production of surfactin by using local isolates of

35
PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF Bacillus subtilis AMENA A. ABDULRAZEG (Matric No. 3090096) UNIVERSITI SAINS ISLAM MALAYSIA

Upload: vudien

Post on 27-Jan-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF Bacillus subtilis

AMENA A. ABDULRAZEG

(Matric No. 3090096)

UNIVERSITI SAINS ISLAM MALAYSIA

Page 2: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF Bacillus subtilis

AMENA A. ABDULRAZEG (Matric No. 3090096)

Thesis Submitted in Fulfillment of the Requirement for the Degree of MASTER OF SCIENCE AND TECHNOLOGY

Faculty of Science and Technology UNIVERSITY SAINS ISLAM MALAYSIA

NILAI

June 2012

Page 3: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

i  

AUTHOR DECLARATION

 

بسم اهللا الرحمن الرحيم

 

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged.

Date: 13th June, 2012 Signature:

Name: Amena A. Abdulrazeg Address: P13-B-10-08 Sri Cempaka, Kajang 43000, Selangor

Page 4: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

ii  

DEDICATION

To

My parents for the kindness, love and support:

Ali Abdulrazeg AlAker

and

Mabrouka Mohammed ALGala

My brothers for advice, support, inspiration and willingness to share bright thoughts

with me:

Dr. Aied Ali Abdulrazeg

and

Dr. Ala Ali Abdulrazeg

Page 5: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

iii  

BIODATA OF AUTHOR

The author was born in Al Beda city, Libya on 14th December 1986. She received the

Bachelor degree in Science -Chemistry department- from Omar Al Muktar University

of Al Beda, Libya, in 2008. The author is doing her Master in Science and

Technology, Universiti Sains Islam Malaysia (USIM). Her research interest is in the

production of surfactin by various strains of isolates of Bacillus subtilis.

Page 6: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

iv  

APPROVAL

This thesis, entitled "Production of Surfactin by Using Local Isolates of Bacillus subtilis” submitted to the Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM) and was accepted as fulfillment of the requirements for the degree of Master of Science.

Supervisor’s signature

DR. MOHD HAFEZ BIN MOHD ISA, PH.D, Faculty of Science and Technology, Universiti Sains Islam Malaysia

Date: 13th June, 2012

Page 7: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

v  

ACKNOWLEDGEMENTS

In the name of Allah, The Most Graceful, The Most Merciful.

All praise is for Allah S.W.T, Lord of the Universe, for giving me the strength in the journey to complete this thesis.

First and foremost, I would like to express my deepest gratitude and appreciation to

my supervisor, Dr. Mohd Hafez Bin Mohd Isa, for his great concern, advices,

patience, persistant encouragement and invaluable assistance from the beginning till the

end of this study, I consider myself very lucky to be given this honour to work with him.

I would like also to convey my thankfulness to Ms. Normah Haron for the HPLC

instrumentation guidance and support, for giving immortal collaboration and support.

To Mr. Mohd Rizal, my co-supervisor, Dr. Siti Salhah Binti Othman, I would like to

address a greatest gratitude to both of you for every unlimited guidance that you gave

to me all this time.

Next, I would like to thank my parents for all your love, guidance and support

always. I treasure you more than you could possibly know. You truly are the best

parents anyone could wish for. Also I would like to thank to my brothers

“Mohammed, Salem & Ahmed”, my sisters “Nada & Abeer” and my sisters in low

“Gada & Asma” for their support and encouragement. Without them, life is

meaningless and efforts are vacant.

Lastly, I would like to express my sincere gratitude to University Sains Islam

Malaysia, lecturers and staff those who had been involved in contributing their time,

effort and support me in making this project a successful reality. I am most fortunate

to have the advice and guidance of many talented people, whose knowledge have

enhanced this project in so many ways.

Page 8: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

vi  

ABSTRAK

PENGHASILAN SURFAKTIN DENGAN MENGGUNAKAN PENCILAN TEMPATAN DARI Bacillus subtilis

Bacillus subtilis diketahui berupaya mensintesis surfaktin dengan ciri tindakan aktif permukaan yang menakjubkan dan mempamerkan pelbagai aktiviti biologikal. Memandangkan pencilan tempatan B. subtilis tempatan adalah banyak dan berkos rendah, pencilan tempatan yang dinamai sebagai 1M, 3M, 7M, dan 8M telah dikaji melalui fermentasi kelalang goncang dan kromatografi cecair berprestasi tinggi (HPLC). Kerja-kerja eksperimen telah dijalankan untuk mengubahsuai kaedah kuantifikasi dan identifikasi surfaktin melalui teknik HPLC, serta menilai keupayaan empat pencilan tempatan dalam penghasilan surfaktin. Proses fermentasi telah dijalankan dengan menggunakan formulasi media Cooper dengan keadaan 30 ⁰C, 200 pusingan dalam seminit selama 168 jam. Surfaktin yang terhasil dibandingkan dengan pencilan komersial B. subtilis ATCC 21332. Tambahan lagi, kesan kepekatan yang berbeza oleh glukosa dan ion mangan (II), Mn2+ telah dikaji ke atas penghasilan surfaktin. Keputusan kajian mendapati hasil surfaktin dan tumbesaran bakteria yang maksimum dicapai oleh pencilan tempatan sewaktu tempoh inkubasi 96 jam manakala bagi pencilan komersial pada 72 jam. Pencilan 3M menghasilkan jumlah penghasilan surfaktin tertinggi manakala jumlah yang terendah telah dihitung daripada pencilan 1M. Penghasilan surfaktin oleh B. subtilis ATCC 21332 didapati lebih tinggi secara signifikan pada (P≤ 0.01) berbanding pencilan 1M, bagaimanapun tiada perbezaan yang signifikan pada jumlah penghasilan surfaktin di antara pencilan ATCC 21332 dan 3M. Tambahan 0.5 mM MnSO4 dan 40 mg/L glukosa ke dalam media fermentasi mampu mempertingkatkan penghasilan surfaktin. Penapisan dan pemekatan pati fermentasi telah disempurnakan dengan menggunakan alat pengempar ultrafiltrasi (UF) sebelum pencirian jisim molekul melalui kromatografi cecair-spektrometri jisim (LC-MS). Siri isoform surfaktin yang dihasilkan oleh pencilan 1M dan 3M mempunyai persamaan dengan surfaktin piawai yang juga dihasilkan oleh B. subtilis ATCC 21332.

