prof. david r. jackson dept. of ece fall 2013 notes 26 ece 6340 intermediate em waves 1

35
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Upload: braden-hollier

Post on 15-Dec-2015

226 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Prof. David R. JacksonDept. of ECE

Fall 2013

Notes 26

ECE 6340 Intermediate EM Waves

1

Page 2: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Equivalence Principle

Basic idea:We can replace the actual sources in a region by equivalent sources at the boundary of a closed surface.

Keep original fields E , H outside S.

Put zero fields (and no sources) inside S.

E , H

a

b

ANT

S

E , H

2

Page 3: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Equivalence Principle (cont.)

Note: (Ea , Ha) and (Eb , Hb) both satisfy Maxwell’s equations.

Eb = 0 Hb = 0

No sources

Ea = E Ha = H

3

Page 4: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

The B.C.’s on S are violated.

Introduce equivalent sources on the boundary to make B.C.’s valid.

a

b

esJ

esM

ˆe a bsJ n H H

ˆe a bsM n E E

Equivalence Principle (cont.)

4

Zero fields

Original fields

Page 5: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Outside S, these sources radiate the same fields as the original antenna,

and produce zero fields inside S.

This is justified by the uniqueness theorem:

Hence ˆ

ˆ

es

es

J n H

M n E

Equivalent sources:

Zerofields

esJ

esMZero

sources

S

Equivalence Principle (cont.)

Maxwell's equations are satisfied along with boundary conditions at the interface.

5

Page 6: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Note about materials:

If there are zero fields throughout a region, it doesn’t matter what material is placed there (or removed).

Equivalence Principle (cont.)

This object can be added

Zerofields

esJ

esM

r

(E , H)

S

6

Page 7: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Scattering by a PEC

sE

(E , H)

Source

iE

0tE

PEC

S

sJ

i sE E E i sH H H

7

Page 8: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Scattering by a PEC (cont.)

ˆ ˆ 0

ˆ

es t

es s

M n E n E

J n H J

S

Source

0 0,

esJesM

(E , H)

(0 ,0)

Equivalent Sources:

sJ (E , H)

SourcePEC

S

We put zero fields and sources inside of S, and remove the PEC object.

8

Page 9: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Conclusion: The conductor can be removed.

Equivalent problem:

Source

0 0, sJ

(E , H)

(0 ,0)

S

(E , H)

Source PEC

S

sJ

Original problem:

Scattering by a PEC (cont.)

9

Page 10: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Source

0 0, sJ

(E , H)

(0 ,0)

0,it tsE J E r S

it tsE J E

This integral equation has to be solved numerically.

Integral equation for the unknown current

so

0s it tE E

“Electric Field Integral Equation” (EFIE)

Note: The bracket notation means

“field due to a source.”

Scattering by a PEC (cont.)

10

Page 11: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Scattering by Dielectric Body

sE

(E , H)Source

,r r iE

i sE E E

i

s

E

E

incident field

scattered field

(E , H)

Note: The body is assumed to be homogeneous.

11

Page 12: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Exterior Equivalence

Replace body by free space(The material doesn’t matter in the zero-field region.)

S

Source

,r r

Ea = E

Ha = H

Eb = 0 Hb = 0

ˆ 0

ˆ 0

e as

e as

J n H

M n E

S

Source

0 0,

esJ

esM

(E , H)(0 ,0)

n̂12

Page 13: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Summary for Exterior

ˆ

ˆ

es

es

J n H

M n E

,r r

S

Original problem:

Free-space problem:

S

0 0,

esJ

esM

(0 ,0)

(E , H)

13

Page 14: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Interior Equivalence

e es s

e es s

J J

M M

S

No sources or fields outside S

,r r

Ha, Ea

Eb = 0

Hb = 0

Place dielectric material in the "dead region" (region b).

ˆ ˆ ˆ0

ˆ ˆ ˆ0

e a es s

e a es s

J n H n H n H J

M n E n E n E M

ˆ ˆn n

Ea = E

Ha = H

14

Page 15: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Interior Equivalence (cont.)

S

e es sJ J

e es sM M

(0 ,0)

E, H

,r r

,r r n̂

When we calculate the fields from these currents, we let them radiate in an infinite dielectric medium.

15

Page 16: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Summary for Interior

,r r

S

Original problem:

S

esJ esM

(0 ,0)

E, H

,r r

,r r

Homogeneous-medium problem:

16

Page 17: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Integral Equation

,r r

S

, ,

, ,

e e i e et s t t ss s

e e i e et s t t ss s

E J M E E J M

H J M H H J M

, ,

, ,

e e e e it s t s ts s

e e e e it s t s ts s

E J M E J M E

H J M H J M H

Boundary conditions:

Hence:

The “–” means calculate the fields just inside the surface, assuming an infinite dielectric region.

Note: The “+” means calculate the fields just outside the surface,radiated by the sources in free space.

