prof. david r. jackson ece dept. spring 2014 notes 24 ece 6341 1

12
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

Upload: elijah-thornton

Post on 02-Jan-2016

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

1

Prof. David R. JacksonECE Dept.

Spring 2014

Notes 24

ECE 6341

Page 2: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

2

Dipole Radiation

Using the Lorenz gauge (the solution from ECE 6340):

2 2 ( ) ( ) ( )LG LGz z zA k A J x y z

y

x

z

1I

4

jkrLGz

eA

r

Note: This is not the same

magnetic vector potential that we get using the Debye potential!

ˆ zA z A

2 2 iA k A J

Page 3: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

3

Dipole Radiation (cont.)

Note:

2 3

2 3

2

1 1cos

2

1 1sin

4

1 1sin

4

jkrr

jkr

jkr

E er j r

jE e

r r j r

jkH e

r r

0rH

The fields are (from ECE 6340):

(TMr)

Page 4: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

4

Dipole Radiation (cont.)

(2)ˆcosr n nA AP H kr

0 ( )

( )

( )n

m

Q z

n z

No

Note : no variation

axis included

axis included

0

1

2

cos 1

cos cos

1cos 3cos 2 1

4

P

P

P

TMr

Examine some

values of n:

Page 5: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

5

Dipole Radiation (cont.)

22

2

1r rE k A

j r

From the handout,

cosrE From the ECE 6340 solution,

Hence cosrA

Hence, choose 1n

Page 6: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

6

Dipole Radiation (cont.)

(2)1

ˆcosrA A H kr

(2) (2)1 3/2 3/2 3/2

ˆ ( )2 2

xH x x H x J x jY x

x

Therefore we have

Next, simplify the Schelkunoff Hankel function:

3/ 2 3/ 2Y x J x cos

sin

J x J xY x

Page 7: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

7

Dipole Radiation (cont.)

(2)1

2 sin 2 cosˆ cos sin2

x x xH x x j x

x x x x

3/ 2

3/ 2

2 sincos

2 cossin

xJ x x

x x

xJ x x

x x

We have (from the Schaum’s Math Handbook):

Hence

Page 8: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

8

Dipole Radiation (cont.)

(2)1

sin cosˆ cos sin

cos sin cos sin

cos sin cos sin

1 jx

x xH x x j x

x x

jx j x x j x

xj

x j x x j xx

je

x

Hence

(2)1

2 sin 2 cosˆ cos sin2

x x xH x x j x

x x x x

(2)1

ˆ 1 jxjH x e

x

so

Page 9: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

9

Dipole Radiation (cont.)

Hence

cos 1 jkr

r

jA A e

kr

The final step is to determine the coefficient A.

Page 10: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

10

Dipole Radiation (cont.)

The final result is

2

22

2 3

1cos 1 1

1 1cos

2

jkrr

jkr

jE k A e

j r kr

er j r

4

j k

A

(from ECE 6340 solution)

(from TMr table)

Compare the Er field:2

22

1r rE k A

j r

Page 11: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

11

Dipole Radiation (cont.)

Hence we have

cos 14

jkrr

j k jA e

kr

Page 12: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE 6341 1

12

Dipole Radiation (cont.)

Debye potentials (using Debye Gauge):

ˆ cos 14

jkrj k jA r e

kr

Lorenz Gauge:

ˆ4

jkrA z er

Comparison