Page 9: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

vii  

ABSTRACT

PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF Bacillus subtilis

Bacillus subtilis is able to synthesize surfactin with excellent surface-active properties and biological activities. Since local isolates of B. subtilis are abundant and cheap, quantification and identification of surfactin produce by four local isolates of B. subtilis named as 1M, 3M, 7M, and 8M were studied by through shake flasks fermentation and high performance liquid chromatography (HPLC). The experimental work was conducted to develop modified method of HPLC technique for surfactin quantification and identification, as well as to assess the ability of four local isolates to produce surfactin using Cooper’s media in shake flasks fermentation under the condition of 200 rpm for 168 h at 30oC. The produced surfactin were compared with the commercial strain of B. subtilis ATCC 21332. In addition, various concentrations of glucose and manganese were added to the fermentation media to investigate its effects on surfactin production. Increasing the solvent system of acetonitrile-deionised water at 80:20 % (v/v) with 1.5 mL/min flowrate showed significant rapid elution of surfactin isoform which also proved that four local isolates strains have the ability to produce surfactin. The results obtained show that the maximum surfactin production and bacterial growth of both local and commercial strains were at 96 hours and 72 hours of fermentation, respectively. Moreover, B. subtilis 3M showed the highest amount of surfactin production, while B. subtilis 1M strain produced the lowest amount. For B. subtilis 8M, maximum surfactin production was achieved at around 72 h of fermentation, with surfactin yield of 105 ± 12 mg/L and the production of surfactin for B. subtilis 7M in 96 h of fermentation, with surfactin yield of 86 ± 11 mg/L. In addition, Surfactin production of B. subtilis ATCC 21332 strain was significantly higher (P≤ 0.01) in comparison to B. subtilis 1M, whereas no significant difference in surfactin production between B. subtilis ATCC 21332 and B. subtilis 3M. Addition of 0.5mM MnSO4 and 40 mg/L of glucose to the fermentation media managed to increase the yield of surfactin. Finally, fermentation broths recovered and concentrated with Ultrafiltration (UF) device were analyzed with liquid chromatography-mass spectrometer (LC-MS) to determine the molecular mass of surfactin isoforms. The isolates produced series of surfactin isoforms except for B. subtilis 7M. The isolates of B. subtilis 1M, B. subtilis 3M, and B. subtilis 8M produced series of surfactin isoform, which have similarity with surfactin standard isoforms. Furthermore, the local isolates produced new surfactin isoform which has molecular mass of 927 Da. B. subtilis ATCC 21332 as well produced a new surfactin isoform with molecular mass of 1101 Da.

Page 10: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

viii  

ملخص

ستخدام العزالت محلية من إب Surfactin نتاج إ العصوية الرقيقة بكتيريا

ةخاصيب متازت تيال (Surfactin) مادة قادر على تخليق Bacillus subtilis)( البكتيريا العصوية الرقيقةبما إن العزالت المحلية . نشاطات بيولوجية متعددةامتالآها يلإ األضافهبذات آفائة عالية لتوتر السطحياأستخدام أربعة عزالت محلية من ات تم زالممي ةومن خالل هذمتوفره ورخيصة الثمن لبكتريا العصوية الرقيقة ل

وتم دراستها عن طريق 8M) و 1M،3M ، 7M(وتندرج تحت أالسماء آالتيه البكتريا العصوية الرقيقة بإستخدام جهاز آروماتوجرافيا السائل ذي الكفاءة العاليةيضا أو shake flask)( تخميرها في القوارير هزالتجريبي لتطوير أسلوب تعديل ةوتمت االجراءات المعملي. (Surfactin) المسماه لتحديد آمية الماده المنتجة

لتقييم أيضاو ،(Surfactin)نتاج إ ةتقنية جهاز آروماتوجرافيا السائل ذي الكفاءة العالية للتحديد نوع وآمييسمي مخمر بتخمير العزالت المحلية في وسط (Surfactin)إنتاج علي ةمدي قدرة العزالت المحلية األربع

(Cooper’s media) ساعة وعند 168 لمدة ،لفة في الدقيقة 200تحت الضروف التالية القوارير هز فيالمنتج من الكمية . )Incubator shake(ة ويتم تحضينها في جهاز يسمي مئوي 30درجة حرارة

(Surfactin) والتي تسمي التجارية العصوية الرقيقة البكتيرياقارن مع تعنئذ(B. subtilis ATCC أضيفت إلى وسط لدراسة مدي قد ترآيزات مختلفة من الجلوآوز والمنغنيز الباإلضافة إلى ذلك، . 21332)

-acetonitrileزيادة نظام المذيبات ن إومن النتائج المتحصل عليها لوحظ .(Surfactin)نتاج إعلى هاثيرأتdeionised water 80:20عند % (v/v) فضل نتيجة أاظهرت قد مل في الدقيقه 1.5السريان معدلمعالمحلية األربع لديها أيضا أن سالالت ناأثبت من خاللها التيو) Surfactin isoform (لعملية شطف وإنتاج

النتائج التي تم الحصول عليها تشير إلى أن الحد األقصى للنمو الجرثومي . Surfactin)(القدرة على إنتاج ساعة من 72ساعة و 96 خاللمن السالالت المحلية والتجارية على حد سواء آانت (surfactin)نتاج أو

في انتاج أعلى آمية )3M) B. subtilisالبكتيريا المحلية وعالوة على ذلك، نجحت. التخمير، على التوالي. Surfactin)(نتجت أدني آمية من أ B. subtilis) (1Mالبكتيريا المحلية في حين أن Surfactin)(من

