probability distributions - nematriandiscrete (univariate) distributions the bernoulli distribution...

58
Probability distributions [Nematrian website page: ProbabilityDistributionsIntro, Β© Nematrian 2017] The Nematrian website contains information and analytics on a wide range of probability distributions, including: Discrete (univariate) distributions - Bernoulli, see also binomial distribution - Binomial - Geometric, see also negative binomial distribution - Hypergeometric - Logarithmic - Negative binomial - Poisson - Uniform (discrete) Continuous (univariate) distributions - Beta - Beta prime - Burr - Cauchy - Chi-squared - Dagum - Degenerate - Error function - Exponential - F - Fatigue, also known as the Birnbaum-Saunders distribution - FrΓ©chet, see also generalised extreme value (GEV) distribution - Gamma - Generalised extreme value (GEV) - Generalised gamma - Generalised inverse Gaussian - Generalised Pareto (GDP) - Gumbel, see also generalised extreme value (GEV) distribution - Hyperbolic secant - Inverse gamma - Inverse Gaussian - Johnson SU - Kumaraswamy - Laplace - LΓ©vy - Logistic - Log-logistic - Lognormal - Nakagami - Non-central chi-squared - Non-central t

Upload: others

Post on 10-Mar-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Probability distributions

[Nematrian website page: ProbabilityDistributionsIntro, Β© Nematrian 2017] The Nematrian website contains information and analytics on a wide range of probability distributions, including: Discrete (univariate) distributions

- Bernoulli, see also binomial distribution - Binomial - Geometric, see also negative binomial distribution - Hypergeometric - Logarithmic - Negative binomial - Poisson - Uniform (discrete)

Continuous (univariate) distributions

- Beta - Beta prime - Burr - Cauchy - Chi-squared - Dagum - Degenerate - Error function - Exponential - F - Fatigue, also known as the Birnbaum-Saunders distribution - FrΓ©chet, see also generalised extreme value (GEV) distribution - Gamma - Generalised extreme value (GEV) - Generalised gamma - Generalised inverse Gaussian - Generalised Pareto (GDP) - Gumbel, see also generalised extreme value (GEV) distribution - Hyperbolic secant - Inverse gamma - Inverse Gaussian - Johnson SU - Kumaraswamy - Laplace - LΓ©vy - Logistic - Log-logistic - Lognormal - Nakagami - Non-central chi-squared - Non-central t

Page 2: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

- Normal - Pareto - Power function - Rayleigh - Reciprocal - Rice - Student’s t - Triangular - Uniform - Weibull, see also generalised extreme value (GEV) distribution

Continuous multivariate distributions

- Inverse Wishart Copulas (a copula is a special type of continuous multivariate distribution)

- Clayton - Comonotonicity - Countermonotonicity (only valid for 𝑛 = 2, where 𝑛 is the dimension of the input) - Frank - Generalised Clayton - Gumbel - Gaussian - Independence - t

The Nematrian website functions for fitting univariate distributions, creating random variates and calculating moments etc. now cover most of the above probability distributions, see ProbabilityDistributionsFunctions. In many cases these functions can cater for the traditional (textbook) forms of these distributions and variants that include additional shift and scale parameters.

location (i.e. shift) and scale variants [ProbabilityDistributionsIntro2] The location and scale of any probability distribution can be adjusted by using the (linear) transform π‘Œ = 𝑔 + β„Žπ‘‹ where 𝑔 and β„Ž are constants (𝑔 adjusts the location, i.e. shifts the distribution, whilst β„Ž adjusts its scale). This leaves the skew and (excess kurtosis) unaltered but alters the mean and variance as 𝐸(π‘Œ) = 𝑔 + β„ŽπΈ(𝑋) and π‘£π‘Žπ‘Ÿ(π‘Œ) = β„Ž2π‘£π‘Žπ‘Ÿ(𝑋). In some cases the typical distributional specification already includes such components. For example, the normal distribution 𝑁(πœ‡, 𝜎2) is the location and scale adjusted version of the unit normal distribution 𝑁(0,1). In other cases the standard distributional specification does not include such adjustments. For example, the (standard) Student’s t distribution depends one just one parameter, its degrees of freedom. The probability distribution orientated Nematrian web functions recognise location and/or scale adjusted variants of wide range of standard probability distributions.

Page 3: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Discrete (univariate) distributions

The Bernoulli distribution [BernoulliDistribution] A Bernoulli trial is an experiment that has one of two possible outcomes, β€˜success’ with probability 𝑝 and β€˜failure’ with probability 1 βˆ’ 𝑝. The Bernoulli distribution is a probability distribution that takes the value of 1 if such a trial is a β€˜success’ and 0 if it is a β€˜failure’. The Bernoulli distribution is a special case of the binomial distribution, 𝐡(𝑛, 𝑝), with 𝑛 = 1. For characteristics of the Bernoulli distribution (e.g. mean, standard deviation etc.), please refer to the corresponding characteristics for the binomial distribution. For other probability distributions see here.

The binomial distribution [BinomialDistribution] The binomial distribution 𝐡(𝑛, 𝑝) is the discrete probability distribution applicable to the number of successes in a sequence of 𝑛 independent yes/no experiments each of which has a success probability of 𝑝. Each individual success/failure experiment is called a Bernoulli trial, so if 𝑛 = 1 then the binomial distribution is a Bernoulli distribution. It has the following characteristics:

Distribution name Binomial distribution

Common notation 𝑋~𝐡(𝑛, 𝑝)

Parameters 𝑛 = number of (independent) trials, positive integer 𝑝 = probability of success in each trial, 0 ≀ 𝑝 ≀ 1

Support π‘₯ ∈ {0,1,… , 𝑛} = π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ 𝑠𝑒𝑐𝑐𝑒𝑠𝑠𝑒𝑠

Probability mass function 𝑓(π‘₯) = (

𝑛π‘₯)𝑝π‘₯(1 βˆ’ 𝑝)π‘›βˆ’π‘₯ =

𝑛!

(𝑛 βˆ’ π‘₯)! π‘₯!𝑝π‘₯(1 βˆ’ 𝑝)π‘›βˆ’π‘₯

Cumulative distribution function 𝐹(π‘₯) =βˆ‘(

𝑛𝑗)𝑝

𝑗(1 βˆ’ 𝑝)π‘›βˆ’π‘—π‘₯

𝑗=0

= 𝐼1βˆ’π‘(𝑛 βˆ’ π‘₯, π‘₯ + 1)

Mean 𝑛𝑝 Variance 𝑛𝑝(1 βˆ’ 𝑝) Skewness 1 βˆ’ 2𝑝

βˆšπ‘›π‘(1 βˆ’ 𝑝)

(Excess) kurtosis 1 βˆ’ 6𝑝(1 βˆ’ 𝑝)

𝑛𝑝(1 βˆ’ 𝑝)

Characteristic function (1 βˆ’ 𝑝 + 𝑝𝑒𝑖𝑑)𝑛

Other comments The Bernoulli distribution is 𝐡(1, 𝑝) and corresponds to the likelihood of success of a single experiment. Its probability mass function and cumulative distribution function are:

𝑓(π‘₯) = 𝐹(π‘₯) = {1 βˆ’ 𝑝, π‘₯ = 0𝑝, π‘₯ = 1

Page 4: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The Bernoulli distribution with 𝑝 = 1 2⁄ , i.e. 𝐡(1, 1 2⁄ ), has the minimum possible excess kurtosis, i.e. βˆ’2.

The mode of 𝐡(𝑛, 𝑝) is 𝑖𝑛𝑑((𝑛 + 1)𝑝) if (𝑛 + 1)𝑝 is 0 or not an

integer and is 𝑛 if (𝑛 + 1)𝑝 = 𝑛 + 1. If (𝑛 + 1)𝑝 ∈ {1,2,… , 𝑛} then the distribution is bi-modal, with modes (𝑛 + 1)𝑝 and (𝑛 + 1)𝑝 βˆ’ 1.

The binomial distribution is often used to model the number of successes in a sample size of 𝑛 from a population size of 𝑁. Since such samples are not independent, the resulting distribution is actually a hypergeometric distribution and not a binomial distribution. However if 𝑁 ≫ 𝑛 then the binomial distribution becomes a good approximation to the relevant hypergeometric distribution and is thus often used.

In the above (𝑛π‘₯) is the binomial coefficient.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œbinomial”. For details of other supported probability distributions see here.

The geometric distribution [GeometricDistribution] The geometric distribution describes the probability of π‘₯ successes in a sequence of independent experiments each with likelihood of success of 𝑝 that arise before there is 1 failure. It is a special case of the negative binomial distribution. Note: different texts adopt slightly different definitions, e.g. it may be the total number of trials (i.e. 1 more than the above) in which case it may be called the shifted geometric distribution and/or 𝑝 may denote the probability of failure rather than the probability of success.

The hypergeometric distribution [HypergeometricDistribution] The hypergeometric distribution describes the probability of π‘₯ successes in 𝑛 draws from a finite population size 𝑁 containing π‘š successes without replacement. This contrasts with the binomial distribution which describes the probability of π‘₯ successes in 𝑛 draws with replacement

Distribution name Hypergeometric distribution

Common notation 𝑋~π»π‘¦π‘π‘’π‘Ÿπ‘”π‘’π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘(π‘š,𝑁, 𝑛)

Parameters 𝑁 = population size, integral (𝑁 > 0) 𝑛 = sample size, integral (0 < 𝑛 ≀ 𝑁)

π‘š = number of tagged items, integral (0 < π‘š ≀ 𝑁)

Domain max(0, 𝑛 + π‘š βˆ’π‘) ≀ π‘₯ ≀ max(𝑛,π‘š) , π‘₯ an integer

Probability mass function

𝑓(π‘₯) =(π‘šπ‘₯) (𝑁 βˆ’π‘šπ‘› βˆ’ π‘₯

)

(𝑁𝑛)

Page 5: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Cumulative distribution function 𝐹(π‘₯) = (π‘₯) =βˆ‘

(π‘šπ‘— )(

𝑁 βˆ’π‘šπ‘› βˆ’ 𝑗

)

(𝑁𝑗)

π‘₯

𝑗=0

= 1 βˆ’(𝑛

π‘˜ + 1) (

𝑁 βˆ’ π‘›π‘š βˆ’ π‘˜ βˆ’ 1

)

(π‘π‘š)

π‘Œ

where

π‘Œ = 𝐹23 (1, π‘₯ + 1 βˆ’π‘š, π‘₯ + 1 βˆ’ 𝑛; π‘₯ + 2,𝑁 + π‘₯ + 2 βˆ’π‘š βˆ’ 𝑛; 1)

πΉπ‘žπ‘ is the generalised hypergeometric function, i.e.

πΉπ‘žπ‘ (π‘Ž1, … , π‘Žπ‘; 𝑏1, … , π‘π‘ž; 𝑧) = βˆ‘(π‘Ž1)𝑛…(π‘Žπ‘)𝑛(𝑏1)𝑛…(π‘π‘ž)𝑛

𝑧𝑛

𝑛!

∞

𝑛=0

and (π‘Ž)𝑛 involves the rising factorial or Pochhammer notation, i.e. (π‘Ž)𝑛 = π‘Ž(π‘Ž + 1)(π‘Ž + 2)… (π‘Ž + 𝑛 βˆ’ 1) and (π‘Ž)0 = 1

Mean π‘›π‘š

𝑁

Variance π‘›π‘š(𝑁 βˆ’π‘š)(𝑁 βˆ’ 𝑛)

𝑁2(𝑁 βˆ’ 1)

Skewness (𝑁 βˆ’ 2π‘š)(𝑁 βˆ’ 1)1 2⁄ (𝑁 βˆ’ 2𝑛)

(π‘›π‘š(𝑁 βˆ’π‘š)(𝑁 βˆ’ 𝑛))1 2⁄(𝑁 βˆ’ 2)

(Excess) kurtosis 𝐴 + 𝐡

𝐢

where

𝐴 = (𝑁 βˆ’ 1)𝑁2(𝑁(𝑁 + 1) βˆ’ 6π‘š(𝑁 βˆ’π‘š) βˆ’ 6𝑛(𝑁 βˆ’π‘š))

𝐡 = 6π‘›π‘š(𝑁 βˆ’π‘š)(𝑁 βˆ’ 𝑛)(5𝑁 βˆ’ 6) 𝐢 = π‘›π‘š(𝑁 βˆ’π‘š)(𝑁 βˆ’ 𝑛)(𝑁 βˆ’ 2)(𝑁 βˆ’ 3)

Characteristic function (𝑁 βˆ’π‘šπ‘›

)

(𝑁𝑛)

𝐹1(βˆ’π‘›,βˆ’π‘š; 𝑛 βˆ’π‘š βˆ’ 𝑛 + 1; 𝑒𝑖𝑑)2

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œhypergeometric”. For details of other supported probability distributions see here.

The logarithmic distribution [LogarithmicDistribution] The logarithmic distribution arises from following power series expansion:

βˆ’ log(1 βˆ’ 𝑝) = 𝑝 +𝑝2

2+𝑝3

3+β‹―

This means that the function 𝑓(π‘₯) = βˆ’π‘π‘₯

π‘₯ log(1βˆ’π‘), π‘₯ = 1,2,3, … can naturally be interpreted as a

probability mass function since βˆ‘ 𝑓(π‘˜)βˆžπ‘˜=1 = 1.

Distribution name Logarithmic distribution

Common notation 𝑋~πΏπ‘œπ‘”(𝑝)

Parameters 𝑝 = shape parameter (0 < 𝑝 < 1)

Domain 1 ≀ π‘₯ < +∞, π‘₯ an integer

Page 6: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Probability mass function 𝑓(π‘₯) = βˆ’

𝑝π‘₯

π‘₯ log(1 βˆ’ 𝑝)

Cumulative distribution function 𝐹(π‘₯) = βˆ’

1

log(1 βˆ’ 𝑝)βˆ‘

𝑝𝑗

𝑗

π‘₯

𝑗=1

= 1 +𝐡𝑝(π‘₯ + 1,0)

log(1 βˆ’ 𝑝)

Mean βˆ’π‘

(1 βˆ’ 𝑝) log(1 βˆ’ 𝑝)

Variance βˆ’

𝑝(𝑝 + log(1 βˆ’ 𝑝))

(1 βˆ’ 𝑝)2(log(1 βˆ’ 𝑝))2= 𝑉

Skewness βˆ’

𝑝

(1 βˆ’ 𝑝)3𝑉3 2⁄ log(1 βˆ’ 𝑝)(1 + 𝑝 +

3𝑝

log(1 βˆ’ 𝑝)+

2𝑝2

log2(1 βˆ’ 𝑝))

(Excess) kurtosis βˆ’π‘

(1 βˆ’ 𝑝)4𝑉2 log(1 βˆ’ 𝑝)𝐴 βˆ’ 3

where

𝐴 = (1 + 4𝑝 + 𝑝2 +4𝑝(1 + 𝑝)

log(1 βˆ’ 𝑝)+

6𝑝2

log2(1 βˆ’ 𝑝)+

3𝑝3

log3(1 βˆ’ 𝑝))

Characteristic function log(1 βˆ’ 𝑝𝑒𝑖𝑑)

log(1 βˆ’ 𝑝)

Other comments The logarithmic distribution has a mode of 1. If 𝑁 is a random variable with Poission distribution and 𝑋𝑖, 𝑖 = 1,… is an infinite sequence of iid random variables each distributed πΏπ‘œπ‘”(𝑝) then π‘Œ =βˆ‘ 𝑋𝑖𝑁𝑖=1 has a negative binomial distribution showing that the

negative binomial distribution is an example of a compound Poisson distribution

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œlogarithmic”. For details of other supported probability distributions see here.

