properties of the (1405) via photo- and...

32
Properties of the (1405) via Photo- and Electroproduction Reinhard Schumacher October 2, 2012, Barcelona, Spain XI International Conference on Hypernuclear and Strange Particle Physics

Upload: phamcong

Post on 09-May-2018

214 views

Category:

Documents


2 download

TRANSCRIPT

Properties of the (1405) via Photo- and Electroproduction

Reinhard Schumacher

October 2, 2012, Barcelona, Spain

XI International Conference on Hypernuclear and Strange Particle Physics

R. A. Schumacher, Carnegie Mellon University

Outline /Overview

2HYP11 10-2012

Models of the (1405) Hyperon The “Mass Distributions” from CLAS Isospin decomposition: I=0 vs. I=1

(NEW!) Electroproduction of (1405) (no time…)

Y*

K+

p

K

Nature of the (1405)? Dynamically generated resonance, via

unitary meson-baryon channel coupling R. Dalitz & S.F.Tuan, Phys. Rev. Lett. 2, 425 (1959), Ann. Phys. 10, 307 (1960). E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998). Very many others…

Quark model genuine three quark state C. G. Wohl, Phys. Lett. B 667 1182 (2008) RPP.... But statement is deleted in (2012) RPP. S. Capstick & N. Isgur, Phys. Rev. D34 2809 (1986).

sub-threshold bound state Y. Akaishi & T. Yamazaki, Phys Rev 65, 044005 (2002).

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 3

Nature of the (1405)? (2) Two-pole, I=0, S=-1, solution to the chiral

unitary scattering problem J.A. Oller, U.-G. Meissner Phys. Lett B 500, 263 (2001). D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A 725, 181 (2003).

5-quark cluster model: B. Zou, Nucl. Phys. A 835, 199 (2010). Predicts extra ½- baryon nonet with a * at 1380

Hybrids: udsg, udcg with “active” glue O. Kittel & G. Farrar, hep-ph/0010186(2000); /0580815(2005)

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 4

1 2B c qqq c qq qq q

R. A. Schumacher, Carnegie Mellon University 5

Chiral Unitary Approach Chiral perturbation

theory fails in the presence of strong threshold effects

Kij kernel from chiral SU(3) effective meson-baryon Lagrangian

(1405)

K+

p

K-

Leading s-wave I=0 interaction: “Weinberg-Tomozawa” driving term

Off-shell kaon

R. A. Schumacher, Carnegie Mellon University 5HYP11 10-2012 N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995)

R. A. Schumacher, Carnegie Mellon University 66

Chiral Unitary Models (example 1)

SU(3) baryons irreps 1+8s+8a combine with 0-

Goldstone bosons to generate:

Two octets and a singlet of ½- baryons generated dynamically in SU(3) limit

SU(3) breaking leads to two S=-1 I=0 poles near 1405 MeV ~1420 mostly KN ~1390 mostly

Possible weak I=1 pole also predicted

6HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University

D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A 725, 181 (2003)J.A. Oller, U.-G. Meissner Phys. Lett B 500, 263 (2001).

R. A. Schumacher, Carnegie Mellon University 7

Chiral Unitary Models (example 2)

+

00

Mass distribution of the “(1405)” predicted to depend on decay channel

Model with I = 0 and I = 1 amplitudes Chiral Lagrangian +

Channel Coupling I() = {0,1} – not in an

isospin eigenstate Neglect I=2

Interference between I=0 and I=1 amplitudes modifies mass distributions

WT-type interaction: no energy or angle dependence

Inspired CLAS experiment

Invariant Mass (GeV)

d/d

MI(

b/G

ev) 1.7

p KE GeV

2 2(1) (0) (0) (1)* (2)

2 2(1) (0) (0) (1)* (2)

0 02(0) (2)

( ) 1 1 2 Re2 3 6

( ) 1 1 2 Re2 3 6

( ) 1 3

I

I

I

d T T T T O TdM

d T T T T O TdM

d T O TdM

J.C. Nacher, E. Oset, H. Toki, & A. Ramos, Phys. Lett. B 455, 55 (1999). 7HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University

Hadronic Beam Experiments Berkeley bubble chamber

Discovery: M. Alston et al., Phys. Rev. Lett. 6, 698 (1961).

Brookhaven bubble chamber Line shape hints: D. W. Thomas et al., Nucl. Phys. B56, 15 (1973).

CERN bubble chamber One charge combo: R. J. Hemingway, Nucl. Phys. B253, 742 (1985).

COSY/ANKE Only I. Zychor et al., Phys. Lett. B660 167 (2008).

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 8

K p

0p K

K p

0 0 0( )pp pK pK p

Photon Beam Experiments LEPS/SPring-8

Differing line shapes J. K. Ahn et al., Nucl Phys A721, 715 (2003).