≥P(آان أعلى بكثير (B. subtilis ATCC 21332)التجارية ةبواسطة السالل Surfactin)(إنتاج 0.01 ( .B)بين Surfactin)(، بينما ال يوجد فرق آبير في إنتاج B. subtilis) (1M البكتيريا المحلية بالمقارنة مع

subtilis ATCC 21332) و(B. subtilis 3M) .جرام في اللتر 40من المنعنيز و ليمولم 0.5إضافة بيتم معالجة و ،خيراأو. Surfactin)(زيادة نسبة إنتاج هامن الجلوآوز الي الوسط المخمر تمكنا من خالل

لوبعد ذلك يتم تحديد الكتلة الجزيئية جهاز الترشيح الفائق ترآيز الوسط المتخمر عن طريق استخدام )(surfactin isoform العزالت . جهاز مطياف الكتلةبإستخدام(B. subtilis 1M) و(B. subtilis 3M)

Surfactin standard(المنتجه من سلسلة وبمقارنتها مع )Surfactin isoform(من ةأنتجة سلسلقد isoforms( الساللة التجاريه بواسطةالمنتج عن (B. subtilis ATCC 21332) لحظ ان هناك تشابه بينهما

.ةالمحليالبكتيريا وبذلك يمكن تحديد الكتلة الجزيئيه للسالالت

Page 11: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

ix  

TABLE OF CONTENT

page

AUTHOR DECLARATION i

DEDICATION ii

BIODATA OF AUTHOR iii

ACKNOWLEDMENTS iv

ABSTRAK v

ABSTRACT vi

vii ملخص

TABLE OF CONTENT viii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF APPENDICES xiii