The negative binomial distribution [NegativeBinomialDistribution] The negative binomial distribution describes the probability of π‘₯ successes in a sequence of independent experiments each with likelihood of success of 𝑝 that arise before there are π‘Ÿ failures. In this interpretation π‘Ÿ is a positive integer, but the distributional definition can also be extended to real values of π‘Ÿ > 0. Note: different texts adopt slightly different definitions, e.g. with support starting at π‘₯ = π‘Ÿ not π‘₯ = 0 and/or with 𝑝 denoting probability of failure rather than probability of success.

Distribution name Negative binomial distribution

Common notation 𝑋~𝑁𝐡(π‘˜, 𝑝) Parameters π‘Ÿ = number of failures (π‘Ÿ > 0)

𝑝 = probability of success in each experiment (0 < 𝑝 < 1)

Support π‘₯ ∈ {0,1,2,… } Probability mass function 𝑓(π‘₯) = (

π‘₯ + π‘Ÿ βˆ’ 1π‘₯

)𝑝π‘₯(1 βˆ’ 𝑝)π‘Ÿ

If π‘Ÿ is non-integral then is:

Page 7: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

𝑓(π‘₯) =Ξ“(π‘₯ + π‘Ÿ)

Ξ“(π‘Ÿ)Ξ“(π‘₯ + 1)𝑝π‘₯(1 βˆ’ 𝑝)π‘Ÿ

Cumulative distribution function

𝐹(π‘₯) = 1 βˆ’ 𝐼𝑝(π‘₯ + 1, π‘Ÿ)

Mean π‘π‘Ÿ

1 βˆ’ 𝑝

Variance π‘π‘Ÿ

(1 βˆ’ 𝑝)2

Skewness 1 + 𝑝

βˆšπ‘π‘Ÿ

(Excess) kurtosis 6

π‘Ÿ+(1 βˆ’ 𝑝)2

π‘π‘Ÿ

Characteristic function (1 βˆ’ 𝑝

1 βˆ’ 𝑝𝑒𝑖𝑑)π‘Ÿ

Other comments The geometric distribution is the same as the negative binomial distribution with parameter π‘Ÿ = 1. Its pdf and cdf are therefore:

𝑓(π‘₯) = 𝑝(1 βˆ’ 𝑝)π‘₯ 𝐹(π‘₯) = 1 βˆ’ (1 βˆ’ 𝑝)π‘₯+1

For the special case where π‘Ÿ is an integer the negative binomial distribution is also called the Pascal distribution. The Poisson distribution is also a limiting case of the negative binomial:

π‘ƒπ‘œπ‘–π‘ π‘ π‘œπ‘›(πœ†) = limπ‘Ÿβ†’βˆž

𝑁𝐡 (π‘Ÿ,π‘Ÿ

πœ† + π‘Ÿ)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œnegative binomial”. For details of other supported probability distributions see here.

The Poisson distribution [PoissonDistribution] The Poisson distribution expresses the probability of a given number of events occurring in a fixed interval of time if the events occur with a known average rate and independently of the time since the last event.

Distribution name Poisson distribution

Common notation 𝑋~π‘ƒπ‘œπ‘–π‘ (πœ†)

Parameters πœ† = event rate (πœ† > 0)

Support π‘₯ ∈ {0,1,2,… } Probability mass function

𝑓(π‘₯) =πœ†π‘₯π‘’βˆ’πœ†

π‘₯!

Cumulative distribution function 𝐹(π‘₯) = π‘’βˆ’πœ†βˆ‘

πœ†π‘—

𝑗!

π‘₯

𝑗=0

(can also be expressed using the incomplete gamma function)

Mean πœ† Variance πœ†

Page 8: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Skewness πœ†βˆ’1 2⁄ (Excess) kurtosis πœ†βˆ’1 Characteristic function π‘’πœ†(𝑒

π‘–π‘‘βˆ’1) Other comments The median is approximately 𝑖𝑛𝑑(πœ† + 1 3⁄ βˆ’ 0.02 πœ†β„ ).

The mode is 𝑖𝑛𝑑(πœ†) if πœ† is not integral. Otherwise the distribution is bi-modal with modes πœ† and πœ† βˆ’ 1.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œpoisson”. For details of other supported probability distributions see here.

The uniform (discrete) distribution [UniformDiscreteDistribution] The uniform (discrete) distribution involves equally probable outcomes that are spaced uniform intervals apart.

Distribution name Uniform (discrete) distribution

Common notation 𝑋~π‘ˆ(π‘Ž, 𝑏, β„Ž) Parameters π‘Ž = lower limit

𝑏 = upper limit (π‘Ž < 𝑏) β„Ž = step size (𝑏 βˆ’ π‘Ž = (𝑛 βˆ’ 1)β„Ž where 𝑛 is a positive integer)

Support π‘₯ ∈ {π‘Ž, π‘Ž + β„Ž,… , π‘Ž + (𝑛 βˆ’ 1)β„Ž(= 𝑏)}

Probability mass function 𝑓(π‘₯) =

1

𝑛 π‘“π‘œπ‘Ÿ π‘₯ = π‘Ž, π‘Ž + β„Ž,… , π‘Ž + (𝑛 βˆ’ 1)β„Ž

Cumulative distribution function

𝐹(π‘₯) = {

0 π‘“π‘œπ‘Ÿ π‘₯ < π‘Ž

𝑖𝑛𝑑 (π‘₯ βˆ’ π‘Ž

β„Ž+1

𝑛) π‘“π‘œπ‘Ÿ π‘Ž ≀ π‘₯ < 𝑏

1 π‘“π‘œπ‘Ÿ π‘₯ β‰₯ 𝑏

Mean π‘Ž + 𝑏

2

Variance (𝑏 βˆ’ π‘Ž)(𝑏 βˆ’ π‘Ž + 2β„Ž)

12

Skewness 0 (Excess) kurtosis

βˆ’6(𝑛2 + 1)

5(𝑛2 βˆ’ 1)

Characteristic function 1

𝑛(π‘’π‘–π‘Žπ‘‘ βˆ’ 𝑒𝑖(𝑏+1)𝑑

1 βˆ’ 𝑒𝑖𝑑)

Other comments The median of this distribution is the same as its mean.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œuniform (discrete)”. For details of other supported probability distributions see here.

Page 9: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible
Page 10: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Continuous (univariate) distributions

The Beta distribution [BetaDistribution] The beta distribution describes a distribution in which outcomes are limited to a specific range, the probability density function within this range being characterised by two shape parameters.

Distribution name Beta distribution

Common notation 𝑋~π΅π‘’π‘‘π‘Ž(𝛼, 𝛽) Parameters 𝛼 = shape parameter (𝛼 > 0)

𝛽 = shape parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ ≀ 1

Probability density function 𝑓(π‘₯) =

π‘₯π›Όβˆ’1(1 βˆ’ π‘₯)π›½βˆ’1

𝐡(𝛼, 𝛽)

Cumulative distribution function

𝐹(π‘₯) =𝐡π‘₯(𝛼, 𝛽)

𝐡(𝛼, 𝛽)= 𝐼π‘₯(𝛼, 𝛽)

Mean 𝛼

𝛼 + 𝛽

Variance 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

Skewness 2(𝛽 βˆ’ 𝛼)βˆšπ›Ό + 𝛽 + 1

(𝛼 + 𝛽 + 2)βˆšπ›Όπ›½

(Excess) kurtosis 6((𝛼 βˆ’ 𝛽)2(𝛼 + 𝛽 + 1) βˆ’ 𝛼𝛽(𝛼 + 𝛽 + 2))

𝛼𝛽(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 3)

Characteristic function

𝐹1 (𝛼; 𝛼 + 𝛽; 𝑖𝑑)1 = 1 +βˆ‘(βˆπ›Ό + π‘Ÿ

𝛼 + 𝛽 + π‘Ÿ

π‘˜βˆ’1

π‘Ÿ=0

)(𝑖𝑑)π‘˜

π‘˜!

∞

π‘˜=1

Other comments The beta distribution is also known as a beta distribution of the first

kind. Its mode is π›Όβˆ’1

𝛼+π›½βˆ’2 for 𝛼 > 1, 𝛽 > 1. There is no simple closed

form solution for its median. The beta distribution parameters are sometimes taken to include boundary parameters π‘Ž, 𝑏 (π‘Ž < 𝑏) in which case its domain is π‘Ž ≀

π‘₯ ≀ 𝑏, and its pdf and cdf are 𝑓(π‘₯) =(π‘₯βˆ’π‘Ž)π›Όβˆ’1(π‘βˆ’π‘₯)π›½βˆ’1

𝐡(𝛼,𝛽) and 𝐹(π‘₯) =

Page 11: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

𝐡𝑧(𝛼,𝛽)

𝐡(𝛼,𝛽) where 𝑧 =

π‘₯βˆ’π‘Ž

π‘βˆ’π‘Ž, its mean is

𝛼𝑏+π›½π‘Ž

𝛼+𝛽, its mode is

(π›Όβˆ’1)𝑏+(π›½βˆ’1)π‘Ž

𝛼+π›½βˆ’2

for 𝛼 > 1, 𝛽 > 1 and its variance is 𝛼𝛽(π‘βˆ’π‘Ž)2

(𝛼+𝛽)2(𝛼+𝛽+1)

If 𝑋~Ξ“(𝛼, πœƒ) and π‘Œ~Ξ“(𝛽, πœƒ) then 𝑋

𝑋+π‘Œ~𝐡𝑒(𝛼, 𝛽). If 𝑋~π΅π‘’π‘‘π‘Ž(𝛼, 𝛽)

then 𝑋 (1 βˆ’ 𝑋)⁄ ~π΅π‘’π‘‘π‘Žπ‘ƒπ‘Ÿπ‘–π‘šπ‘’(𝛼, 𝛽) and if 𝑋~π΅π‘’π‘‘π‘Ž (𝑛

2,π‘š

2) then

π‘šπ‘‹

𝑛(1βˆ’π‘‹)~𝐹(𝑛,π‘š) (if 𝑛 > 0 and π‘š > 0). The π‘˜β€™th order statistic of a

sample of size 𝑛 from the uniform distribution has a beta distribution, 𝑒(π‘˜)~π΅π‘’π‘‘π‘Ž(π‘˜, 𝑛 + 1 βˆ’ π‘˜).

If 𝑋~π΅π‘’π‘‘π‘Ž(1 + πœ† (π‘š βˆ’ π‘Ž) (𝑏 βˆ’ π‘Ž)⁄ , 1 + πœ† (𝑏 βˆ’ π‘š) (𝑏 βˆ’ π‘Ž)⁄ ) then π‘Ž + 𝑋(𝑏 βˆ’ π‘Ž)~π‘ƒπ‘’π‘Ÿπ‘‘(π‘Ž, 𝑏,π‘š, πœ†), i.e. the Pert distribution is a special case of the beta distribution.

Its non-central moments are 𝐸(π‘‹π‘Ÿ) = βˆπ›Ό+𝑗

𝛼+𝛽+π‘—π‘˜βˆ’1𝑗=0 .

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œbeta”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œbeta4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Beta prime distribution [BetaPrimeDistribution]

Distribution name Beta prime distribution

Common notation 𝑋~𝛽′(𝛼, 𝛽) Parameters 𝛼 = shape parameter (𝛼 > 0)

𝛽 = shape parameter (𝛽 > 0)

Domain π‘₯ β‰₯ 0

Probability density function 𝑓(π‘₯) =

π‘₯π›Όβˆ’1(1 + π‘₯)βˆ’π›Όβˆ’π›½

𝐡(𝛼, 𝛽)

Cumulative distribution 𝐹(π‘₯) = 𝐼π‘₯ (1+π‘₯)⁄ (𝛼, 𝛽)

Page 12: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

function

Mean 𝛼

𝛽 βˆ’ 1 𝑖𝑓 𝛽 > 1

Variance 𝛼(𝛼 + 𝛽 βˆ’ 1)

(𝛽 βˆ’ 1)2(𝛽 βˆ’ 2) 𝑖𝑓 𝛽 > 2

Other comments The beta prime distribution is also called the inverted beta or the beta distribution of the second kind or the Pearson Type 6 distribution. The mode of the beta prime distribution is π›Όβˆ’1

𝛼+π›½βˆ’2 for 𝛼 > 1, 𝛽 > 1. There is no simple closed form expression

for its median. Its non-central moments (for integral π‘Ÿ) are:

𝐸(π‘‹π‘Ÿ) =βˆπ›Ό + 𝑗 βˆ’ 1

𝛽 βˆ’ 𝑖

π‘˜

𝑗=1

=𝐡(𝛼 + π‘Ÿ)𝐡(𝛽 βˆ’ π‘Ÿ)

𝐡(𝛼, 𝛽)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œbeta prime”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œbeta prime4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Burr distribution [BurrDistribution]

Distribution name Burr

Common notation 𝑋~π΅π‘’π‘Ÿπ‘Ÿ(𝛼, 𝛽, π‘˜) or 𝑋~𝑆𝑀(𝛼, 𝛽, π‘˜)

Parameters π‘˜ = shape parameter (π‘˜ > 0) 𝛼 = shape parameter (𝛼 > 0) 𝛽 = shape parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =π›Όπ›½π‘˜π›Όπ‘₯π›½βˆ’1

(π‘˜ + π‘₯𝛽)𝛼+1

Cumulative distribution function 𝐹(π‘₯) = 1 βˆ’ (

π‘˜

π‘˜ + π‘₯𝛽)𝛼

Page 13: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Mean Ξ“ (𝛼 βˆ’

1

𝛽)Ξ“ (1 +

1

𝛽)π‘˜1 𝛽⁄

Ξ“(𝛼)

Variance

(

Ξ“(𝛼 βˆ’

2

𝛽)Ξ“ (1 +

2

𝛽) βˆ’

(Ξ“(𝛼 βˆ’1𝛽)Ξ“ (1 +

1𝛽))

Ξ“(𝛼)

2

)

π‘˜2 𝛽⁄

Ξ“(𝛼)

Other comments The Burr distribution is also known as the Burr Type XII distribution or the Singh-Maddala distribution (sometimes also called the generalised log-logistic distribution). Its non-central moments are:

𝐸(π‘‹π‘Ÿ) = Ξ“ (𝛼 βˆ’π‘Ÿ

𝛽)Ξ“ (1 +

π‘Ÿ

𝛽)π‘˜π‘Ÿ 𝛽⁄

Ξ“(𝛼) π‘Ÿ = 1,2,… , π‘Ÿ < 𝛼𝛽

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œburr”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œburr5” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Cauchy distribution [CauchyDistribution]

Distribution name Cauchy distribution

Common notation 𝑋~πΆπ‘Žπ‘’π‘β„Žπ‘¦(πœ‡, 𝜎) Parameters πœ‡ = location parameter

𝜎 = scale parameter (𝜎 > 0)

Domain βˆ’βˆž < π‘₯ < +∞

Probability density function 𝑓(π‘₯) = (πœ‹πœŽ (1 + (

π‘₯ βˆ’ πœ‡

𝜎)2

))

βˆ’1

Cumulative distribution function

𝐹(π‘₯) =1

πœ‹arctan (

π‘₯ βˆ’ πœ‡

𝜎) +

1

2

Mean Does not exist

Variance Does not exist

Page 14: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Skewness Does not exist

(Excess) kurtosis Does not exist

Characteristic function exp(πœ‡π‘–π‘‘ βˆ’ 𝜎|𝑑|) Other comments The quantile function of the Cauchy distribution is:

𝑄(𝑝) = πœ‡ + 𝜎 tan(πœ‹ (𝑝 βˆ’1

2))

Its median is thus πœ‡. The Cauchy distribution is a special case of the stable (more precisely the sum stable) distribution family. The special case of the Cauchy distribution when πœ‡ = 0 and 𝜎 = 1 is called the standard Cauchy distribution. It coincides with the Student’s t distribution with one degree of freedom. It has a

probability density function of 𝑓(π‘₯; 0,1) =1

πœ‹(1+π‘₯2).