“PMCHWT" Integral Equation*

* Poggio-Miller-Chang-Harrington-Wu-Tsai 17

e es s

e es s

J J

M M

Recall:

Page 18: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Fields in a Half Space

Equivalent sources:

ˆ

ˆ

es

es

J z H

M z E

(0 ,0)es

es

J

M

(E , H)

Sources, structures,

etc.

z

(E , H)Region of interest

(z > 0)

Equivalence surface S (closed at infinity in the z < 0 region)

18

Page 19: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Hence, we have:

Put PEC in zero-field region:

The electric surface current on the PEC does not radiate.

Fields in a Half Space (cont.)

Note: The fields are only correct for z > 0.

19

z

(E , H)es

es

J

MPEC

ˆesM z E

(E , H)

esMPEC z

Page 20: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Note: The fields are still correct for z > 0.

Now use image theory:

ˆ2sM z E

Fields in a Half Space (cont.)

This is useful whenever the electric field on the z = 0 plane is known.

20

Incorrect fields

(E , H)

sMCorrect fields

0 0( , )

2 es sM M z

Page 21: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Fields in a Half Space: Summary

Sources + objects

z

(E , H)Region of interest

(z > 0)

21

Incorrect fields

(E , H)

sMCorrect fields

0 0( , )

ˆ2sM z E

z

Page 22: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Alternative (better when H is known on the interface):

Mse does not radiate on PMC,

and is therefore not included.

Image theory:

Incorrect fields

(E , H)

sJCorrect fields0 0( , )

ˆ2 2es sJ J z H

Fields in a Half Space (cont.)

22

esJPMC

z

Page 23: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Example: Radiation from Waveguide

zb

y

0ˆ( , ,0) cosx

E x y y Ea

b

a

x

y

23

Page 24: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Example (cont.)

Step #1

0ˆ2 coss

xM x E

a

Step #2

0

ˆ

ˆ cos

esM z E

xx E

a

PEC

z

z

24

The feeding waveguide was removed from the dead region that was created, and then a continuous PEC plane was introduced.

Image theory is applied to remove the ground plane and double the

magnetic surface current.

Apply equivalence principle

Apply image theory

Page 25: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

0ˆ2 coss

xM x E

a

x

a

b

y

z

Example (cont.)

25

A three-dimensional view

Page 26: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

0ˆ2 coss

xJ x E

a

a

b

x

y

z

ssJ M

E H

H E

Solve for the far field of this problem first.

(This is the “A” problem in the notation of the duality notes.)

Then use:

Example (cont.)

Use the theory of Notes 22 to find the far field from this rectangular strip of electric surface current.

0 0

0 0

26

Step #3

Apply duality

Page 27: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

A radiating electric current can be replaced by a magnetic current, and vice versa.

Volume Equivalence Principle

27

y

x

z

J

y

x

z

M

1 1( , )E H 2 2( , )E H

P. E. Mayes, “The equivalence of electric and magnetic sources,” IEEE Trans. Antennas Propag., vol. 6, pp. 295–29, 1958.

We wish to have the same set of radiated fields.

Page 28: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Volume Equivalence Principle (Cont.)

28

1 0 1

0 0 1

E j H

j J j E

1 0 1

1 0 1

E j H

H J j E

21 0 1 0E k E j J

Set 1 (electric current source):

Hence

Therefore, we have

Page 29: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Volume Equivalence Principle (Cont.)

29

2 0 2

0 0 2

E j H M

j j E M

2 0 2

2 0 2

E j H M

H j E

22 0 2E k E M

Set 2 (magnetic current source):

Hence

Therefore, we have

Page 30: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Volume Equivalence Principle (Cont.)

30

22 0 2E k E M

21 0 1 0E k E j J

0j J M

0

1J M

j

Set

Compare:

Hence

Page 31: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Volume Equivalence Principle (Cont.)

31

1 2 0 1 0 1E E j H j H M

1 20

1H H M

j

Hence, the two electric fields are equal everywhere, but the magnetic fields are only the same outside the source region.

Next, examine the difference in the two Faraday laws:

1 0 1

2 0 2

E j H

E j H M

so

This gives us

Page 32: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Summary

32

y

x

z

J

y

x

z

M

0

1J M

j

0

1H J H M M

j

E J E M

Volume Equivalence Principle (Cont.)

Page 33: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

Apply duality on the two curl equations to get two new equations:

33

22 0 2H k H J

21 0 1 0H k H j M

y

x

z

M

1 1( , )E H

y

x

z

J

2 2( , )E H

Volume Equivalence Principle (Cont.)

Page 34: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

34

22 0 2H k H J

21 0 1 0H k H j M

0

1M J

j

1 0 1

2 0 2

H j E

H j E J

1 2 0 1 2H H j E E J

Similarly, from duality we have

Volume Equivalence Principle (Cont.)

Page 35: Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1

35

y

x

z

M

y

x

z

J

0

1M J

j

0

1E M E J J

j

H M H J

Summary

Volume Equivalence Principle (Cont.)