ABBREVIATIONS xiv

CHAPTER I: INTRODUCTION 1

CHAPTER II: LITERATURE REVIEW

2 .1 Surfactant 4

2.2 Biosurfactants 5

2.3 Surfactin 7

2.4 Biological Properties of Surfactin 8

2.5 Structure and physicochemical properties 9

2.6 Isoforms of Surfactin 12

2.7 Surfactin Biosynthesis 13

Page 12: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

x  

2.8 Potential Applications of Surfactin 15

2.8.1 Anti-Bacterial Activity 15

2.8.2 Anti-Viral Activity 15

2.8.3 Antitumor Activity 16

2.8.4 Anti-Mycoplasma Effect 16

2.8.5 Toxicity 16

2.9 Recent Trends in Surfactin Production 17

2.10 Local Isolates of Bacillus subtilis 18

CHAPTER III: DEVELOPMENT OF HIGH PERFORMANCE

LIQUID CHROMATOGRAPHY (HPLC) METHOD

3.1 Introduction 19

3.2 Materials and Methods 20

3.2.1 Preparation of Surfactin Standard Solution 20

3.2.2 High Performance Liquid Chromatography

System for Surfactin standard Analysis 21

3.3 Results and Discussion 22

3.3.1 Effect of Flowrate 22

3.3.2 Effect of Acetonitrile Concentration 24

3.4 Chromatographic Characterization 26

3.5 Surfactin Standard Calibration Curve 28

3.6 Conclusion 29

CHAPTER IV: PRELIMINARY STUDY OF SURFACTIN

PRODUCTION

4.1 Introduction 30

4.2 Materials and Methods 32

4.2.1 Fermentation 32

4.2.2 Determination of Bacterial Growth 32

4.2.3 Quantitative Analysis of Surfactin 32

Page 13: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xi  

4.2.4. Liquid Chromatography-Mass Spectrometer

(LC-MS) Analysis 33

4.2.5 Statistical Analyses 33

4.3 Results and Discussion 33

4.3.1 Time Course of Surfactin Production and

Cell Growth 34

4.3.2 Chromatographic Characterization 37

4.3.3 Liquid Chromatography-Mass Spectrometry

Analysis (LC-MS) 39

4.3.3.1 Analysis of Standard Surfactin by LC-MS 41

4.3.3.2 Surfactin isoforms of B. subtilis 1M Isolate 42

4.3.3.3 Surfactin isoforms of B. subtilis 3M Isolate 43

4.3.3.4 Surfactin isoforms of B. subtilis 7M Isolate 44

4.3.3.5 Surfactin isoforms of B. subtilis 8M Isolate 45

4.3.3.6 Surfactin isoforms of B. subtilis ATCC 21332 45

4.4 Conclusion 46

CHAPTER V: ENHANCEMENT OF SURFACTIN PRODUCTION

5.1 Introduction 47

5.2 Production of surfactin by Bacillus subtilis 48

5.2.1 Microorganism 48

5.2.2 Culture medium 48

5.2.3 Inoculum and culture conditions 48

5.2.4 Effect of Glucose (C6H12O6) Concentration as

a Carbon Source 49

5.2.5 Effect of Manganese Sulfate (MnSO4)

Concentration 49

5.3 Analytical measurements 49

5.3.1 Measurement of Bacterial Growth 49

5.3.2 Surfactin Concentration Analysis 50

5.4 Results and Discussion 50

Page 14: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xii  

5.4.1 Effect of Glucose (C6H12O6) Concentration

As a Carbon Source 50

5.4.2 Effect of Manganese Sulfate (MnSO4)

Concentration 52

5.5 Conclusion 56

CHAPTER VI: SUMMARY 57

REFERENCES 59

APPENDICES 70

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xiii  

LIST OF TABLES 

Page

Table 1: Preparation of surfactin standard for HPLC analysis 21  

Table 2: Surfactin standard isoforms 41

Table 3: Surfactin isoforms produced by B. subtilis 1M 42

Table 4: Surfactin isoforms produced by B. subtilis 3M 43

Table 5: Surfactin isoforms produced by B. subtilis 8M 44

Table 6: Surfactin isoforms produced by B. subtilis ATCC 21332 44

Page 16: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xiv  

LIST OF FIGURES

Page

Figure 1: Primary structure of surfactin 9

Figure 2: Three-dimensional structure of surfactin peptide moiety 10

Figure 3: Schematic representation of the surfactin synthetase 14

Figure 4: High Performance Liquid Chromatography 21

Figure 5: Effect of flowrate tested at 1.5 mL/min 23

Figure 6: Effect of flowrate tested at 0.5 mL/min 23

Figure 7: Effect of flowrate tested at 2.0 mL/min 23

Figure 8: Effect of flowrate tested at 1.0 mL/min 24

Figure 9: Effect of acetonitrile-deionised water at 85:15 % (v/v),

with the flowrate tested at 1.0 mL/min 25

Figure 10: Effect of acetonitrile-deionised water at 85:15 % (v/v),

with the flowrate tested at 0.5 mL/min 25

Figure 11: Effect of acetonitrile-deionised water at 85:15 % (v/v),

with the flowrate tested at 1.5 mL/min 25

Figure 12: Effect of acetonitrile-deionised water at 85:15 % (v/v),

with the flowrate tested at 2.0 mL/min 26

Figure 13: a) Chromatogram of surfactin standard analyzed by Abdel-

Mawgoud et al., (2009); b) chromatogram of surfactin

standard (500 mg/L) in methanol 27

Figure 14: Calibration curve of surfactin standard 29

Page 17: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xv  

Figure 15: Gram positive Bacillus ubtilis bacteria on nutrient agar (NA) 30

Figure 16: Time course of B. subtilis 3M growth (open symbols) and, surfactin concentration (Solid symbols) 34

Figure 17: Time course of B. subtilis 7M growth (open symbols) and, surfactin concentration (Solid symbols) 35

Figure 18: Time course of B. subtilis 8M growth (open symbols) and, surfactin concentration (Solid symbols) 35

Figure 19: Time course of B. subtilis 1M growth (open symbols) and, surfactin concentration (Solid symbols) 36

Figure 20: Time course of B. subtilis ATCC21332 growth (open symbols) and, surfactin concentration (Solid symbols) 37