If 𝑋~𝑁(0,1) and π‘Œ~𝑁(0,1) are independent random variables then 𝑋

π‘Œ~πΆπ‘Žπ‘’π‘β„Žπ‘¦(0,1) and this can be used to generate random variates.

The Cauchy distribution is also known as the Cauchy-Lorentz or Lorentz distribution (especially amongst physicists).

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œcauchy”. For details of other supported probability distributions see here.

The Chi-squared distribution [ChiSquaredDistribution] The chi-squared distribution with 𝜈 degrees of freedom is the distribution of a sum of the squares of 𝜈 independent standard normal random variables. A consequence is that the sum of independent chi-squared variables is also chi-squared distributed. It is widely used in hypothesis testing, goodness of fit analysis or in constructing confidence intervals. It is a special case of the gamma distribution.

Distribution name Chi-squared distribution

Page 15: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Common notation 𝑋~πœ’πœˆ2

Parameters 𝜈 = degrees of freedom (positive integer)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =π‘₯𝜈 2⁄ βˆ’1 exp (βˆ’

π‘₯2)

2𝜈 2⁄ Ξ“(𝜈 2⁄ )

Cumulative distribution function 𝐹(π‘₯) =

Ξ“π‘₯ 2⁄ (𝜈 2⁄ )

Ξ“(𝜈 2⁄ )

Mean 𝜈 Variance 2𝜈 Skewness

2√2

𝜈

(Excess) kurtosis 12

𝜈

Characteristic function (1 βˆ’ 2𝑖𝑑)βˆ’πœˆ 2⁄ Other comments

Its median is approximately 𝜈 (1 βˆ’2

9𝜈)3

. Its mode is max(𝜈 βˆ’ 2,0). Is

also known as the central chi-squared distribution (when there is a need to contrast it with the noncentral chi-squared distribution). In the special case of 𝜈 = 2 the cumulative distribution function

simplifies to 𝐹(π‘₯) = 1 βˆ’ π‘’βˆ’π‘₯ 2⁄ .

As 𝜈 β†’ ∞, (πœ’πœˆ2 βˆ’ 𝜈) √2πœˆβ„ β†’ 𝑁(0,1) and π‘žπΉ(π‘ž, 𝜈) β†’ πœ’π‘ž

2

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œchi-squared”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œchi-squared3” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Dagum distribution [DagumDistribution]

Distribution name Dagum distribution

Page 16: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Common notation 𝑋~π·π‘Žπ‘”π‘’π‘š(𝛼, 𝛽, π‘˜)

Parameters π‘˜ = shape parameter (π‘˜ > 0) 𝛼 = shape parameter (𝛼 > 0) 𝛽 = scale parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =π›Όπ‘˜ (

π‘₯𝛽)π›Όπ‘˜βˆ’1

𝛽 (1 + (π‘₯𝛽)𝛼

)π‘˜+1

Cumulative distribution function 𝐹(π‘₯) =

π‘₯π›Όπ‘˜

(𝛽𝛼 + π‘₯𝛼)π‘˜

Mean

{βˆ’π›½

𝛼

Ξ“ (βˆ’1𝛼) Ξ“ (

1𝛼+ π‘˜)

Ξ“(π‘˜)𝛼 > 1

∞ otherwise

Variance

{βˆ’(𝛽

𝛼)2

(𝐴 + 𝐡) 𝛼 > 2

∞ otherwise

where

𝐴 =2𝛼Γ (βˆ’

2𝛼) Ξ“ (

2𝛼+ π‘˜)

Ξ“(π‘˜)

𝐡 = (Ξ“(βˆ’

1𝛼)Ξ“ (

1𝛼+ π‘˜)

Ξ“(π‘˜))

2

Other comments Also known as the Dagum type 1 distribution. Is used in modelling income distributions. The cdf of a Dagum type 2 distribution adds a point mass at the origin and then follows a Dagum type 1 distribution over the positive halfline.

Its median is 𝛽(21 π‘˜β„ βˆ’ 1)βˆ’1 𝛼⁄

and its mode is 𝛽 (π›Όπ‘˜βˆ’1

𝛼+1)1 𝛼⁄

.

Its non-central moments are:

𝐸(π‘‹π‘Ÿ) = Ξ“ (βˆ’π‘Ÿ

𝛼+ 1)Ξ“ (

π‘Ÿ

𝛼+ π‘˜)

π›½π‘Ÿ

Ξ“(π‘˜) π‘Ÿ = 1,2,… , π‘Ÿ < 𝛼

If 𝑋~π·π‘Žπ‘”π‘’π‘š(𝛼, 𝛽, π‘˜) then 1 𝑋⁄ ~π΅π‘’π‘Ÿπ‘Ÿ(𝛼, 1 𝛽⁄ , π‘˜).

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œdagum”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œdagum4” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Degenerate distribution [DegenerateDistribution]

Page 17: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The degenerate distribution characterises a distribution involving a single outcome. It can be viewed as the limiting case of many common distributions in which the scale parameter tends to zero, so the distribution function concentrates onto a single point. It is also called the Dirac delta function.

Distribution name Degenerate distribution (can also be viewed as a discrete distribution)

Common notation 𝑋~π›Ώπ‘Ž Parameters π‘Ž = location parameter

Domain π‘₯ = π‘Ž

Probability density function 𝑓(π‘₯) = lim

πœŽβ†’0(exp (βˆ’

1

2(π‘₯ βˆ’ π‘Ž

𝜎)2

))

Cumulative distribution function

𝑓(π‘₯) = {1, π‘₯ > π‘Ž0, π‘₯ < 0

Mean π‘Ž Variance 0 Skewness Does not exist

(Excess) kurtosis Does not exist

Characteristic function π‘’π‘–π‘‘π‘Ž Nematrian web functions Given its degenerate form, no functions relating to the above distribution are accessible via the Nematrian web function library. For details of other supported probability distributions see here.

The error function distribution [ErrorFunctionDistribution] The error function distribution with parameter β„Ž is a special case of the normal distribution, i.e.

𝑁 (0,1

2β„Ž).

The exponential distribution [ExponentialDistribution] The exponential distribution describes the time between events if these events follow a Poisson process (i.e. a stochastic process in which events occur continuously and independently of one another). It is also called the negative exponential distribution. It is not the same as the exponential family of distributions.

Page 18: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Distribution name Exponential distribution

Common notation 𝑋~𝐸π‘₯𝑝(πœ†) Parameters πœ† = inverse scale (i.e. rate) parameter (πœ† > 0)

Domain 0 ≀ π‘₯ < +∞ Probability density function 𝑓(π‘₯) = πœ† exp(βˆ’πœ†π‘₯)

Cumulative distribution function

𝐹(π‘₯) = 1 βˆ’ exp(βˆ’πœ†π‘₯)

Mean 1

πœ†

Variance 1

πœ†2

Skewness 2

(Excess) kurtosis 6

Characteristic function (1 βˆ’ 𝑖 𝑑 πœ†β„ )βˆ’1 Other comments The exponential distribution is a special case of the Gamma

distribution, as if 𝑋~𝐸π‘₯𝑝(πœ†) then 𝑋~Ξ“(1, 1 πœ†β„ ). The mode of an exponential distribution is 0. The quantile function, i.e. the inverse cumulative distribution function, is πΉβˆ’1(𝑝; πœ†) =

βˆ’log(1βˆ’π‘)

πœ†.

The non-central moments (π‘Ÿ = 1,2,3,… ) are 𝐸(π‘‹π‘Ÿ) =Ξ“(1+π‘Ÿ)

πœ†π‘Ÿ. Its

median is log 2

πœ†.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œexponential”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œexponential2” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The F distribution [FDistribution]

Page 19: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The F distribution is also known as Snedecor’s F or the Fisher-Snedecor distribution. It commonly arises in statistical tests linked to analysis of variance.

Distribution name F distribution

Common notation 𝑋~𝐹(𝜈1, 𝜈2)

Parameters 𝜈1 = degrees of freedom (first) (positive integer) 𝜈2 = degrees of freedom (second) (positive integer)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =1

π‘₯𝐡(𝜈1 2⁄ , 𝜈2 2⁄ )√

(𝜈1π‘₯)𝜈1𝜈2

𝜈2

(𝜈1π‘₯ + 𝜈2)𝜈1+𝜈2

Cumulative distribution function 𝐹(π‘₯) =

𝐡𝜈1π‘₯ (𝜈1π‘₯+𝜈2)⁄ (𝜈1 2⁄ , 𝜈2 2⁄ )

𝐡(𝜈1 2⁄ , 𝜈2 2⁄ )= 𝐼𝜈1π‘₯ (𝜈1π‘₯+𝜈2)⁄ (𝜈1 2⁄ , 𝜈2 2⁄ )

Mean 𝜈1𝜈2 βˆ’ 2

for 𝜈2 > 2

Variance 2𝜈22(𝜈1 + 𝜈2 βˆ’ 2)

𝜈1(𝜈2 βˆ’ 2)2(𝜈2 βˆ’ 4)

for 𝜈2 > 4

Skewness (2𝜈1 + 𝜈2 βˆ’ 2)√8(𝜈2 βˆ’ 4)

(𝜈2 βˆ’ 6)√𝜈1(𝜈1 + 𝜈2 βˆ’ 2) for 𝜈2 > 6

(Excess) kurtosis 12𝜈1(5𝜈2 βˆ’ 22)(𝜈1 + 𝜈2 βˆ’ 2) + (𝜈2 βˆ’ 4)(𝜈2 βˆ’ 2)

2

𝜈1(𝜈2 βˆ’ 6)(𝜈2 βˆ’ 8)(𝜈1 + 𝜈2 βˆ’ 2) for 𝜈2 > 8

Characteristic function Ξ“ (𝜈1 + 𝜈22 )

Ξ“ (𝜈22)

π‘ˆ (𝜈12, 1 βˆ’

𝜈22,βˆ’πœˆ2𝜈1𝑖𝑑)

Where π‘ˆ(π‘Ž, 𝑏, 𝑧) is the confluent hypergeometric function of the second kind

Other comments The F distribution is a special case of the Pearson type 6 distribution. It is also a particular example of the beta prime distribution. If 𝑋1~πœ’

2(𝜈1) and 𝑋2~πœ’2(𝜈2) are independent random variables

then

𝑋1 𝜈1⁄

𝑋2 𝜈2⁄~𝐹(𝜈1, 𝜈2)

Its mode is (𝜈1βˆ’2)

𝜈1

𝜈2

𝜈2+2 for 𝜈1 > 2. There is no simple closed form

for the median.

Page 20: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œf”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œf4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Fatigue distribution [FatigueDistribution] The fatigue distribution, also known as the Birnbaum-Saunders distribution or the fatigue life distribution is used extensively to model failure times.

Distribution name (standard) Fatigue distribution

Common notation 𝑋~π΅π‘–π‘Ÿπ‘›π‘π‘Žπ‘’π‘š βˆ’ π‘†π‘Žπ‘’π‘›π‘‘π‘’π‘Ÿπ‘ (𝛼) Parameters 𝛼 = shape parameter (𝛼 > 0)

Domain 0 < π‘₯ < +∞ Probability density function

𝑓(π‘₯) =√π‘₯ + √1 π‘₯⁄

2𝛼π‘₯πœ™(

√π‘₯ βˆ’ √1 π‘₯⁄

𝛼)

where πœ™(π‘₯) =1

√2πœ‹exp (βˆ’

π‘₯2

2)

Cumulative distribution function 𝐹(π‘₯) = 𝑁(

√π‘₯ βˆ’ √1 π‘₯⁄

𝛼)

Mean 1 +

𝛼2

2

Variance 𝛼2(4 + 5𝛼2)

4

Other comments Its quantile function, i.e. the inverse of its cdf, is:

πΉβˆ’1(𝑝) =1

4(π›Όπ‘βˆ’1(𝑝) + √4 + (π›Όπ‘βˆ’1(𝑝))

2)

2

Nematrian web functions

Page 21: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œfatigue”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œfatigue3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The FrechΓ©t distribution [FrechetDistribution] The FrechΓ©t distribution is a special case of the generalised extreme value (GEV) distribution. It characterises the distribution of β€˜block maxima’ under certain (relatively restrictive) conditions in situations where the tail index corresponds to fatter tails than arises with the normal distribution.

The gamma distribution [GammaDistribution] The gamma distribution is a two-parameter family of continuous probability distributions. Two different parameterisations are in common use, see below, with the (π‘˜, πœƒ) parameterisation being apparently somewhat more common in econometrics and the (π‘˜, πœ†) parameterisation being somewhat more common in Bayesian statistics.

