(kT + mTs)

.

FFTP/S

z(k)(0)

z(k)(N − 1)

s(k)n

y(k)(0)

y(k)(N − 1)

Ts

y(t) z(k)n

.

When channel present,

y(t) = c(t) ? x(t) =∑k∈Z

N−1∑n=0

s(k)n Ψn,k (t) with Ψn,k (t) = c(t) ? Φn,k (t)

Problem: Ψn,k (t) is not orthonormal anymore (actually, almost)Solution: go back to the previously-developed approach

⇒ Cyclic prefix

Philippe Ciblat Digital Communications 79 / 86

Page 98: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

TX/RX Scheme

.

Add CPFFT−1 FFT

ConvolutionToeplitz matrix

RXTX

s y

Circular convolution / Circulant matrix

Remove CP∝ sFreq EQ.

(typ. ZF)

x zChannel h

.

Cyclic prefix is crucial!

Philippe Ciblat Digital Communications 80 / 86

Page 99: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Detection: OFDM-SISO

Formally, we havez = Hs + w

with H = diag(H(1), · · · ,H(e2iπn/N)︸ ︷︷ ︸H(n)

, · · · ,H(e2iπ(N−1)/N))

As H is diagonal (no interference occurs), one can work subcarrierper subcarrier, i.e.,

z(n) = H(n)sn + w(n)

with− z(n) received signal after FFT− sn transmitted symbol (before IFFT)− H(n) filter response at the n-th subcarrier

Optimal detector (application of Slide 47)

Threshold detector on H(n)−1z(n)

Philippe Ciblat Digital Communications 81 / 86

Page 100: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

History

end-50: multicarriers concept (Case (i))

end-60: orthogonal multicarriers (Case (ii))⇒ OFDM

beginning-70: FFT

mid-80: European project “Eurêka” for DAB− cyclic prefix− coding and OFDM relationship in wireless context

beginning-90: First standard based on OFDM (DAB)

end-90: Very popular standards (ADSL, DVBT, Wifi, LTE, . . .)

Philippe Ciblat Digital Communications 82 / 86

Page 101: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

OFDM design: two rules

N should be large enough

L� N ⇒ LTs � NTs ⇒ Td � NTs

N � B/Bc ⇔ ∆f � Bc

N should be small enough

(L + N)Ts � Tc ⇒ NTs � Tc

N � B/Bd ⇔ ∆f � Bd

but also− Mis-synchronization of VCO (a few ppm)− FFT complexity (O(N log(N)))− Latency

Philippe Ciblat Digital Communications 83 / 86

Page 102: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

OFDM design: four examples

Wifi ADSL DVBT Optic 100GCarrier freq. 5.2GHz 0.6MHz 700MHz 1550nmBandwidth 20MHz 1.1MHz 9.15MHz 5GHzSampling period 50ns 0.9µs 0.11µs 0.2nsFilter length 800ns 135µs 224µs 0.69nsFilter degree 16 150 2036 4Cyclic prefix 16 32 2048 8Spect. eff. loss 20% 12.5 % 20% 3.125%# Subcarrier 64 256 8192 256OFDM duration 4µs 256µs 896µs 52.8nsSubcarrier spac. 312.5kHz 4.31kHz 1.11kHz 19.53 MHzCoherence band. 1.25MHz 7.4kHz 4.47kHz 1.44GHzDoppler band. 52Hz (3m/s) 0 52Hz (3m/s) 0

Remark: in ADSL, Time Equalizer added for channel shortening

Philippe Ciblat Digital Communications 84 / 86

Page 103: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

Perspectives

MIMO : how to code, how to decode?

Multi-user interference: how to manage resource allocation

Artificial Intelligence tools : decoding and resource optimization

Philippe Ciblat Digital Communications 85 / 86

Page 104: Principles of Digital Communications [1mm] Part 1

DC Ex BD/carrier Ch Mod Demod Detec Appli w/o ISI Appli w. ISI Optimal receiver Suboptimal receivers OFDM

References

[Tse2005] D. Tse and P. Viswanath, Fundamentals of wireless communications, 2005

[Goldsmith2005] A. Goldsmith, Wireless Communications, 2005

[Proakis2000] J. Proakis, Digital Communications, 2000

[Benedetto1999] S. Benedetto and E. Biglieri, Principles of digital transmission with wireless applications, 1999

[Viterbi1979] A. Viterbi and J. Omura, Principles of digital communications and coding, 1979

[Gallager2008] R. Gallager, Principles of digital communications, 2008

[Wozencraft1965] J. Wozencraft and I. Jacob, Principles of communications engineering, 1965

[Barry2004] J. Barry, D. Messerschmitt and E. Lee, Digital communications, 2004

[Sklar2001] B. Sklar, Digital communications : fundamentals ans applications, 2001

[Ziemer2001] R. Ziemer and R. Peterson, Introduction to digital communication, 2001

[Viterbi1967] A. Viterbi, Error bounds for convolutional codes and an asymptotic optimum decoding algorithm, IEEE Trans. onInformation Theory, 1967

[VanTrees2013] H. VanTrees, K. Bell, Detection Estimation and Modulation Theory Part I, Wiley, 2013

Philippe Ciblat Digital Communications 86 / 86