Figure 21: HPLC chromatogram of surfactin standard from Sigma 39

Figure 22: HPLC chromatogram of B. subtilis 3M isolate 39

Figure 23: HPLC chromatogram of B. subtilis 1M isolate 39

Figure 24: HPLC chromatogram of B. subtilis 8M isolate 40

Figure 25: HPLC chromatogram of B. subtilis ATCC21332 40

Figure 26: HPLC chromatogram of B. subtilis 7M isolate 40

Figure 23: Effects of glucose concentration on bacteria growth of Bacillus 51

Figure 24: Effects of glucose concentration on surfactin production 52

Figure 25: Effects of MnSO4 concentration on bacteria growth of Bacillus 53

Figure 26: Effects of MnSO4 concentration on surfactin production 53

Figure 27: HPLC chromatogram of surfactin standard from Sigma 54

Figure 28: HPLC chromatogram of B. subtilis 3M isolate 55

Page 18: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xvi  

Figure 29: HPLC chromatogram of B. subtilis 1M isolate 55

Figure 30: HPLC chromatogram of B. subtilis 8M isolate 55

Figure 31: HPLC chromatogram of B. subtilis ATCC21332 56

Figure 32: HPLC chromatogram of B. subtilis 7M isolate 56 

Page 19: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xvii  

LIST OF APPENDICES

Page

Appendix A

Figures A: Effect of flowrate tested at 1.5 mL/min on HPLC spectrograms

of surfactin standard from Sigma 70

Figure 1A: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 70

Figure 2A: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 70

Figure 3A: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 70

Figure 4A: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 70

Appendix B

Figures B: Effect of flowrate tested at 0.5 mL/min on HPLC spectrograms

of surfactin standard from Sigma 71

Figure 1B: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 71

Figure 2B: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 71

Figure 3B: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 71

Figure 4B: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 71

Appendix C

Figures C: Effect of flowrate tested at 2.0 mL/min on HPLC spectrograms

of surfactin standard from Sigma 72

Figure 1C: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 72

Figure 2C: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 72

Figure 3C: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 72

Figure 4C: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 72

Page 20: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xviii  

Appendix D

Figures D: Effect of flowrate tested at 1.0 mL/min on HPLC spectrograms

of surfactin standard from Sigma 73

Figure 1D: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 73

Figure 2D: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 73

Figure 3D: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 73

Figure 4D: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 73

Appendix E

Figures E: Effect of acetonitrile-deionised water at 85:15 % (v/v), with

1.0 mL/min on HPLC spectrograms of surfactin standard from

Sigma 74

Figure 1E: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 74

Figure 2E: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 74

Figure 3E: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 74

Figure 4E: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 74

Appendix F

Figures F: Effect of acetonitrile-deionised water at 85:15 % (v/v), with

0.5 mL/min on HPLC spectrograms of surfactin standard from

Sigma 75

Figure 1F: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 75

Figure 2F: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 75

Figure 3F: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 75

Figure 4F: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 75

Page 21: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xix  

Appendix G

Figures G: Effect of acetonitrile-deionised water at 85:15 % (v/v), with

1.5 mL/min on HPLC spectrograms of surfactin standard from

Sigma 76

Figure 1G: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 76

Figure 2G: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 76

Figure 3G: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 76

Figure 4G: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 76

Appendix H

Figures H: Effect of acetonitrile-deionised water at 85:15 % (v/v), with

2.0 mL/min on HPLC spectrograms of surfactin standard from

Sigma 77

Figure 1H: HPLC spectrogram for 10 mg/L of surfactin standard from Sigma 77

Figure 2H: HPLC spectrogram for 50 mg/L of surfactin standard from Sigma 77

Figure 3H: HPLC spectrogram for 100 mg/L of surfactin standard from Sigma 77

Figure 4H: HPLC spectrogram for 500 mg/L of surfactin standard from Sigma 77

Appendix K

Figures K: MS chromatogram results for all strains 78

Figure 1K: Chromatogram analysis done by LCMS for surfactin standard 78

Figure 2K: Chromatogram analysis done by LCMS for surfactin produced

by Bacillus 1M 79

Figure 3K: Chromatogram analysis done by LCMS for surfactin produced

by Bacillus 3M 80

Figure 4K: Chromatogram analysis done by LCMS for surfactin produced

by Bacillus 7M 81

Page 22: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xx  

Figure 5K: Chromatogram analysis done by LCMS for surfactin produced

by Bacillus 8M 82

Figure 6K: Chromatogram analysis done by LCMS for surfactin produced

by B. subtilis ATCC 21332 83

Appendix I

Data I: The result for statistical analyses for the B. subtilis Isolates 84

Appendix I

Presentation and Demonstration 86

Page 23: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xxi  

ABBREVIATIONS

mN/m Millinewnon Per Meter

NH4NO3 Ammonium nitrate

W/V weight/volume

ATCC American Type Culture Collection

M.W Molecular Weight

NMR Nuclear magnetic resonance

CMC Critical micelle concentration

HPLC High performance liquid chromatography

TE Thioesterases

cAMP Cyclic adenosine monophoshate

TLC Thin-layer chromatography

B. subtilis Bacillus subtilis

ACN Acetonitrile

TFA Trifluoroacetic acid

VWD Variable wavelength detector

rpm Revolutions per minute

TPA Total peak area

PLA2 Phospholipase A2

KH2PO4 Potassium phosphate

Na2HPO4 Sodium phosphate

CaCL2 Calcium chloride

MgSO4 Magnesium sulfate

Page 24: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

xxii  

MnSO4 Manganese Sulfate

FeSO4 Ferrous sulfate

EDTA Na2 salt of Ethylenedamien tetra acetic acid

NA Nutrient agar

OD600nm Optical density at 600 nm

LC-MS Liquid Chromatography-Mass Spectrometer

Min Minutes

H Hours

LC-MS Liquid Chromatography-Mass Spectrometer

°C Degrees Celsius

Da Dalton

MWCO Molecular weight cut off  

Page 25: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

59  

REFERENCES

Abdel-Mawgoud, A. M., M. M. Abdoulwafa, and N. A. Hassouna, 2008.

Characterization of Surfactin Produced by B. subtilis Isolate BS5. Journal of

Applied Biochemistry and Biotechnology, 150: 289-303.

Abushady, H.M., A.S. Bashandy, N.H. Aziz, and H.M.M. Ibrahim, 2005. Molecular

Characterization of B. subtilis Surfactin Producing Strain and the Factors

Affecting its Production. International Journal of Agriculture and Biology, 7:

337-344.

Adam D., 2002. Overview: development in bacteria: spore formation in B. subtilis .

Journal of Cellular and Molecular Life Sciences, 59: 389-391.

Arima, K., A. Kakinuma, and G. Tamura, 1968. Surfactin, a crystalline peptide lipid

surfactant produced by B. subtilis : isolation, characterization and its inhibition

of fibrin clot formation. Journal of Biochemical and Biophysical Research

Communications, 31: 488-494.

Arutchelvi, J., S. Bhaduri, and P.V. Uppara, and . M. Doble, 2009. Production and

characterization of biosurfactant from B. subtilis YB7. Journal of Applied

Sciences, 9: 3151-3155.

Assie, L. K., M. Deleu, L. Arnaud, M. Paquot, P. Thonart, C. Gaspar, and E. Haubruge,

2002. Insecticide activity of surfactins and iturins from a biopesticide B.

subtilis Cohn (S499 strain). Meded Rijksuniv Gent Fak Landbouwkd Toegep

Biol Wet, 67:647-655.

Banat, I.M., R.S. Makkar, and S.S. Cameotra, 2000. Potential commercial Application

of Microbial Surfactants. Journal of Applied Microbiology and Biotechnology,

53: 495-508.

Page 26: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

60  

Becher, P. 1965. Emulsions, Theory and Practice (2nd Ed.) Reinhold, New York, pp.2-

149.

Bernheimer, A.W., and L.S. Avigad, 1970. Nature and properties of a cytolytic agent

produced by B. subtilis . Journal of General Microbiology, 6: 361-366.

Bonmatin, J. M., H. Labbe, I. Grangemard, F. Peypoux, R.M. Dana, M. Ptak, and G.

Michel, 1995. Production, isolation and characterization of [Leu4] and [Ile4]

surfactins from B. subtilis . Journal of Letters in Peptide Science, 2: 41-47.

Bonmatin, J.M., M. Genest, , H. Labbe, and M. Ptak, 1994. Solution three-

dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR,

distance geometry, and molecular dynamics. Biopolymers Journal, 34: 975-

986.

Bonmatin, J.M., O. Laprevote, and F. Peypoux, 2003. Diversity among microbial

cyclic lipopeptides: iturins and surfactins. Activity-structure relationship to

design new bioactive agents. Journal of Combinatorial Chemistry & High

Throughput Screening, 6:541-556.

Chen, L. H., S. Y. Chen, and S. R. Juang, 2008a. Flux decline and membrane cleaning in cross-flow ultrafiltration of treated fermentation broths for surfactin recovery. Journal of Separation and Purification Technology, 62: 47-55.

Chen, L. H., S. Y. Chen, and S. R. Juang, 2008b. Recovery of surfactin from

fermentation broths by a hybrid salting-out and membrane filtration process.

Journal of Separation and Purification Technology, 59: 244-252.

Cooper, D. G. and B. G. Goldenberg, 1987. Surface-active agents from two Bacillus

species. Journal of Applied and Environmental Microbiology, 53: 224-229.

Cooper, D. G., C. R. Macdonald, S. J. B. Duff, and N. Kosaric, 1981. Enhance

production of surfactin from B. subtilis by continuous product removal and

metal cation additions. Journal of Applied and Environmental Microbiology,

42: 408-412.

Page 27: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

61  

Coutte, F., D. Lecouturier, S. A. Yahia, V. Leclère, M. Béchet,  P. Jacques, and P.