Distribution name Gamma distribution

Common notation 𝑋~Ξ“(π‘˜, πœƒ) or Ξ“(𝛼, πœ†) Parameters Has two commonly used parameterisations:

π‘˜ = shape parameter (π‘˜ > 0) πœƒ = scale parameter (πœƒ > 0) or πœ† = inverse scale (i.e. rate) parameter

(πœƒ > 0) where πœ† = 1 πœƒβ„ . Unless otherwise specified the material below assumes the first

parameterisation (i.e. using a scale parameter)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =π‘₯π‘˜βˆ’1π‘’βˆ’π‘₯ πœƒβ„

πœƒπ‘˜Ξ“(π‘˜)

Cumulative distribution function 𝐹(π‘₯) =

Ξ“π‘₯ πœƒβ„ (π‘˜)

Ξ“(π‘˜)

Mean π‘˜πœƒ

Page 22: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Variance π‘˜πœƒ2 Skewness 2 βˆšπ‘˜β„ (Excess) kurtosis 6 π‘˜β„

Moment generating function

(1 βˆ’ πœƒπ‘‘)βˆ’π‘˜ π‘“π‘œπ‘Ÿ 𝑑 < 1 πœƒβ„

Characteristic function (1 βˆ’ π‘–πœƒπ‘‘)βˆ’π‘˜ Other comments The gamma distribution can also be defined with a location

parameter, 𝛾, say, in which case its domain is shifted to 𝛾 ≀ π‘₯ <+∞. Its mode is (π‘˜ βˆ’ 1)πœƒ for π‘˜ β‰₯ 1. If 𝑋 follows an exponential distribution with rate parameter πœ† then 𝑋~Ξ“(1, 1 πœ†β„ ). If 𝑋 follows a chi-squared distribution, with 𝜐 degrees of freedom, i.e. i.e. 𝑋~πœ’2(𝜐) then 𝑋~Ξ“(𝜐 2⁄ , 2) and 𝑐𝑋~Ξ“(𝜐 2⁄ , 2𝑐). If π‘˜ is integral then Ξ“(π‘˜, πœƒ) is also called the Erlang distribution. It is the distribution of the sum of π‘˜ independent exponential variables each with mean πœƒ = 1 πœ†β„ . Events that occur independently with some average rate are commonly modelled using a Poisson process. The waiting times between π‘˜ occurrences of the event are then Erlang distributed whilst the number of events in a given amount of time is Poisson distributed. If 𝑋 follows a Maxwell-Boltzmann distribution with parameter π‘Ž then 𝑋2~ Ξ“(3 2⁄ , πœƒ = 2π‘Ž2) . If 𝑋 follows a skew logistic distribution with parameter πœƒ then log(1 + π‘’βˆ’π‘‹)~ Ξ“(1, πœƒ). The gamma distribution is the conjugate prior for the precision (i.e. inverse variance) of a normal distribution and for the exponential distribution. The gamma distribution has the β€˜summation’ property that if 𝑋𝑖~Ξ“(π‘˜π‘–, πœƒ) for 𝑖 = 1,… , 𝑛 and the 𝑋𝑖 are independent then βˆ‘ 𝑋𝑖𝑛𝑖=1 ~Ξ“(βˆ‘ π‘˜π‘–

𝑛𝑖=1 , πœƒ).

Its non-central moments (π‘Ÿ = 1,2,3, … ) are 𝐸(π‘‹π‘Ÿ) =Ξ“(π‘˜+π‘Ÿ)

Ξ“(π‘˜)πœƒπ‘Ÿ.

There is in general no simple closed form for its median.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œgamma”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œgamma3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

Page 23: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The generalised extreme value distribution [GEVDistribution] The generalised extreme value (or generalized extreme value) distribution characterises the behaviour of β€˜block maxima’ under certain (somewhat restrictive) regularity conditions. See also Nematrian’s webpages about Extreme Value Theory (EVT).

Distribution name Generalised extreme value (GEV) distribution (for maxima)

Common notation 𝑋~𝐺𝐸𝑉(πœ‰, πœ‡, 𝜎)

Parameters πœ‰ = shape parameter πœ‡ = location parameter 𝜎 = scale parameter

Domain 1 + (π‘₯ βˆ’ πœ‡

𝜎) πœ‰ > 0 πœ‰ β‰  0

βˆ’βˆž < π‘₯ < ∞ πœ‰ = 0

Probability density function 𝑓(π‘₯) =

1

πœŽπ‘„(π‘₯)πœ‰+1π‘’βˆ’π‘„(π‘₯)

where

𝑄(π‘₯) =

{

(1 + πœ‰ (

π‘₯ βˆ’ πœ‡

𝜎))

βˆ’1 πœ‰β„

πœ‰ β‰  0

exp (βˆ’π‘₯ βˆ’ πœ‡

𝜎) πœ‰ = 0

Cumulative distribution function

𝐹(π‘₯) = π‘’βˆ’π‘„(π‘₯)

Mean

{

πœ‡ + πœŽΞ“(1 βˆ’ πœ‰) βˆ’ 1

πœ‰ 𝑖𝑓 πœ‰ β‰  0, πœ‰ < 1

πœ‡ + πœŽπ›Ύ 𝑖𝑓 πœ‰ = 0∞ πœ‰ β‰₯ 1

where 𝛾 is Euler’s constant, i.e. limπ‘›β†’βˆž

(βˆ‘1

π‘˜βˆ’ log𝑛𝑛

π‘˜=1 )

Variance

{

𝜎2

𝑔2 βˆ’ 𝑔12

πœ‰2 𝑖𝑓 πœ‰ β‰  0, πœ‰ < 1 2⁄

𝜎2πœ‹2

6 𝑖𝑓 πœ‰ = 0

∞ πœ‰ β‰₯ 1 2⁄

Where π‘”π‘˜ = Ξ“(1 βˆ’ π‘˜πœ‰)

Page 24: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Skewness

{

𝑔3 βˆ’ 3𝑔1𝑔2 + 2𝑔1

3

(𝑔2 βˆ’ 𝑔12)3 2⁄

𝑖𝑓 πœ‰ β‰  0

12√6𝜍(3)

πœ‹3 𝑖𝑓 πœ‰ = 0

where 𝜍(π‘₯) is the Riemann zeta function, i.e. βˆ‘1

π‘˜π‘₯βˆžπ‘˜=1 .

(Excess) kurtosis

{

𝑔4 βˆ’ 4𝑔1𝑔3 + 6𝑔2𝑔1

2 βˆ’ 3𝑔14

(𝑔2 βˆ’ 𝑔12)2

𝑖𝑓 πœ‰ β‰  0

12

5 𝑖𝑓 πœ‰ = 0

Other comments πœ‰ defines the tail behaviour of the distribution. The sub-families defined by πœ‰ = 0 (Type I), πœ‰ > 0 (Type II) and πœ‰ < 0 (Type III) correspond to the Gumbel, FrechΓ©t and Weibull families respectively. An important special case when analysing threshold exceedances involves πœ‡ = 0 (and normally πœ‰ > 0) and this special case may be referred to as 𝐺𝐸𝑉(πœ‰, 𝜎).

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œgev”. For details of other supported probability distributions see here.

The generalised gamma distribution [GeneralisedGammaDistribution] The generalised gamma (or generalized gamma) distribution is a generalisation of the gamma distribution that includes several of the parametric distributions typically used in survival analysis.

Distribution name Generalised gamma distribution

Common notation 𝑋~πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘™π‘–π‘ π‘’π‘‘πΊπ‘Žπ‘šπ‘šπ‘Ž(π‘˜, 𝛼, 𝛽) Parameters π‘˜ = shape parameter (π‘˜ > 0)

𝛼 = shape parameter (𝛼 > 0) 𝛽 = scale parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ < +∞

Page 25: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Probability density function 𝑓(π‘₯) =

π‘˜

𝛽Γ(𝛼)(π‘₯

𝛽)π‘˜π›Όβˆ’1

exp(βˆ’(π‘₯

𝛽)π‘˜

)

Cumulative distribution function 𝐹(π‘₯) =

Ξ“(π‘₯ 𝛽⁄ )π‘˜(𝛼)

Ξ“(𝛼)

Mean

𝛽Γ (𝛼 +

1π‘˜)

Ξ“(𝛼)

Variance

𝛽2Ξ“ (𝛼 +

2π‘˜)Ξ“(𝛼) βˆ’ Ξ“ (𝛼 +

1π‘˜)2

Ξ“(𝛼)2

Skewness Ξ“ (𝛼 +

3π‘˜)Ξ“(𝛼)2 βˆ’ 3Ξ“(𝛼 +

2π‘˜)Ξ“ (𝛼 +

1π‘˜)Ξ“(𝛼) + 2Ξ“ (𝛼 +

1π‘˜)3

(Ξ“ (𝛼 +2π‘˜)Ξ“(𝛼) βˆ’ Ξ“ (𝛼 +

1π‘˜)2

)

3 2⁄

(Excess) kurtosis 𝐴 + 𝐡 + 𝐢 + 𝐷

(Ξ“(𝛼 +2π‘˜) Ξ“(𝛼) βˆ’ Ξ“ (𝛼 +

1π‘˜)2

)

2 βˆ’ 3

where:

𝐴 = Ξ“(𝛼 +4

π‘˜)Ξ“(𝛼)3

𝐡 = βˆ’4Ξ“(𝛼 +3

π‘˜)Ξ“ (𝛼 +

1

π‘˜)Ξ“(𝛼)2

𝐢 = 6Ξ“(𝛼 +2

π‘˜)Ξ“ (𝛼 +

1

π‘˜)2

Ξ“(𝛼)

𝐷 = βˆ’3Ξ“(𝛼 +1

π‘˜)4

Other comments Its non-central moments are:

𝐸(π‘‹π‘Ÿ) =π›½π‘ŸΞ“ (𝛼 +

π‘Ÿπ‘˜)

Ξ“(𝛼)

The Weibull distribution is a special case with 𝛼 = 1. The gamma distribution is a special case with π‘˜ = 1.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œgeneralised gamma”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œgeneralised gamma4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The generalised inverse Gaussian distribution [GeneralisedInverseGaussianDistribution]

Distribution name Generalised inverse Gaussian distribution (GIG)

Common notation 𝑋~𝐺𝐼𝐺(πœ†, πœ‰, πœ“) Parameters πœ† = parameter (πœ† > 0)

πœ‰ = parameter (πœ‰ β‰₯ 0) πœ“ = parameter (πœ“ β‰₯ 0)

Domain 0 < π‘₯ < +∞

Page 26: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Probability density function

𝑓(π‘₯) =(βˆšπœ“ πœ‰β„ )

πœ†

2πΎπœ†(βˆšπœ‰πœ“)π‘₯πœ†βˆ’1 exp(βˆ’

1

2(πœ‰

π‘₯+ πœ“π‘₯))

where πΎπœ†(π‘₯) is the modified Bessel function of the third kind with index πœ†.

Mean βˆšπœ‰πΎπ‘+1(βˆšπœ‰πœ“)

βˆšπœ“πΎπ‘(βˆšπœ‰πœ“)

Variance

(πœ‰

πœ“)(𝐾𝑝+2(βˆšπœ‰πœ“)

𝐾𝑝(βˆšπœ‰πœ“)βˆ’ (

𝐾𝑝+1(βˆšπœ‰πœ“)

𝐾𝑝(βˆšπœ‰πœ“))

2

)

Characteristic function (

πœ“

πœ“ βˆ’ 2𝑖𝑑)𝑝 2⁄ 𝐾𝑝(βˆšπœ‰(πœ“ βˆ’ 2𝑖𝑑))

𝐾𝑝(βˆšπœ‰πœ“)

Other comments When πœ‰ > 0 and πœ“ > 0 the non-central moments are:

𝐸(π‘‹π‘Ÿ) = (πœ‰

πœ“)π‘Ÿ 2⁄ πΎπœ†+π‘Ÿ(βˆšπœ‰πœ“)

πΎπœ†(βˆšπœ‰πœ“)

Some commentators use GIG to refer to the generalised integer gamma distribution (which is not the same as the generalised inverse Gaussian distribution).

Nematrian web functions This distribution is not currently supported within the Nematrian web function library. For details of other supported probability distributions see here.

The generalised Pareto distribution [GeneralisedParetoDistribution] The generalised Pareto distribution (generalized Pareto distribution) arises in Extreme Value Theory (EVT). If the relevant regularity conditions are satisfied then the tail of a distribution (above some suitably high threshold), i.e. the distribution of β€˜threshold exceedances’, tends to a generalized Pareto distribution. Care is needed with EVT because what we are in effect doing with it is to extrapolate into the tail of the distribution. Extrapolation is an intrinsically imprecise and subjective mathematical activity. We can in effect view the regularity conditions that need to be satisfied if EVT applies as corresponding to requiring that this extrapolation is done in a particular manner.

Page 27: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Distribution name Generalised Pareto distribution (GPD)

Common notation 𝑋~𝐺𝑃𝐷(πœ‰, πœ‡, 𝜎) Parameters πœ‰ = shape parameter

πœ‡ = location parameter 𝜎 = scale parameter (𝜎 > 0)

Domain πœ‡ ≀ π‘₯ < +∞ πœ‰ β‰₯ 0

πœ‡ ≀ π‘₯ ≀ πœ‡ βˆ’πœŽ

πœ‰πœ‰ < 0

Probability density function

𝑓(π‘₯) = {

1

𝜎(1 + πœ‰π‘§)βˆ’1βˆ’1 πœ‰β„ πœ‰ β‰  0

1

𝜎exp(βˆ’π‘§) πœ‰ = 0

where

𝑧 =π‘₯ βˆ’ πœ‡

𝜎

Cumulative distribution function

𝐹(π‘₯) = {1 βˆ’ (1 + πœ‰π‘§)βˆ’1 πœ‰β„ πœ‰ β‰  0

1 βˆ’ exp(βˆ’π‘§) πœ‰ = 0

Mean πœ‡ +𝜎

1 βˆ’ πœ‰ πœ‰ < 1

Variance 𝜎2

(1 βˆ’ 2πœ‰)(1 βˆ’ πœ‰)2 πœ‰ <

1

2

Skewness 2(1 + πœ‰)√1 βˆ’ 2πœ‰

1 βˆ’ 3πœ‰ πœ‰ <

1

3

(Excess) kurtosis 6(1 + πœ‰ βˆ’ 6πœ‰2 βˆ’ 2πœ‰3)

(1 βˆ’ 3πœ‰)(1 βˆ’ 4πœ‰) πœ‰ <

1

4

Other comments If 𝑋 is uniformly distributed, 𝑋~π‘ˆ(0,1) then the variable π‘Œ = πœ‡ +

𝜎(π‘‹βˆ’πœ‰ βˆ’ 1) πœ‰β„ ~𝐺𝑃𝐷(πœ‡, 𝜎, πœ‰).

The mean excess function for a GPD, i.e. 𝑒(𝑒) = 𝐸(𝑋 βˆ’ 𝑒|𝑋 > 𝑒) takes a particularly simple form which is linear in πœ‰, i.e.