LEPS/SPring-8 Differing line shapes M Niiyama et al., Phys Rev C78, 035202 (2008).

CLAS / Jefferson Lab – this talk

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 9

p K

R. A. Schumacher, Carnegie Mellon University

CLAS

10HYP11 10-2012

R. A. Schumacher, Carnegie Mellon University

CLAS Experiment

Jefferson Lab, Newport News, VA, USA PhD work of KEI MORIYA, currently at

Indiana University g11a data set, 2004

LH2 target unpolarized tagged photon beam well studied: ~5 papers so far 20x109 trigger 1.41x106 Y* events

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 11

R. A. Schumacher, Carnegie Mellon University

Getting the three final states:

p(0) - 52% 440k

+(n) - 48% 316k

+ -(n) + 338k

0 0 ( 0) 76k 33%

33%

33%

+p K++ (1405)

+p K*+,0+ 0,+ Subtracted incoherently bin by bin using Monte Carlo model

12

Quark model expectation: equally-strong decays to each of three states, with Breit-Wigner mass distributions

HYP11 10-2012

CLAS

Events

Selecting in n

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 13

Using 1-C kinematic fit

Events in Final State

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 14

Note K* overlap: must be subtracted in some W bins

Removing the K* Incoherently

line shape data for worst case overlap at W=2.2 GeV

No significant change in result, despite very “wide” K* removal: no coherence seen

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 15

Scaling away the (1385)

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 16

(1405)

(1385)

(1385) has small branching ratiointo the final state that we want

17

CLAS Result for Line Shape

Decay-channel asymmetry of (1405) line shape confirmed Line shapes are not Breit-Wigner and depend on charge Subtracted backgrounds: (1385), (1520), K*(892) Status: Final results

00

+

R. A. Schumacher, Carnegie Mellon UniversityHYP11 10-2012 17

All W & All Line Shapes

Full and final CLAS data setHYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 18

Isospin Interference

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 19

K+

Y*p

3 =,

Final state

Three charge combinations:

Cross Sections

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 20

K+

Y*p

pp,q

Fully differential d

Factorized 3-body phase space(m)

Angle & mass differential

Angle integrated

pK+

Line Shapes

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 21

Single amplitude, I

Breit-Wigner line shape

For a single decay mode “1” = “” in isospin state Iand c.m. momentum q1, use

Width (with L0)

Flatté Channel-Coupling

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 22

For a second decay mode “2” = “ ” in isospin state I and c.m. momentum q2, use

Below mode “2” threshold, analytically continue the amplitude to preserve unitarity

Below

Above

R. A. Schumacher, Carnegie Mellon University

Isospin Decomposition

23HYP11 10-2012

t0 to only – pretty good fit t0A , t0B to only – two amplitudes; very good t0A , t0B to all – very poor, as expected t0A , t0B , t1 to all – good! t0 , t1A

, t1B to all – best! showing this one

Separate {, , } into I=0 and I=1 amplitude contributions

Roster of fits to all data in nine W bins

Example at W=2.40 GeV

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 24

I=1 contributions

I=0 contribution withthreshold break

0 0

Details…

Use MINUIT with 34 parameter, 1130 data points across all W’s

Best fit has 2 = 2.12

All isospin amplitude shapes are the SAME in ALL bins of W; only C(W) varies with W

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 25

Line Shapes for

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 26

Line Shapes for

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 27

Line Shapes for

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 28

W dependence of CI(W)

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 29

Smooth variations I=0 dominant but

falls off I=1 total is ~half

as big as I=0 and stays about constant

“Best Fit” Isospin Decomposition

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 30

I=0 centroid fitted to threshold Flatte effect big; pulls high-point to ~1405MeV Two I=1 amplitudes give best fit Parameter uncertainties hard to compute accurately

Theory Connections I=0 is dominant

Centroid is well below 1405, close to threshold Some models expect I=0, JP= ½- near this low mass

Ramos

Oller

Flatté line shape is evident - channel-coupling is large Support for “two-pole” picture

Hyodo

I=1 is not small Possible support of I=1, JP= ½- low-mass states

Oller and Meissner again (see above)

Possible connection with 5-quark model of baryon excitations Zou

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 31

Summary/Conclusion

CLAS has provided highest statistics look at all three mass distributions in photoproduction on the proton,

Clear need for I=0 and I=1 separation at all W, especially nearer threshold,

Amplitude fits show: I=0 ‘(1405)’ centroid near threshold I=1 strength centered near 1391 and 1411 MeV Channel-coupling effects evident in all decays

HYP11 10-2012 R. A. Schumacher, Carnegie Mellon University 32