Dhulster 2010. Production of surfactin and fengycin by B. subtilis in a

bubbleless membrane bioreactor. Journal of Applied Microbiology and

Biotechnology, 87: 499-507.

Davis, D.A, H.C. Lynch, and J. Varley, 1999. The production of surfactin in batch

culture by B. subtilis ATCC 21332 is strongly influenced by the conditions of

nitrogen metabolism. Journal of Enzyme and Microbial Technology, 25: 322-

3229.

Dehghan, N., G., M., Housaindokht, B.S. Fazly, 2005. Isolation, characterization, and

investigation of surface and hemolytic activities of a lipopeptide biosurfactant

produced by B. subtilis ATCC 6633. Journal of Microbiology, 43: 272-276.

Deleu, M. and M.Paquot, 2004. From Renewable Vegetables Resources to Microorganisms: New Trends in Surfactants. journal of Comptes rendus, 7: 641-646.

Desai, J. D., and I. M. Banat, 1997. Microbial Production of Surfactants and Their Commercial Potential. Journal of Microbiology and Molecular Biology Reviews, 61: 47-64.

Falatko, D. M. 1991. Eflects of biologically produced surfactants on the mobility and

biodngradation of petroleumhydrocarbons. M.S. Thesis, Virginia Polytechnic

Instituteand State University, Blacksburg, VA.

Fassi, F., L., H. Wroblewski, and A. Blanchard, 2007. Activities of antimicrobial

peptides and synergy with enrofloxacin against Mycoplasma pulmonis,

Antimicrob. Journal of Agents Chemotherapy, 51: 468-74.

Gao, X. S., P. Huong, V. Joachim, and J. Wang, 2003. Purification and adenti-

fycation of surfactin isoforms produced by B. subtilis B2 strain. Journal of Wei

Sheng Wu Xue Bao, 42: 647-652.

Giuliani A., G. Pirri, and N. S. Fabiole, 2004. Antimicrobial peptides: an overview of

a promising class of therapeutics. Central European Journal of Biology, 2: 1-

33.

Page 28: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

62  

Gong, G., Z. Zheng, H. Chen, C. Yuan, P. Wang, L. Yao, and Z. Yu, 2009. Enhanced

production of surfactin by B. subtilis E8 mutant obtained by ion beam

implantation. Journal of Food Technology and Biotechnology, 47: 27-31.

Heerklotz, H. and J. Seelig, 2001. Detergent-like action of the antibiotic peptide

surfactin on lipid membranes. Journal of Biophyl, 81: 1547-1554.

Hosono, K., H. Suzuki, 1983. Acylpeptides, the inhibition of cyclic adenosine

3',5'-mono-phosphate phosphodiesterase inhibition of cyclic AMP

phosphodiesterase. Journal of Antibiotic, 36: 679-683.

Hsieh, F. C., C. L. Mei, C. K. Tsung, and S. Suey, 2004. Rapid detection and

characterization of surfactin-producing B. subtilis and Closely Related Species

Based on PCR. Journal of Current Microbial, 49:186-191.

Hue, N., L. Serani, and O. Laprevote, 2001. Structural investigation of cyclic

peptidolipids from B. subtilis by high energy tandem mass spectrometry.

Rapid Communication Mass Spectrometry, 15: 203-209.

Huszcz, E. and B. Burczyk, 2006. Surfactin isoforms from Bacillus coagulans.

Journal of Z. Naturforsch, 61:727-733.

Isa, M.H., D. E. Coraglia, R. A. Frazier, and P. Jauregi, 2007. Recovery and

Purification of surfactin from fermentation broth by two step ultra filtration

process. Journal of Membrane Science, 296: 51 -57.

Joshi, S., C. Barucha, and A. Desai, 2008. Production of biosurfactant and antifungal

compound by fermented food isolate B. subtilis 20B. Bioresource Technology,

99: 4603-4608.

Kakinuma, A., Ouchida, A., Shima, T., Sugino, H., Isono, M., Tamura, G., and Arima,

K. 1969. Confirmation of the structure of surfactin by mass spectrometry.

Journal of Agricultural and biological chemistry, 33: 1669-1671.

Kameda, Y., S. Oira, K. Matsui, S. Kanatomo, T. Hase, 1974. Antitumor activity of

Bacillus natto. V. Isolation and characterization of surfactin in the culture

Page 29: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

63  

medium of Bacillus natto KMD 2311. Journal of Chemical & Pharmaceutical

Bulletin, 22: 938-944.

Karanth, N. G. K., P. G. Deo, and N. K. Veenanadig, 1999. Microbial biosurfactant

and their importance. Journal of Current Science, 77: 116-126.

Kim, K., S.Y. Jung, D. K. Lee, J. K. Jung, J. K. Park, D. K. Kim, 1998. Suppression

of inflammatory responses by surfactin, a selective inhibitor of platelet

cytosolic phospholipase A2. Journal of Biochemical Pharmacology, 55: 975-

985.

Kim S.Y., J.Y. Kim, S.H. Kim, H.J. Bae, H. Yi, S.H. Yoon, 2007. Surfactin from B.

subtilis displays anti-proliferative effect via apoptosis induction, cell cycle

arrest and survival signalling suppression. FEBS Letters, 581: 865-871.

Kim, H. S., B. D. Yoon, C. H. Lee, H. H. Suh, H. M. Oh, T. Katsuragi, and Y. Tani,

1997. Production and properties of a lipopeptide biosurfactant from B. subtilis

C9. Journal of Fermentation and Bioengineering, 84: 41-46.

Kinsinger, R. F., D. B. Kearns, M. Hale, and R. Fall, 2005. Genetic requirements for

potassium ion-dependent colony spreading in B. subtilis . Journal of

Bacteriology, 187: 8462-8469.

Kitamoto, D., H. Isoda, and T. Nakahara, 2002. Functions and potential applications

of glycolipid biosurfactants from energy-saving materialsto gene delivery

carriers. Journal of Bioscience and Bioengineering, 94: 187-201.