𝑒(𝑒) =𝜎

1 βˆ’ πœ‰+πœ‰(𝑒 βˆ’ πœ‡)

1 βˆ’ πœ‰

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œgeneralised pareto”. For details of other supported probability distributions see here.

Page 28: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The Gumbel distribution [GumbelDistribution] The Gumbel distribution is a special case of the generalised extreme value distribution. It characterises the distribution of β€˜block maxima’ as per Extreme Value Theory (EVT) under certain (relatively restrictive) conditions.

The hyperbolic secant distribution

[Nematrian website page: HyperbolicSecantDistribution, Β© Nematrian 2015]

Distribution name Hyperbolic secant distribution

Common notation 𝑋~π‘†π‘’π‘β„Ž(πœ‡, 𝜎) Parameters 𝜎 = scale parameter (𝜎 > 0)

πœ‡ = location parameter

Domain βˆ’βˆž < π‘₯ < +∞ Probability density function

𝑓(π‘₯) =sech (

πœ‹2 𝑧)

2𝜎

where

𝑧 =π‘₯ βˆ’ πœ‡

𝜎

Cumulative distribution function

𝐹(π‘₯) =2

πœ‹arctan (exp (

πœ‹

2𝑧))

Mean πœ‡ Variance 𝜎2 Skewness 0 (Excess) kurtosis 2

Characteristic function π‘’βˆ’π‘–π‘‘πœ‡ sech(πœŽπ‘‘) Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œhyperbolic secant”. For details of other supported probability distributions see here.

Page 29: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The inverse gamma distribution [InverseGammaDistribution] The inverse gamma distribution describes the distribution of the reciprocal of a variable distributed according to the gamma distribution.

Distribution name Inverse gamma

Common notation

Parameters 𝛼 = shape parameter (𝛼 > 0) 𝛽 = scale parameter (𝛽 > 0)

Domain 0 < π‘₯ < +∞ Probability density function

𝑓(π‘₯) =exp (βˆ’

𝛽π‘₯)

𝛽Γ(𝛼)(π‘₯ 𝛽⁄ )𝛼+1

Cumulative distribution function 𝐹(π‘₯) = 1 βˆ’

Γ𝛽 π‘₯⁄ (𝛼)

Ξ“(𝛼)

Mean 𝛽

𝛼 βˆ’ 1 π‘“π‘œπ‘Ÿ 𝛼 > 1

Variance 𝛽2

(𝛼 βˆ’ 1)2(𝛼 βˆ’ 2) π‘“π‘œπ‘Ÿ 𝛼 > 2

Skewness 4βˆšπ›Ό βˆ’ 2

𝛼 βˆ’ 3 π‘“π‘œπ‘Ÿ 𝛼 > 3

(Excess) kurtosis 30𝛼 βˆ’ 66

(𝛼 βˆ’ 3)(𝛼 βˆ’ 4) π‘“π‘œπ‘Ÿ 𝛼 > 4

Characteristic function 2(βˆ’π‘–π›½π‘‘)𝛼 2⁄

Ξ“(𝛼)𝐾𝛼(2βˆšβˆ’π‘–π›½π‘‘)

Other comments Also called the log Pearson type 5 distribution. Its mode is 𝛽 (𝛼 + 1)⁄

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œinverse gamma”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œinverse gamma3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

Page 30: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The inverse Gaussian distribution [InverseGaussianDistribution] While the Gaussian (i.e. normal distribution describes a Brownian motion’s level at a fixed time, the inverse Gaussian distribution describes the distribution of time a Brownian motion starting at 0 with positive drift takes to reach a fixed positive level.

Distribution name Inverse Gaussian distribution

Common notation 𝑋~𝐼𝐺(πœ†, πœ‡) Parameters πœ† = parameter (πœ† > 0)

πœ‡ = parameter (πœ‡ > 0)

Domain 0 < π‘₯ < +∞

Probability density function

𝑓(π‘₯) = βˆšπœ†

2πœ‹π‘₯3exp (βˆ’

πœ†(π‘₯ βˆ’ πœ‡)2

2πœ‡2π‘₯)

Cumulative distribution function 𝐹(π‘₯) = 𝑁(√

πœ†

π‘₯(π‘₯

πœ‡βˆ’ 1)) + 𝑁(βˆ’βˆš

πœ†

π‘₯(π‘₯

πœ‡+ 1)) exp (

2πœ†

πœ‡)

Mean πœ‡ Variance πœ‡3 πœ†β„ Skewness

3 (πœ‡

πœ†)1 2⁄

(Excess) kurtosis 15πœ‡

πœ†

Characteristic function

exp(πœ†

πœ‡(1 βˆ’ √1 βˆ’

2πœ‡2𝑖𝑑

πœ†))

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œinverse gaussian”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œinverse gaussian3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

Page 31: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The Johnson SU distribution [JohnsonSUDistribution]

Distribution name Johnson SU distribution

Common notation 𝑋~π½π‘œβ„Žπ‘›π‘ π‘œπ‘›π‘†π‘ˆ(𝛾, 𝛿, πœ†, πœ‰) or 𝑋~π‘†π‘ˆ(𝛾, 𝛿, πœ†, πœ‰)

Parameters 𝛾 = shape parameter 𝛿 = shape parameter (𝛿 > 0) πœ† = location parameter

πœ‰ = scale parameter (πœ‰ > 0)

Domain βˆ’βˆž < π‘₯ < +∞

Probability density function

𝑓(π‘₯) =𝛿 exp (βˆ’

12(𝛾 + 𝛿 sinhβˆ’1 𝑧)2)

πœ‰βˆš2πœ‹βˆšπ‘§2 + 1

where

𝑧 =π‘₯ βˆ’ πœ†

πœ‰

Note sinhβˆ’1 𝑧 = log(𝑧 + βˆšπ‘§2 + 1)

Cumulative distribution function

𝐹(π‘₯) = 𝑁(𝛾 + 𝛿 sinhβˆ’1 𝑧)

Mean πœ† βˆ’ πœ‰βˆšπ‘€ sinhΞ© where 𝑀 = exp(π›Ώβˆ’2) and Ξ© = 𝛾 𝛿⁄

Variance πœ‰2

2(𝑀 βˆ’ 1)(𝑀 cosh(2Ξ©) + 1)

Skewness βˆ’πœ‰3βˆšπ‘€(𝑀 βˆ’ 1)2(𝑀(𝑀 + 2) sinh(3Ξ©) + 3 sinhΞ©)

4𝜎3

where 𝜎 = βˆšπœ‰2

2(𝑀 βˆ’ 1)(𝑀 cosh(2Ξ©) + 1)

(Excess) kurtosis πœ‰4(𝑀 βˆ’ 1)2(𝐴 + 𝐡 + 𝐢)

8𝜎4βˆ’ 3

where 𝐴 = 𝑀2(𝑀4 + 2𝑀3 + 3𝑀2 βˆ’ 3) cosh(4Ξ©)

𝐡 = 4𝑀2(𝑀 + 2) cosh(2Ξ©) 𝐢 = 3(2𝑀 + 1)

Nematrian web functions

Page 32: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œjohnsonsu”. For details of other supported probability distributions see here.

The Kumaraswamy distribution [KumaraswamyDistribution] The Kumaraswamy distribution describes a distribution in which outcomes are limited to a specific range, the probability density function within this range being characterised by two shape parameters. It is similar to the beta distribution but possibly easier to use because it has simpler analytical expressions for its probability density function and cumulative distribution function.

Distribution name Kumaraswamy distribution

Common notation 𝑋~πΎπ‘’π‘šπ‘Žπ‘Ÿπ‘Žπ‘ π‘€π‘Žπ‘šπ‘¦(𝛼, 𝛽) Parameters 𝛼 = shape parameter (𝛼 > 0)

𝛽 = shape parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ ≀ 1 Probability density function 𝑓(π‘₯) = 𝛼𝛽π‘₯π›Όβˆ’1(1 βˆ’ π‘₯𝛼)π›½βˆ’1 Cumulative distribution function

𝐹(π‘₯) = 1 βˆ’ (1 βˆ’ π‘₯𝛼)𝛽

Mean 𝛽𝐡 (1 +

1

𝛼, 𝛽)

Variance (𝛽𝐡 (1 +

2

𝛼, 𝛽) βˆ’ 𝛽2𝐡 (1 +

1

𝛼, 𝛽)

2

)

Other comments A standard Kumaraswamy distribution has π‘Ž = 0 and 𝑏 = 1. Its non-central moments are given by:

𝐸(π‘‹π‘Ÿ) =𝛽Γ(1 + π‘Ÿ 𝛼⁄ )Ξ“(𝛽)

Ξ“(1 + 𝛽 + π‘Ÿ 𝛼⁄ )= 𝛽𝐡 (1 +

π‘Ÿ

𝛼, 𝛽)

and its median is (1 βˆ’ 2βˆ’1 𝛽⁄ )1 𝛼⁄

and its mode is (π›Όβˆ’1

π›Όπ›½βˆ’1)1 𝛼⁄

(for 𝛼 β‰₯

1,𝛽 β‰₯ 1, (𝛼, 𝛽) β‰  (1,1).

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œkumaraswamy”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a

Page 33: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

DistributionName of β€œkumaraswamy4” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Laplace distribution [LaplaceDistribution] The Laplace distribution is akin to two exponential distributions spliced together.

Distribution name Laplace distribution

Common notation π‘Œ~πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’(πœ‡, 𝑏) Parameters πœ‡ = location parameter

𝑏 = scale parameter (𝑏 > 0)

Domain βˆ’βˆž < π‘₯ < +∞

Probability density function 𝑓(π‘₯) =

1

2𝑏exp(βˆ’

|π‘₯ βˆ’ πœ‡|

𝑏)

Cumulative distribution function

𝐹(π‘₯) = {

1

2exp (

π‘₯ βˆ’ πœ‡

𝑏) π‘₯ ≀ πœ‡

1 βˆ’1

2exp (βˆ’

π‘₯ βˆ’ πœ‡

𝑏) π‘₯ > πœ‡

Mean πœ‡

Variance 2𝑏2 Skewness 0 (Excess) kurtosis 3

Characteristic function π‘’π‘–πœ‡π‘‘

1 + 𝑏2𝑑2

Other comments The median and mode are πœ‡. The inverse cdf (i.e. quantile) function is

πΉβˆ’1(𝑝) = πœ‡ βˆ’ 𝑏 sgn (𝑝 βˆ’1

2) log (1 βˆ’ 2 |𝑝 βˆ’

1

2|).

If 𝑋~π‘ˆ (βˆ’1

2,1

2) and π‘Œ = πœ‡ βˆ’ 𝑏 sgn(𝑋) log(1 βˆ’ 2|𝑋|) then

π‘Œ~πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’(πœ‡, 𝑏). It is sometimes referred to as the double exponential distribution (but this term is also apparently also used sometimes of the Gumbel distribution)

Nematrian web functions

Page 34: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œlaplace”. For details of other supported probability distributions see here.

The LΓ©vy distribution [LevyDistribution] The time of hitting a single point π‘Ž (different from the starting point of 0) of a Brownian motion without a mean drift follows the LΓ©vy distribution with 𝜎 = π‘Ž2. With a mean drift it follows an inverse Gaussian meaning that the LΓ©vy distribution is a special case of the inverse Gaussian distribution.

Distribution name LΓ©vy distribution

Common notation 𝑋~𝐿𝑒𝑣𝑦(𝜎)

Parameters 𝜎 = scale parameter (𝜎 > 0)

Domain 0 < π‘₯ < +∞

Probability density function

𝑓(π‘₯) =1

𝜎√2πœ‹

exp (𝜎2π‘₯)

(π‘₯ πœŽβ„ )3 2⁄

Cumulative distribution function 𝐹(π‘₯) = 2 βˆ’ 2𝑁 (√

𝜎

π‘₯)

Mean ∞

Variance ∞

Skewness undefined

(Excess) kurtosis undefined

Characteristic function π‘’βˆ’βˆšβˆ’2π‘–πœŽπ‘‘ Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œlevy”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œlevy2”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The logistic distribution

Page 35: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

[LogisticDistribution] The logistic distribution has a similar shape to the normal distribution but has heavier tails.

Distribution name Logistic distribution

Common notation 𝑋~πΏπ‘œπ‘”π‘–π‘ π‘‘π‘–π‘(πœ‡, 𝑠)

Parameters πœ‡ = location parameter 𝑠 = scale parameter (𝜎 > 0)

Domain βˆ’βˆž < π‘₯ < +∞ Probability density function

𝑓(π‘₯) =exp(βˆ’π‘§)

𝑠(1 + exp(βˆ’π‘§))2

where

𝑧 =π‘₯ βˆ’ πœ‡

𝑠

Cumulative distribution function

𝐹(π‘₯) =1

1 + exp(βˆ’π‘§)

Mean πœ‡ Variance πœ‹2𝑠2

3

Skewness 0

(Excess) kurtosis 6

5

Characteristic function π‘’πœ‡π‘–π‘‘πœ‹π‘ π‘‘

sinh(πœ‹π‘ π‘‘)

Other comments The logistic distribution is sometimes called the sech-square(d) distribution because its pdf can also be expressed in terms of the hyperbolic secan function:

𝑓(π‘₯) =exp(βˆ’π‘§)

𝜎(1 + exp(βˆ’π‘§))2=1

4𝜎sech2 (

𝑧

2)

It should not then be confused with the hyperbolic secant distribution.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œlogistic”. For details of other supported probability distributions see here.

Page 36: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The log-logistic distribution [LogLogisticDistribution]

Distribution name Log-logistic distribution

Common notation 𝑋~𝐿𝐿(𝛼, 𝛽) Parameters 𝛼 = scale parameter (𝛼 > 0)

𝛽 = shape parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ < +∞

Probability density function

𝑓(π‘₯) =(𝛽𝛼) (

π‘₯𝛼)

π›½βˆ’1

(1 + (π‘₯𝛼)

𝛽)2

Cumulative distribution function

𝐹(π‘₯) =1

1 + (π‘₯𝛼)βˆ’π›½

Mean 𝛼𝑏 csc(𝑏) 𝑖𝑓 𝛽 > 1 where 𝑏 = πœ‹ 𝛽⁄ and csc π‘₯ = 1 sin π‘₯⁄ is the cosecant function

Variance 𝛼2(2𝑏 csc(2𝑏) βˆ’ 𝑏2 csc2 𝑏) 𝑖𝑓 𝛽 > 2 Other comments Is also called the Fisk distribution. Its non-central moments are (if

π‘˜ < 𝛽):

𝐸(π‘‹π‘Ÿ) = π›Όπ‘˜π΅(1 βˆ’ π‘˜ 𝛽⁄ , 1 + π‘˜ 𝛽⁄ ) =π›Όπ‘˜π‘˜π‘

sin(π‘˜π‘)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œloglogistic”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œloglogistic3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The lognormal distribution [LognormalDistribution]

Page 37: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Distribution name Lognormal distribution

Common notation 𝑋~π‘™π‘œπ‘”π‘(πœ‡, 𝜎2) Parameters 𝜎 = scale parameter (𝜎 > 0)

πœ‡ = location parameter

Domain 0 < π‘₯ < +∞ Probability density function

𝑓(π‘₯) =

exp (βˆ’12 (log π‘₯ βˆ’ πœ‡

𝜎 )2

)

π‘₯𝜎√2πœ‹

Cumulative distribution function

𝐹(π‘₯) = 𝑁 (log π‘₯ βˆ’ πœ‡

𝜎) =

1

2+1

2π‘’π‘Ÿπ‘“ (

log π‘₯ βˆ’ πœ‡

√2𝜎2)

Mean π‘’πœ‡+𝜎2 2⁄

Variance (𝑒(𝜎2) βˆ’ 1)𝑒2πœ‡+𝜎

2

Skewness (𝑒(𝜎2) + 2)βˆšπ‘’(𝜎

2) βˆ’ 1

(Excess) kurtosis 𝑒(4𝜎2) + 2𝑒(3𝜎

2) + 3𝑒(2𝜎2) βˆ’ 6

Characteristic function No simple expression that is not divergent

Other comments The median of a lognormal distribution is π‘’πœ‡ and its mode is π‘’πœ‡βˆ’πœŽ2.

The truncated moments of π‘™π‘œπ‘”π‘(πœ‡, 𝜎2) are:

∫ π‘₯π‘˜π‘“(π‘₯)𝑑π‘₯

π‘ˆ

𝐿

= π‘’π‘˜πœ‡+π‘˜2𝜎2 2⁄ (𝑁 (

logπ‘ˆ βˆ’ πœ‡

πœŽβˆ’ π‘˜πœŽ)

βˆ’ 𝑁 (log 𝐿 βˆ’ πœ‡

πœŽβˆ’ π‘˜πœŽ))

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œlognormal”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œlognormal4” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Nakagami distribution [LognormalDistribution]

Page 38: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Distribution name Nakagami distribution

Common notation 𝑋~π‘π‘Žπ‘˜π‘Žπ‘”π‘Žπ‘šπ‘–(π‘š,Ο‰)

Parameters π‘š = parameter (π‘š β‰₯ 1 2⁄ ) Ο‰ = parameter (Ο‰ > 0)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =2π‘šπ‘š

Ξ“(π‘š)Ο‰π‘šπ‘₯2π‘šβˆ’1 exp (βˆ’

π‘š

Ο‰π‘₯2)

Cumulative distribution function 𝐹(π‘₯) =

Ξ“π‘šπ‘₯2 ω⁄ (π‘š)

Ξ“(π‘š)

Mean Ξ“ (π‘š +12)

Ξ“(π‘š)(πœ”

π‘š)1 2⁄

Variance

πœ”(1 βˆ’1

π‘š(Ξ“(π‘š +

12)

Ξ“(π‘š))

2

)

Other comments Its median is βˆšπœ” and its mode is

1

√2((2π‘šβˆ’1)πœ”

π‘š)1 2⁄

.

If 𝑋~Ξ“(π‘˜, πœƒ) then π‘Œ = βˆšπ‘‹~π‘π‘Žπ‘˜π‘Žπ‘”π‘Žπ‘šπ‘–(π‘˜, π‘˜πœƒ)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œnakagami”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œnakagami3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The non-central chi-squared distribution [NoncentralChiSquaredDistribution]

Distribution name Non-central chi-squared distribution

Common notation 𝑋~πœ’2(𝜐, πœ†) Parameters 𝜈 = degrees of freedom (positive integer)

πœ† = non-centrality parameter (πœ† β‰₯ 0)

Domain 0 ≀ π‘₯ < +∞

Page 39: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Probability density function

𝑓(π‘₯) =π‘₯𝜈 2⁄ βˆ’1 exp (βˆ’

π‘₯2)

2𝜈 2⁄ Ξ“(𝜈 2⁄ )𝐹10 (; π‘˜ 2⁄ ; πœ†π‘₯ 4⁄ )

Cumulative distribution function

𝐹(π‘₯) = 1 βˆ’ π‘„πœˆ 2⁄ (βˆšπœ†,√π‘₯)

where 𝑄𝑀(π‘Ž, 𝑏) is the Marcum-Q function.

Mean 𝜈 + πœ† Variance 2(𝜈 + 2πœ†)

Skewness 2√2(𝜈 + 3πœ†)

(𝜈 + 2πœ†)3 2β„βˆš8

𝜈

(Excess) kurtosis 12(𝜈 + 4πœ†)

(𝜈 + 2πœ†)2

Characteristic function (1 βˆ’ 2𝑖𝑑)βˆ’πœˆ 2⁄ exp (βˆ’

π‘–πœ†π‘‘

1 βˆ’ 2𝑖𝑑)

Other comments The non-central chi-squared distribution with 𝜈 degrees of freedom and non-centrality parameter πœ† is the distribution of the sum of the squares of 𝜈 independent normal distributions each with unit

standard deviation but with non-zero means πœ‡π‘– where πœ† = βˆ‘ πœ‡π‘–2𝜈

𝑖=1 . The (standard) chi-squared distribution is a special case of it with πœ† =0.

Nematrian web functions This distribution is not currently supported within the Nematrian web function library. For details of other supported probability distributions see here.

The non-central t distribution [LognormalDistribution]

Distribution name (Standard) non-central t distribution (NCT)

Common notation 𝑋~𝑁𝐢𝑇(𝜈, 𝑑)

Parameters 𝜐 = degrees of freedom (𝜈 > 0, usually 𝜈 is an integer although in some situations a non-integral 𝜈 can arise)

𝑏 = non-centrality parameter

Domain βˆ’βˆž < π‘₯ < +∞

Page 40: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Probability density function

𝑓(π‘₯) =

{

𝜐

π‘₯(𝐹𝜐+2,𝑏 (π‘₯√1 + 2 πœβ„ ) βˆ’ 𝐹𝜐,𝑏(π‘₯)) 𝑖𝑓 π‘₯ β‰  0

Ξ“((𝜐 + 1) 2⁄ )

βˆšπœ‹πœΞ“(𝜐 2⁄ )exp (βˆ’

𝑏2

2) 𝑖𝑓 π‘₯ = 0

where 𝐹𝜐,𝑑(π‘₯) is the NCT cumulative distribution function

Cumulative distribution function 𝐹𝜐,𝑏(π‘₯) = {

π‘„πœ,𝑏(π‘₯) 𝑖𝑓 π‘₯ β‰₯ 0

1 βˆ’ π‘„πœ,βˆ’π‘(βˆ’π‘₯) 𝑖𝑓 π‘₯ < 0

where

π‘„πœ,𝑑(π‘₯) = 𝑁(βˆ’π‘) +1

2βˆ‘(𝑝𝑗𝐼𝑦 (𝑗 +

1

2,𝜐

2) + π‘žπ‘—πΌπ‘¦ (𝑗 + 1,

𝜐

2))

∞

𝑗=0

𝑦 =π‘₯2

π‘₯2 + 𝜐

𝑝𝑗 =1

𝑗!(𝑏2

2)

𝑗

exp(βˆ’π‘2

2)

π‘žπ‘— =πœ‡

√2Ξ“ (𝑗 +32)(𝑏2

2)

𝑗

exp(βˆ’π‘2

2)

Mean

π‘βˆšπœˆ

2

Ξ“ (𝜈 βˆ’ 12 )

Ξ“ (𝜈2)

𝑖𝑓 𝜈 > 1

Variance 𝜈(1 + 𝑏2)

𝜈 βˆ’ 2βˆ’π‘2𝜈

2(Ξ“ (𝜈 βˆ’ 12

)

Ξ“ (𝜈2))

2

𝑖𝑓 𝜈 > 2

Other comments 𝑋 has a standard non-central 𝑑 distribution with 𝜐 degrees of

freedom and non-centrality parameter 𝑑 if 𝑋 = (𝑍 + 𝑏) βˆšπ‘Œ πœˆβ„β„ , π‘Œ~πœ’πœˆ

2, 𝑍~𝑁(0,1) and π‘Œ and 𝑍 are independent. It has the following non-central moments:

𝐸(π‘‹π‘˜) = (𝜈

2)

π‘˜2 Ξ“ (

𝜈 βˆ’ π‘˜2

)

Ξ“ (𝜈2)

π‘’βˆ’π‘2 2⁄

π‘‘π‘˜π‘’π‘2 2⁄

𝑑𝑏 𝑖𝑓 𝜈 > π‘˜

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œnon-central t”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œnon-central t4”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The normal distribution [NormalDistribution] The normal distribution is a continuous probability distribution that has a bell-shaped probability density function:

𝑓(π‘₯) =1

𝜎√2πœ‹exp (βˆ’

1

2(π‘₯ βˆ’ πœ‡

𝜎)2

)

Page 41: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

It is usually considered to be the most prominent probability distribution in statistics partly because it arises in a very large number of contexts as a result of the central limit theorem and partly because it is relatively tractable analytically. The normal distribution is also called the Gaussian distribution. The unit normal (or standard normal) distribution is 𝑁(0,1). Characteristics of the normal distribution are set out below:

Distribution name Normal distribution

Common notation 𝑋~𝑁(πœ‡, 𝜎2) Parameters 𝜎 = scale parameter (𝜎 > 0)

πœ‡ = location parameter

Domain βˆ’βˆž < π‘₯ < +∞

Probability density function 𝑓(π‘₯) ≑ πœ™(π‘₯) =

1

𝜎√2πœ‹exp (βˆ’

1

2(π‘₯ βˆ’ πœ‡

𝜎)2

)

Cumulative distribution function 𝐹(π‘₯) ≑ 𝑁(π‘₯) = Ξ¦(π‘₯) =

1

√2πœ‹βˆ«exp (βˆ’

1

2(𝑑 βˆ’ πœ‡

𝜎)2

)𝑑𝑑

π‘₯

βˆ’βˆž

Mean πœ‡ Variance 𝜎2 Skewness 0

(Excess) kurtosis 0

Characteristic function π‘’π‘–π‘‘πœ‡βˆ’

12𝜎2𝑑2

Other comments The inverse unit normal distribution function (i.e. its quantile function) is commonly written π‘βˆ’1(π‘₯) (also in some texts Ξ¦(π‘₯) and the unit normal density function is commonly written πœ™(π‘₯). π‘βˆ’1(π‘₯) is also called the probit function.

The error function distribution is 𝑁 (0,1

2β„Ž), where β„Ž is now an inverse

scale parameter β„Ž > 0. The median and mode of a normal distribution are πœ‡. The truncated first moments of 𝑁(πœ‡, 𝜎2) are:

Page 42: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

∫ π‘₯𝑓(π‘₯)𝑑π‘₯

π‘ˆ

𝐿

= πœ‡ (𝑁 (π‘ˆ βˆ’ πœ‡

𝜎) βˆ’ 𝑁 (

𝐿 βˆ’ πœ‡

𝜎))

βˆ’ 𝜎 (πœ™ (π‘ˆ βˆ’ πœ‡

𝜎) βˆ’ πœ™ (

𝐿 βˆ’ πœ‡

𝜎))

where πœ™(π‘₯) and 𝑁(π‘₯) are the pdf and cdf of the unit normal distribution respectively. The mean excess function of a standard normal distribution is thus

𝑒(𝑒) =πœ™(𝑒) βˆ’ 𝑒𝑁(βˆ’π‘’)

𝑁(βˆ’π‘’)=

1

√2πœ‹π‘’π‘₯𝑝 (βˆ’

12𝑒2) βˆ’ 𝑒𝑁(βˆ’π‘’)

𝑁(βˆ’π‘’)

The central moments of the normal distribution are:

𝐸((𝑋 βˆ’ πœ‡)π‘˜) = {0 𝑖𝑓 π‘˜ 𝑖𝑠 π‘œπ‘‘π‘‘

πœŽπ‘Γ—1Γ—3×…×(π‘˜ βˆ’ 1) 𝑖𝑓 π‘˜ 𝑖𝑠 𝑒𝑣𝑒𝑛

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œnormal”. For details of other supported probability distributions see here.

The Pareto distribution [ParetoDistribution]

Distribution name Pareto distribution

Common notation 𝑋~π‘ƒπ‘Žπ‘Ÿπ‘’π‘‘π‘œ(𝛼, 𝛽) Parameters 𝛼 = shape parameter (𝛼 > 0)

𝛽 = scale parameter (𝛽 > 0)

Domain 0 ≀ π‘₯ < +∞ Probability density function

𝑓(π‘₯) =𝛼𝛽𝛼

(𝛽 + π‘₯)𝛼+1

Cumulative distribution function 𝐹(π‘₯) = 1 βˆ’ (

𝛽

𝛽 + π‘₯)𝛼

Mean 𝛽

𝛼 βˆ’ 1 π‘“π‘œπ‘Ÿ 𝛼 > 1

Page 43: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Variance 𝛼𝛽2

(𝛼 βˆ’ 1)2(𝛼 βˆ’ 2) π‘“π‘œπ‘Ÿ 𝛼 > 2

Skewness 2(𝛼 + 1)

𝛼 βˆ’ 3βˆšπ›Ό βˆ’ 2

𝛼 π‘“π‘œπ‘Ÿ 𝛼 > 3

(Excess) kurtosis 6(𝛼3 + 𝛼2 βˆ’ 6𝛼 βˆ’ 2)

𝛼(𝛼 βˆ’ 3)(𝛼 βˆ’ 4) π‘“π‘œπ‘Ÿ 𝛼 > 4

Other comments Also known as the Pareto distribution of the second kind in which case the Pareto distribution of the first kind has 𝛽 ≀ π‘₯ < +∞,

𝑓(π‘₯) =𝛼𝛽𝛼

π‘₯𝛼+1 and 𝐹(π‘₯) = 1 βˆ’ (

𝛽

π‘₯)𝛼

.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œpareto”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œpareto3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The power function distribution [PowerFunctionDistribution]

Distribution name Power function distribution

Common notation

Parameters π‘˜ = shape parameter (π‘˜ > 0)

Domain 0 ≀ π‘₯ ≀ 1

Probability density function 𝑓(π‘₯) = π‘˜π‘₯π‘˜βˆ’1 Cumulative distribution function

𝐹(π‘₯) = π‘₯π‘˜

Mean π‘˜

π‘˜ + 1

Variance π‘˜

π‘˜3 + 4π‘˜2 + 5π‘˜ + 2

Other comments Its non-central moments around π‘Ž (which can be used to derive its non-central moments around 0) are:

𝐸(π‘‹π‘Ÿ) =π‘˜

π‘Ÿ + π‘˜

Page 44: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œpower”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a DistributionName of β€œpower3” ”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The Rayleigh distribution [RayleighDistribution]

Distribution name Rayleigh distribution

Common notation 𝑋~π‘…π‘Žπ‘¦π‘™π‘’π‘–π‘”β„Ž(π‘˜)

Parameters π‘˜ = scale parameter (π‘˜ > 0)

Domain 0 ≀ π‘₯ < +∞

Probability density function

𝑓(π‘₯) =π‘₯ exp (βˆ’

π‘₯2

2π‘˜2)

π‘˜2

Cumulative distribution function 𝐹(π‘₯) = 1 βˆ’ exp(βˆ’

π‘₯2

2π‘˜2)

Mean π‘˜βˆšπœ‹

2

Variance 4 βˆ’ πœ‹

2π‘˜2

Skewness 2βˆšπœ‹(πœ‹ βˆ’ 3)

(4 βˆ’ πœ‹)2

(Excess) kurtosis βˆ’6πœ‹2 βˆ’ 24πœ‹ + 16

(4 βˆ’ πœ‹)2

Characteristic function 1 βˆ’ π‘˜π‘‘ exp (βˆ’

π‘˜2𝑑2

2)√

πœ‹

2(βˆ’π‘– erf (

π‘–π‘˜π‘‘

√2) βˆ’ 𝑖)

Here erf(𝑧) is the error function, which is defined as:

erf(𝑧) =2

βˆšπœ‹βˆ«π‘’βˆ’π‘‘

2𝑑𝑑

𝑧

0

⟹ erf(π‘₯) = 2.𝑁(π‘₯√2) βˆ’ 1

Other comments The Rayleigh distribution often arises when the overall magnitude of a vector is related to its directional components

Page 45: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œrayleigh”. Functions relating to a generalised version of this distribution including an additional location (i.e. shift) parameter may be accessed by using a DistributionName of β€œrayleigh2”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The reciprocal distribution [ReciprocalDistribution]

Distribution name Reciprocal distribution

Common notation

Parameters π‘Ž, 𝑏 = boundary parameters (0 < π‘Ž < 𝑏)

Domain π‘Ž ≀ π‘₯ ≀ 𝑏

Probability density function 𝑓(π‘₯) =

1

π‘₯(log 𝑏 βˆ’ log π‘Ž)

Cumulative distribution function

𝐹(π‘₯) =log π‘₯ βˆ’ log π‘Ž

log 𝑏 βˆ’ log π‘Ž

Mean 𝑏 βˆ’ π‘Ž

log 𝑏 βˆ’ log π‘Ž

Variance 1

2(

𝑏2 βˆ’ π‘Ž2

log 𝑏 βˆ’ log π‘Ž) βˆ’ (

𝑏 βˆ’ π‘Ž

log 𝑏 βˆ’ log π‘Ž)2

Other comments Its non-central moments are:

𝐸(π‘‹π‘Ÿ) =π‘π‘Ÿ βˆ’ π‘Žπ‘Ÿ

π‘Ÿ(log 𝑏 βˆ’ log π‘Ž)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œreciprocal”. For details of other supported probability distributions see here.

The Rice distribution [RiceDistribution]

Page 46: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The Rice distribution is characterises the magnitude of a circular bivariate normal random vector with potentially non-zero mean.

Distribution name Rice distribution

Common notation 𝑋~𝑅𝑖𝑐𝑒(𝜈, 𝜎) Parameters 𝜈 = parameter

𝜎 = parameter

Domain 0 ≀ π‘₯ < +∞

Probability density function 𝑓(π‘₯) =

π‘₯

𝜎2exp(βˆ’

π‘₯2 + 𝜈2

2𝜎2) 𝐼0 (

π‘₯𝜈

𝜎2)

where 𝐼0(π‘ž) is the modified Bessel function of the first kind of order

zero, i.e. 𝐼0(π‘ž) = βˆ‘(π‘ž

2)2π‘˜

(π‘˜!)2βˆžπ‘˜=0

Cumulative distribution function

𝐹(π‘₯) = 1 βˆ’ 𝑄1 (𝜈

𝜎,π‘₯

𝜎)

where 𝑄1(𝑝, π‘ž) is the Marcum Q-function, i.e. 𝑄1(𝑝, π‘ž) =

∫ π‘₯ exp (βˆ’π‘₯2+𝑝2

2) 𝐼0(𝑝π‘₯)𝑑π‘₯

∞

π‘ž.

Mean πœŽβˆšπœ‹ 2⁄ 𝐿1 2⁄ (βˆ’

𝜈2

2𝜎2)

Variance 2𝜎2 + 𝜈2 βˆ’

πœ‹πœŽ2

2(𝐿1 2⁄ (βˆ’

𝜈2

2𝜎2))

2

Other comments The Rayleigh distribution is a special case of the Rice distribution where 𝜈 = 0. Its non-central moments are:

𝐸(π‘‹π‘Ÿ) = πœŽπ‘Ÿ2π‘Ÿ 2⁄ Ξ“ (1 +π‘Ÿ

2) πΏπ‘Ÿ 2⁄ (βˆ’

𝜈2

2𝜎2) π‘Ÿ = 1,2,…

where πΏπ‘ž(π‘₯) = 𝐹1(βˆ’π‘ž; 1; π‘₯)1 is a Laguerre polynomial.

Nematrian web functions This distribution is not currently supported within the Nematrian web function library. For details of supported probability distributions see here.

The Student’s t distribution [StudentsTDistribution] The Student’s t distribution (more simply the t distribution) arises when estimating the mean of a normally distributed population when sample sizes are small and the population standard deviation is unknown.

Page 47: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Distribution name (Standard) Student’s t distribution

Common notation 𝑋~π‘‘πœˆ

Parameters 𝜈 = degrees of freedom (𝜈 > 0, usually 𝜈 is an integer although in some situations a non-integral 𝜈 can arise)

Domain βˆ’βˆž < π‘₯ < +∞ Probability density function

𝑓(π‘₯) =1

βˆšπœ‹πœˆ

Ξ“ (𝜈 + 12 )

Ξ“ (𝜈2)

(1 +π‘₯2

𝑣)

βˆ’πœˆ+12

=1

√𝜈𝐡 (12,𝜈2)(1 +

π‘₯2

𝑣)

βˆ’πœˆ+12

Cumulative distribution function

𝐹(π‘₯) = {

1

2𝐼𝑧 (

𝜈

2,1

2) π‘₯ < 0

1 βˆ’1

2𝐼𝑧 (

𝜈

2,1

2) π‘₯ β‰₯ 0

where 𝑧 = 𝜈 (𝜈 + π‘₯2)⁄

Mean 0

Variance 𝜈

𝜈 βˆ’ 2 π‘“π‘œπ‘Ÿ 𝜈 > 2

Skewness 0 π‘“π‘œπ‘Ÿ 𝜈 > 3

(Excess) kurtosis 3(𝜈 βˆ’ 2)

𝜈 βˆ’ 4βˆ’ 3 =

6

𝜈 βˆ’ 4 π‘“π‘œπ‘Ÿ 𝜈 > 4

Characteristic function 𝐾𝜈 2⁄ (√𝜈|𝑑|)(√𝜈|𝑑|)𝜈 2⁄

Ξ“(𝜈 2⁄ )2𝜈 2⁄ βˆ’1

where 𝐾𝜈 2⁄ (π‘₯) is a Bessel function

Other comments It is a special case of the generalised hyperbolic distribution. Its non-central moments if π‘Ÿ is even and 0 < π‘Ÿ < 𝜈 are:

𝐸(π‘‹π‘Ÿ) =Ξ“ (π‘Ÿ + 12 ) Ξ“ (

𝜈 βˆ’ π‘Ÿ2 ) πœˆπ‘Ÿ 2⁄

βˆšπœ‹Ξ“(𝜈2)

If π‘Ÿ is even and 0 < 𝜈 ≀ π‘Ÿ then 𝐸(π‘‹π‘Ÿ) = ∞, if π‘Ÿ is odd and 0 < π‘Ÿ < 𝜈 then 𝐸(π‘‹π‘Ÿ) = 0 and if π‘Ÿ is odd and 0 < 𝜈 ≀ π‘Ÿ then 𝐸(π‘‹π‘Ÿ) is undefined.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œstudent's t”. Functions relating to a generalised version of this distribution including additional location (i.e. shift) and scale parameters may be accessed by using a

Page 48: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

DistributionName of β€œstudent's t3”, see also including additional shift and scale parameters. For details of other supported probability distributions see here.

The triangular distribution [TriangularDistribution]

Distribution name Triangular distribution

Common notation 𝑋~π‘‡π‘Ÿπ‘–π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ(π‘Ž, 𝑏, 𝑐)

Parameters π‘Ž, 𝑏 = boundary parameters (π‘Ž < 𝑏) 𝑐 = mode parameter (π‘Ž ≀ 𝑐 ≀ 𝑏)

Domain π‘Ž ≀ π‘₯ ≀ 𝑏

Probability density function

𝑓(π‘₯) =

{

2(π‘₯ βˆ’ π‘Ž)

(𝑐 βˆ’ π‘Ž)(𝑏 βˆ’ π‘Ž)π‘Ž ≀ π‘₯ ≀ 𝑐

2(𝑏 βˆ’ π‘₯)

(𝑏 βˆ’ 𝑐)(𝑏 βˆ’ π‘Ž)𝑐 < π‘₯ ≀ 𝑏

Cumulative distribution function

𝐹(π‘₯) =

{

(π‘₯ βˆ’ π‘Ž)2

(𝑐 βˆ’ π‘Ž)(𝑏 βˆ’ π‘Ž)π‘Ž ≀ π‘₯ ≀ 𝑐

1 βˆ’(𝑏 βˆ’ π‘₯)2

(𝑏 βˆ’ 𝑐)(𝑏 βˆ’ π‘Ž)𝑐 < π‘₯ ≀ 𝑏

Mean π‘Ž + 𝑏 + 𝑐

3

Variance π‘Ž2 + 𝑏2 + 𝑐2 βˆ’ π‘Žπ‘ βˆ’ π‘Žπ‘ βˆ’ 𝑏𝑐

18

Skewness √2(π‘Ž + 𝑏 βˆ’ 2𝑐)(2π‘Ž βˆ’ 𝑏 βˆ’ 𝑐)(π‘Ž βˆ’ 2𝑏 + 𝑐)

5(π‘Ž2 + 𝑏2 + 𝑐2 βˆ’ π‘Žπ‘ βˆ’ π‘Žπ‘ βˆ’ 𝑏𝑐)3 2⁄

(Excess) kurtosis βˆ’3

5

Characteristic function βˆ’2

(𝑏 βˆ’ 𝑐)π‘’π‘–π‘Žπ‘‘ βˆ’ (𝑏 βˆ’ π‘Ž)𝑒𝑖𝑐𝑑 + (𝑐 βˆ’ π‘Ž)𝑒𝑖𝑏𝑑

(𝑏 βˆ’ π‘Ž)(𝑐 βˆ’ π‘Ž)(𝑏 βˆ’ 𝑐)𝑑2

Other comments Its mode is 𝑐. Its median is:

{

π‘Ž + √

(𝑐 βˆ’ π‘Ž)(𝑏 βˆ’ π‘Ž)

2𝑐 β‰₯

π‘Ž + 𝑏

2

𝑏 βˆ’ √(𝑐 βˆ’ π‘Ž)(𝑏 βˆ’ π‘Ž)

2𝑐 ≀

π‘Ž + 𝑏

2

Page 49: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œtriangular”. For details of other supported probability distributions see here.

The uniform distribution [UniformDistribution] The uniform distribution describes a (continuous) probability distribution in which any outcome within a given range is equally probable.

Distribution name Uniform distribution

Common notation 𝑋~π‘ˆ(π‘Ž, 𝑏) Parameters π‘Ž, 𝑏 = boundary parameters (π‘Ž < 𝑏)

Domain π‘Ž ≀ π‘₯ ≀ 𝑏

Probability density function 𝑓(π‘₯) =

1

𝑏 βˆ’ π‘Ž

Cumulative distribution function

𝐹(π‘₯) =π‘₯ βˆ’ π‘Ž

𝑏 βˆ’ π‘Ž

Mean (π‘Ž + 𝑏) 2⁄ Variance (𝑏 βˆ’ π‘Ž)2 12⁄ Skewness 0

(Excess) kurtosis βˆ’6 5⁄

Characteristic function 𝑒𝑖𝑏𝑑 βˆ’ π‘’π‘–π‘Žπ‘‘

𝑖𝑑(𝑏 βˆ’ π‘Ž)

Other comments Its non-central moments (π‘Ÿ = 1,2,3, … ) are 𝐸(π‘‹π‘Ÿ) =1

(π‘βˆ’1)

1

π‘Ÿ+1(π‘π‘Ÿ+1 βˆ’ π‘Žπ‘Ÿ+1). Its median is (π‘Ž + 𝑏) 2⁄ .

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œuniform”. For details of other supported probability distributions see here.

The Weibull distribution

Page 50: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

[WeibullDistribution] The Weibull distribution is a special case of the generalised extreme value (GEV) distribution. It characterises the distribution of β€˜block maxima’ under certain (relatively restrictive) conditions.

Page 51: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Continuous multivariate distributions

The inverse Wishart distribution [InverseWishartDistribution] The inverse Wishart distribution (otherwise called the inverted Wishart distribution) π‘Šβˆ’1(𝐕,π‘š) is a probability distribution that is used in the Bayesian analysis of real-valued positive definite matrices (e.g. matrices of the type that arise in risk management contexts). It is a conjugate prior for the covariance matrix of a multivariate normal distribution. It has the following characteristics, where 𝐁 is a 𝑛×𝑛 matrix, 𝐕 is a positive definite matrix and Γ𝑛(. ) is the multivariate gamma function.