Kosaric, N. 1992, Biosurfactants in industry. International Journal of Pure and

Applied Chemistry, 11: 1731-1737.

Kosaric, N., S. L. Ong, Z. Duvnjak, and A. Moser, 1984. Fuel alcohol production by

Zymomanas anaerobia: Kinetics. Journal of Acta Biotechnologica, 4: 153-

162.

Kowall M., J. Vater, B. Kluge, T. Stein, P. Franke, and D. Ziessow, 1998. Separation

and characterization of surfactin isoforms produced by B. subtilis OKB 105.

Journal of Colloid and Interface Science, 204: 1-8.

Page 30: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

64  

Kracht, M., H. Rokos, M. Ozel, M. Kowall, G. Pauli, and J. Vater, 1999. Antiviral and

hemolytic activities of surfactin isoforms and their methyl ester derivatives.

Journal of Antibiotic, 52: 613-619.

Kumar, M., V. Leon, A. D. S. Materano, and O. A. Ilzins, 2007. A halotolerant and

thermotolerant Bacillus sp. degrades hydrocarbons and produces tension-active

emulsifying agent. World Journal of Microbiology & Biotechnology, 23: 211-

220.

Lim, J.H., B. K. Park, M. S. Kim, M. H. Hwang, M. H. Rhee, and S. C. Park S.C,

2005. The anti- thrombotic activity of surfactins. Journal of Veterinary

Science, 6: 353-355.

Lin, S. C., and H. J. Jiang, 1997. Recovery and purification of the lipopeptide

biosurfactant of B. subtilis by ultrafiltration. Journal of Biotechnology

Techniques, 11: 413-416.

Lu, J. R., X. B. Zhao, and M. Yaseen, 2007. Biomimetic amphiphiles: Biosurfactants.

Journal of Current Opinion in Colloid & Interface Science, 12: 60-67.

Maget-Dana, R., and P. M. Marius, 1995. Interactions of Surfactin with Membrane

Models. Biophysical Journal, 68: 1937-1943.

Makkar, R. S. and S. S. Cameotra, 2002. An update on the use of unconventional

substrates for biosurfactants production and their new applications. Journal of

Applied Microbiology and Biotechnology, 58: 428-434.

Masaaki Morikawa, 2006. Beneficial Biofilm Formation by Industrial Bacteria B.

subtilis and Related Species. Journal of Bioscience and Bioengineering, 101:

1-8.

Mchenney, M.A., and R.H. Baltz, 1996. Gene transfer and transposition mutagenesis

in Streptomyces roseosporus: mapping of insertions that influence daptomycin

or pigment production. Journal of Microbiology, 142: 2363-2373.

Page 31: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

65  

Morikawa, M., M. Ito, and T. Imanaka, 1992. Isolation of a new surfactin producer

Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator

gene, psf-1. Journal of Fermentation and Bioengineering, 74: 255-261.

Mukherjee, S., P. Das, and R. Sen, 2006. Towards commercial production of

microbial surfactant. Journal of Trends Biotecechnology, 24: 509-515.

Mulligan, C. N, and B. F. Gibbs, 1993. Factors influencing the economics of

biosurfactant. In: Kosaric, N. (Ed). Biosurfactant production, properties and

application, New York; Mercel Decker pp. 329-371.

Mulligan, C. N, 2005. Environmental applications for biosurfactants. Journal of

Environmental Pollution , 133, 183-198.

Mulligan, C. N., T. Y. K. Chow, and B. F. Gibbs, 1989. Enhanced biosurfactant

production by a mutant B. subtilis strain. Journal of Applied Microbiology and

Biotechnology, 31: 486-489.

Muthusamy, K., S. Gopalakrishnan, K. T. Ravi, and P. Sivachidambaram, 2008.

Biosurfactants: Properties, commercial production and application. Current

Science, 94: 736-745.

Nakano, M.M., R. Magnuson, A. Myers, J. Curry, A. D. Grossman, and P. Zuber,

1991. srfA Is an Operon Required for Surfactin Production, Competence

Development, and Efficient Sporulation in B. subtilis . Journal of

Bacteriology, 173: 1770-1778.

Nakano, M.M., M. A. Marahiel, and P. Zuber, 1988. Identification of a genetic locus

required for biosynthesis of the lipopeptide antibiotic surfactin in B. subtilis ,

Journal of Bacteriology, 170: 5662-5668.

Naruse, N., O. Tenmyo, S. Kobaru, H. Kamei, T. Miyaki, M. Konishi, and T. Oki,

1990. Pumilacidin, a complex of new antiviralantibiotics. Production,

isolation, chemical properties, structure and biological activity, Journal of

Antibiotics, 43: 267-280.

Page 32: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

66  

Nitschke, M., and G. M. Pastore, 2006. Production and properties of a surfactant

obtained from B. subtilis grown on cassava wastewater, Journal of

Bioresource Technology, 97: 336-341.

Oberbremer, A., R. H. Muller and H. Wagner, 1990. Effect of the addition of

microbial surfactants on hydrocarbon degradation in a soil population in a

stirred reactor. Journal of Applied Microbiology and Biotechnology, 32: 485-

489.

Peypoux F., J. M.Bonmatin, H. Labbea, I. Grangemard, B. C. Das, M. Ptak, J.

Wallach, and G. Michel, 1994. [Ala4] surfactin, a novel isoforms from B.

subtilis studied by mass and NMR spectroscopies. European Journal of

Biochemistry, 224: 89-96.

Peypoux, F. and G. Michel, 1992. Controlled biosynthesis of [Val7] and [Leu7]

surfactin. Journal of Applied Microbiology and Biotechnology, 36: 515-517.

Peypoux F., J. M.Bonmatin, and J. Wallach, 1999. Recent trends in biochemistry of

surfactin. Journal of Applied Microbiology and Biotechnology, 51: 553-563.

Razafindralambo H, M. Paquot, C. Hbid, P. Jacques, J. Destain, and P. Thonart, 1993.

Purification of antifungal lipopeptides by reversed phase high liquid

chromatography. Journal of Chromatography, 639: 81-85.

Ron, E. Z. and E. Rosenberg, 2001. Natural roles of biosurfactants. Journal of

Applied and Environmental Microbiology, 3: 229-236.

Rosen, M. J, 1978. Surfactants and lnterfacial. Phenomena, John Wiley & Sons, New

York, p. 57.

Rosenberg, E. and E. Z. Ron, 1999. High- and Low-molecular-mass Microbial

Surfactants. Journal of Applied Microbiology and Biotechnology, 52: 154-162.

Santos, S. C., L. G.Fernandez, J. C. Rossi-Alva, and M. R. A. Roque, 2010.

Evaluation of substrates from renewable-resources in biosurfactants production

by Pseudomonas strains. African Journal of Biotechnology. 9: 5704-5711.

Page 33: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

67  

Sen, R., and T. Swaminathan, 1997. Application of response-surface methodology to

evaluate the optimum environmental conditions for the enhanced production of

surfactin. Journal of Applied Microbiology and Biotechnology, 47: 358-363.

Shen, H. H., R. K. Thomas, C. Y. Chen, R. C. Darton, S. C. Baker, and J. Penfold,

2009.Aggregation of the Naturally Occurring Lipopeptide, Surfactin, at

Interfaces and in Solution: An Unusual Type of Surfactant? Langmuir, 25:

4211-4218.

Sheppard, J. D., C. Jumarie, D. G. Cooper, and R. Laprade, 1991. Ionic channels

induced by surfactin in planar lipid bilayer membranes. Journal of

Biochemical and Biophysical Methods, 26: 13-23.

Singh, P. and S. S. Cameotra, 2004. Potential applications of microbial surfactants in

biomedical sciences. Journal of Trends Biotechnology, 22: 142-146.

Tally, F.P. and M. F. De Bruin, 2000. Development of daptomycin for gram-positive

infections. Journal Antimicrob. Chemother, 46: 523-526.

Thimon, L., F. Peypoux, R. Maget-Dana, B. Roux, and G. Michel, 1992. Interactions

of bioactive lipopeptides, iturin A and surfactin from B. subtilis . Journal of

Biotechnology and Applied Biochemistry, 16: 144-151.

Tsan, P., L. Volpon, F. Besson, and J. M. Lancelin, 2007. Structure and Dynamics of

Surfactin Studied by NMR in Micellar Media. Journal of American Chemical

Society, 129: 1968-1977.

Vater J, B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S. Cameotra, 2002. Matrix-

Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry of

Lipopeptide Biosurfactants in Whole Cells and Culture Filtrates of B. subtilis

C-1 Isolated from Petroleum Sludge. Journal of Applied and Environmental

Microbiology, 68: 6210-6219.

Page 34: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

68  

Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater, 1997a. Antimycoplasma Properties

and Application in Cell Culture of Surfactin, a Lipopeptide Antibiotic from B.

subtilis . Journal of Applied and Environmental Microbiology, 63: 44-49.

Vollenbroich, D., M. Özel, J. Vater, R. M. Kamp, and G. Pauli, 1997b. Mechanism of

inactivation of enveloped viruses by the biosurfactant surfactin from B. subtilis

. Journal of Biologicals, 25: 289-297.

Wei, Y. H, and I. M. Chu, 1998. Enhancement of surfactin production in iron enriched

media by B. subtilis ATCC 21332. Journal of Enzyme and Microbial

Technology, 22: 724-728.

Wei, Y. H, L. Fenwang, and K. J. S. Shuchang, 2003. Identification of induced

acidification in iron- Enhanced culture of B. subtilis during biosurfactants

fermentation. Journal of Bioscience and Bioengineering, 96: 174-178.

Wei, Y. H., and M. Chu, 2002. Mn2+ improves surfactin production by B. subtilis .

Journal of Biotechnology Letters, 24: 479-482.

Whang, L.M., G. Pao-Wen, L. C. Chung, and S. S. Cheng, 2008. Application of

biosurfactants, rhamnolipids, and surfactin, for enhanced biodegradation of

diesel-contaminated water and soil. Journal of Hazardous Materials, 151: 155-

163.

Xiao, X., H. Chen, J. Wang, and C. Ren, 2008. Impact of B. subtilis JA, a biocontrol

strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea

mays. World Journal of Microbiology Biotechnology, 24: 1133-1137.

Yalcın, E., and C. Kültiğin, 2010. Structural analysis and antioxidant activity of a

biosurfactant obtained from B. subtilis RW-I. Turkish Journal of Biochemistry,

35: 243-247.

Yeh, M. S., Y. H. Wei, and J. S. Chang, 2005. Enhanced production of surfactin from

B. subtilis by addition of solid carries. Journal of Biotechnology Programme,

21: 1329-1334.

Page 35: PRODUCTION OF SURFACTIN BY USING LOCAL ISOLATES OF

69  

Yeh, M. S., Y. H. Wei, and J. S. Chang, 2006. Bioreactor design for enhanced carrier-

assisted surfactin production with B. subtilis . Journal of Process

Biochemistry, 41: 1799-1805.

Zajic, J.E., H. Gignard and D.F. Gerson, 1977. Properties and biodegradation of a

bioemulsifier from Corynebacterium hydrocarboclastus. Journal of

Biotechnology and Bioengineering, 19: 1303-1320.

Zou, A., J. Liu, V. M. Garamus, Y. Yang, R. Willumeit, ad B. Mu, 2010.

Micellizationactivity of the natural lipopeptide [Glu1, Asp5] surfactin-C15 in

aqueous solution.The Journal of Physical Chemistry B, 114: 2712-2718.

Zweers, J. C., L.Barak, D. Becher, A. J. M. Driessen, M. Hecker, V. P. Kontinen, M.

J.Saller, L. Vavrova, and J. M. Dijl, 2008. Towards the development of B.

subtilis as a cell factory for membrane proteins and protein complexes. Journal

of Microbial Cell Factories, 7: 1-20.