Parameters (and constraints on parameters): π‘š > 𝑛 βˆ’ 1 (π‘š = degrees of freedom, real) 𝐕 > 0 (𝐕 = inverse scale matrix, positive definite)

Support (i.e. values that it can take) 𝐁 > 0, i.e. is positive definite, 𝐁 an 𝑛×𝑛 matrix

Probability density function |𝐕|π‘š 2⁄ |𝐁|βˆ’(π‘š+𝑛+1) 2⁄ π‘’βˆ’trace(π•πβˆ’1) 2⁄

2π‘šπ‘› 2⁄ Γ𝑛(π‘š 2⁄ )

Mean 𝐕

π‘š βˆ’ 𝑛 βˆ’ 1

If the elements of 𝐁 are 𝐡𝑖,𝑗 and the elements of 𝐕 are 𝑉𝑖,𝑗 then

var(𝐡𝑖,𝑗) =(π‘š βˆ’ 𝑛 + 1)𝑉𝑖,𝑗

2 + (π‘š βˆ’ 𝑛 βˆ’ 1)𝑉𝑖,𝑖𝑉𝑖,𝑗

(π‘š βˆ’ 𝑛)(π‘š βˆ’ 𝑛 βˆ’ 1)2(π‘š βˆ’ 𝑛 βˆ’ 3)

The main use of the inverse Wishart distribution appears to arise in Bayesian statistics. Suppose we want to make an inference about a covariance matrix, 𝐕, whose prior 𝑝(𝐕) has a π‘Šβˆ’1(𝐕,π‘š) distribution. If the observation set 𝐗 = (𝐱1, … , 𝐱𝐾) where the π—π‘˜ are independent 𝑛-variate Normal (i.e. Gaussian) random variables drawn from a 𝑁(0, 𝐐) distribution then the conditional distribution 𝑝(𝐐|𝐗), i.e. the probability of 𝐐 given 𝐗, has a π‘Šβˆ’1(𝐀 + 𝐕,π‘š + 𝐾) distribution, where 𝐀 = 𝐗𝐗𝑇 is the sample covariance matrix. The univariate special case of the inverse Wishart distribution is the inverse gamma distribution. With 𝑛 = 1, 𝛼 = π‘š 2⁄ , 𝛽(= 𝐕 2⁄ ) = 𝑉1,1 2⁄ , π‘₯(= 𝐁 2⁄ ) = 𝐡1,1 2⁄ we have:

𝑝(π‘₯|𝛼, 𝛽) =𝛽𝛼π‘₯βˆ’π›Όβˆ’1exp(βˆ’Ξ² x⁄ )

Ξ“(Ξ±)

where Ξ“(. ) ≑ Ξ“1(. ) is the ordinary (i.e. univariate) Gamma function, see MnGamma. For other probability distributions see here.

Page 52: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Copulas (a copula is a special type of continuous multivariate distribution)

The Clayton copula [ClaytonCopula] The Clayton copula is a copula that allows any specific non-zero level of (lower) tail dependency between individual variables. It is an Archimedean copula, and exchangeable.

Copula name Clayton copula

Common notation π‘ˆ~πΆπœƒπΆπ‘™

Parameters πœƒ β‰₯ 0 (can be extended to πœƒ β‰₯ βˆ’1

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛

Copula

πΆπœƒπΆπ‘™(𝑒1, … , 𝑒𝑛) = (βˆ‘(𝑒1

βˆ’πœƒ βˆ’ 1)

𝑖

+ 1)

βˆ’1 πœƒβ„

Or if πœƒ = 0 we use the limit limπœƒβ†’0

πΆπœƒπΊπΆ

Kendall’s rank correlation coefficient (for bivariate case)

πœƒ

2 + πœƒ

Coefficient of upper tail dependence, πœ†π‘’

0

Coefficient of lower tail dependence, πœ†π‘™

2βˆ’1 (πœƒπ›Ώ)⁄

Archimedean generator function, πœ™(𝑑)

πœƒβˆ’π›Ώ(π‘‘βˆ’πœƒ βˆ’ 1)

Or if πœƒ = 0 we use the limit limπœƒβ†’0

πœ™πœƒ(𝑑) = βˆ’ log 𝑑

Other comments If πœƒ = 0 we obtain the independence copula. The Clayton copula (like the Frank copula) is a comprehensive copula in that it interpolates between a lower limit of the countermonotonicity copula (πœƒ β†’ βˆ’1) and an upper limit of the comonotonicity copula (πœƒ β†’ +∞)..

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œClayton Copula”. For details of other probability distributions see here.

The comonotonicity copula [ComonotonicityCopula] The Comonotonicity copula is a special copula characterising perfect positive dependence, in the sense that the π‘ˆπ‘– are almost surely strictly increasing functions of each other.

Copula name comonotonicity copula

Common notation π‘ˆ~𝑀 Parameters πœƒ

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛 Copula 𝑀(𝑒1, … , 𝑒𝑛) = π‘šπ‘–π‘›(𝑒1, … 𝑒𝑛)

Page 53: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Kendall’s rank correlation coefficient (for bivariate case)

1

Coefficient of upper tail dependence

1

Coefficient of lower tail dependence

1

Other comments Is the extreme case where dependency is as strongly β€œpositive” as possible (i.e. achieves the FrΓ©chet upper bound)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œComonotonicity Copula”. For details of other supported probability distributions see here.

The countermonotonicity copula [CountermonotonicityCopula] The Countermonotonicity copula is a special copula characterising perfect negative dependence, in the sense that π‘ˆ1 is almost surely a strictly decreasing function of π‘ˆ2 and vice-versa.

Copula name countermonotonicity copula

Common notation π‘ˆ~π‘Š

Parameters πœƒ Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,2

Copula π‘Š(𝑒1, 𝑒2) = max(𝑒1 + 𝑒2 βˆ’ 1,0) Kendall’s rank correlation coefficient

βˆ’1

Coefficient of upper tail dependence

1

Coefficient of lower tail dependence

1

Other comments Is the extreme case where dependency is as strongly β€œnegative” as possible (i.e. achieves the FrΓ©chet lower bound)

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œCountermonotonicity Copula”. For details of other supported probability distributions see here.

The Frank copula [FrankCopula] The Frank copula is a copula that is sometimes used in the modelling of codependency. It is an Archimedean copula, and exchangeable.

Page 54: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Copula name Frank copula

Common notation π‘ˆ~πΆπœƒπΉπ‘Ÿ

Parameters βˆ’βˆž < πœƒ < ∞ Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛 Copula

πΆπœƒπΉπ‘Ÿ(𝑒1, … , 𝑒𝑛) = βˆ’

1

πœƒlog (1 +

∏ (exp(βˆ’πœƒπ‘’π‘–) βˆ’ 1)𝑖

exp(βˆ’πœƒ) βˆ’ 1)

Or if πœƒ = 0 we use the limit limπœƒβ†’0

πΆπœƒπΉπ‘Ÿ which the independence copula

Kendall’s rank correlation coefficient (for bivariate case)

1 βˆ’ 4πœƒβˆ’1(1 βˆ’ 𝐷1(πœƒ))

where 𝐷1(πœƒ) is the Debye function defined as:

𝐷1(πœƒ) = πœƒβˆ’1∫

𝑑

exp(𝑑) βˆ’ 1𝑑𝑑

∞

0

Coefficient of upper tail dependence, πœ†π‘’

0

Coefficient of lower tail dependence, πœ†π‘™

0

Archimedean generator function, πœ™(𝑑) βˆ’ log(

exp(βˆ’πœƒπ‘‘) βˆ’ 1

exp(βˆ’πœƒ) βˆ’ 1)

Or if πœƒ = 0 we use the limit limπœƒβ†’0

πœ™πœƒ(𝑑) which is taken as βˆ’ log 𝑑

Other comments If πœƒ = 0 we obtain the independence copula. The Frank copula (like the Clayton copula) is a comprehensive copula in that it interpolates between a lower limit of the countermonotonicity copula (πœƒ β†’ βˆ’βˆž) and an upper limit of the comonotonicity copula (πœƒ β†’ +∞).

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œFrank Copula”. For details of other supported probability distributions see here.

The Generalised Clayton copula [GeneralisedClaytonCopula] The Generalised Clayton copula is a copula that allows any specific (non-zero) level of (lower) tail dependency between individual variables. It is an Archimedean copula and exchangeable.

Copula name Generalised Clayton copula

Common notation π‘ˆ~πΆπœƒ,𝛿𝐺𝐢

Parameters πœƒ β‰₯ 0, 𝛿 β‰₯ 1

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛 Copula

πΆπœƒ,𝛿𝐺𝐢(𝑒1, … , 𝑒𝑛) = ((βˆ‘(𝑒1

βˆ’πœƒ βˆ’ 1)𝛿

𝑖

)

1 𝛿⁄

+ 1)

βˆ’1 πœƒβ„

Or if πœƒ = 0 we use the limit limπœƒβ†’0

πΆπœƒπΊπΆ

Kendall’s rank correlation coefficient (for bivariate case), 𝜌𝜏

(2 + πœƒ)𝛿 βˆ’ 2

(2 + πœƒ)𝛿

Coefficient of upper tail 2 βˆ’ 2βˆ’1 𝛿⁄

Page 55: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

dependence, πœ†π‘’

Coefficient of lower tail dependence, πœ†π‘™

2βˆ’1 (πœƒπ›Ώ)⁄

Archimedean generator function, πœ™(𝑑)

πœƒβˆ’π›Ώ(π‘‘βˆ’πœƒ βˆ’ 1)

Or if πœƒ = 0 we use the limit limπœƒβ†’0

πœ™πœƒ(𝑑)

Other comments When 𝛿 = 1 the generalised Clayton copula becomes the Clayton copula.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œGeneralised Clayton Copula”. For details of other supported probability distributions see here.

The Gumbel copula [GumbelCopula] The Gumbel copula is a copula that allows any specific level of (upper) tail dependency between individual variables. It is an Archimedean copula, and exchangeable.

Copula name Gumbel copula

Common notation π‘ˆ~πΆπœƒπΊπ‘’

Parameters 1 ≀ πœƒ < ∞

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛 Copula

πΆπœƒπΊπ‘’(𝑒1, … , 𝑒𝑛) = exp(βˆ’(βˆ‘(βˆ’ log𝑒𝑖)

πœƒ

𝑖

)

1 πœƒβ„

)

Kendall’s rank correlation coefficient (for bivariate case)

1 βˆ’1

πœƒ

Coefficient of upper tail dependence, πœ†π‘’

2 βˆ’ 21 πœƒβ„

Coefficient of lower tail dependence, πœ†π‘™

0

Archimedean generator function, πœ™(𝑑)

(βˆ’ log 𝑑)πœƒ

Other comments If πœƒ = 1 we obtain the independence copula and as πœƒ β†’ ∞ we approach the comonotonicity copula.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œGumbel Copula”. For details of other supported probability distributions see here.

The Gaussian copula [GaussianCopula]

Page 56: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

The Gaussian copula is the copula that underlies the multivariate normal distribution.

Copula name Gaussian copula

Common notation π‘ˆ~πΆπΆπΊπ‘Ž

Parameters 𝐢, a non-negative definite 𝑛×𝑛 matrix, i.e. a matrix that can correspond to a correlation matrix

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛 Copula 𝐢𝐢

πΊπ‘Ž(𝑒1, … , 𝑒𝑛) = 𝚽𝐢(π‘βˆ’1(𝑒1),… ,𝑁

βˆ’1(𝑒2))

where π‘βˆ’1(π‘₯) is the inverse normal function and 𝚽𝐢 is the cumulative distribution function of the multivariate normal distribution defined by a covariance matrix equal to 𝐢

Kendall’s rank correlation coefficient (for bivariate case), 𝜌𝜏

2

πœ‹arcsin𝜌

Where 𝜌 is the correlation coefficient between the two variables

Coefficient of upper tail dependence, πœ†π‘’

0 (unless the correlation matrix exhibits perfect positive or negative dependence)

Coefficient of lower tail dependence, πœ†π‘™

0 (unless the correlation matrix exhibits perfect positive or negative dependence)

Other comments The Spearman rank correlation coefficient is given by:

πœŒπ‘† =6

πœ‹arcsin

𝜌

2

where 𝜌 is the (normal) correlation coefficient between the two variables. If 𝐢 = 𝐼𝑛 (the 𝑛×𝑛 identity matrix) then we obtain the independence copula.

Nematrian web functions Functions relating to the above distribution in the two dimensional case may be accessed via the Nematrian web function library by using a DistributionName of β€œGaussian Copula (2d)”. For details of other supported probability distributions see here.

The Independence copula [IndependenceCopula] The Independence copula is the copula that results from a dependency structure in which each individual variable is independent of each other. It is an Archimedean copula, and exchangeable.

Copula name Independence copula

Common notation π‘ˆ~Ξ 

Parameters None

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛 Copula Ξ (𝑒1, … , 𝑒𝑛) =βˆπ‘’π‘–

𝑖

Kendall’s rank correlation coefficient (for bivariate case)

0

Coefficient of upper tail 0

Page 57: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

dependence, πœ†π‘’

Coefficient of lower tail dependence, πœ†π‘™

0

Archimedean generator function, πœ™(𝑑)

βˆ’ log 𝑑

Other comments The independence copula is a special case of several Archimedean copulas. It is also the special case of the Gaussian copula with a correlation matrix equal to the identity matrix.

Nematrian web functions Functions relating to the above distribution may be accessed via the Nematrian web function library by using a DistributionName of β€œIndependence Copula”. For details of other supported probability distributions see here.

The t copula [TCopula] The t copula is the copula that underlies the multivariate Student’s t distribution.

Copula name t copula

Common notation π‘ˆ~𝐢𝜐,𝐢𝑑

Parameters 𝐢, a non-negative definite 𝑛×𝑛 matrix, i.e. a matrix that can correspond to a correlation matrix

𝜈 = degrees of freedom (𝜈 > 0, usually 𝜈 is an integer although in some situations a non-integral 𝜈 can arise)

(note in principle each marginal distribution could in principle have a different number of degrees of freedom although such a refinement

is not commonly seen)

Domain 0 ≀ 𝑒𝑖 ≀ 1 𝑖 = 1,… , 𝑛

Copula 𝐢𝜐,𝐢𝑑 (𝑒1, … , 𝑒𝑛) = π’•πœ,𝐢(π‘‘πœ

βˆ’1(𝑒1), … , π‘‘πœβˆ’1(𝑒2))

where π‘‘πœβˆ’1(π‘₯) is the inverse student’s t function and π’•πœ,𝐢 is the

cumulative distribution function of the multivariate student’s t distribution with arbitrary mean and matrix generator equal to 𝐢

Kendall’s rank correlation coefficient (for bivariate case), 𝜌𝜏

2

πœ‹arcsin𝜌

Where 𝜌 is the correlation coefficient between the two variables

Coefficient of upper tail dependence, πœ†π‘’ 2π‘‘πœ+1(βˆ’βˆš

(𝜐 + 1)(1 βˆ’ 𝜌)

1 + 𝜌)

Coefficient of lower tail dependence, πœ†π‘™ 2π‘‘πœ+1(βˆ’βˆš

(𝜐 + 1)(1 βˆ’ 𝜌)

1 + 𝜌)

Other comments If 𝐢 = 𝐼𝑛 (the 𝑛×𝑛 identity matrix) then, in contrast to the Gaussian copula, we do not recover the independence copula.

Nematrian web functions

Page 58: Probability distributions - NematrianDiscrete (univariate) distributions The Bernoulli distribution [BernoulliDistribution] A ernoulli trial is an experiment that has one of two possible

Functions relating to the above distribution in the two-dimensional case may be accessed via the Nematrian web function library by using a DistributionName of β€œstudent’s t (2d)”. For details of other supported probability distributions see here.