protein surface functionalisation as a general strategy ... · details of the proteins, their...

16
Supporting information for: Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8 Natasha K. Maddigan a , Andrew Tarzia a , David M. Huang a , Christopher J. Sumby a , Stephen G. Bell a *, Paolo Falcaro ab * and Christian. J. Doonan a * a. Department of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia. Email: [email protected]. b. Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria. Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 11-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

Supportinginformationfor:

ProteinsurfacefunctionalisationasageneralstrategyforfacilitatingbiomimeticmineralisationofZIF-8

NatashaK.Maddigana,AndrewTarziaa,DavidM.Huanga,ChristopherJ.Sumbya,StephenG.Bella*,PaoloFalcaroab*andChristian.J.Doonana*

a.DepartmentofChemistryandtheCentreforAdvancedNanomaterials,TheUniversityofAdelaide,Adelaide,SouthAustralia5005,Australia.Email:[email protected].

b.InstituteofPhysicalandTheoreticalChemistry,GrazUniversityofTechnology,Stremayrgasse9,Graz8010,Austria.

Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2018

Page 2: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

Contents

1. Materials 3

2. Proteinsurfacemodificationreactions 3

3. Timecoursebiomimeticmineralisationstudies 4

4. PowderX-raydiffraction(PXRD)data 6

5. Scanningelectronmicroscopy 8

6. UV-visiblespectra 9

7. Additionalcomputationalmethods 10

8. Additionalcomputationalresults 11

9. References 16

Page 3: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

1. Materials

TableS1.Detailsoftheproteins,theirsources,productcodesandtheProteinDataBank(PDB)codesfortheproteinsinvestigatedinthisresearch.

Protein Source ProductCode PDBFileUseda

Pepsin Porcinegastricmucosa

P6887 4pep1

Bovineserumalbumin(BSA) Bovine A9418 4f5s2Lipase,CandidaantarcticaLipaseB(CALB)

Aspergillusoryzae 62288 1tca3

Catalase BovineLiver C9322 3re84Peroxidasefromhorseradish(HRP)

Horseradish 77332 1w4w5

Myoglobin Equineskeletalmuscle

M0630 2frf6

Haemoglobin Human H7379 2dn27Trypsin Porcinepancreas T4799 1s818Lysozyme Eggwhite AstralScientific

(LDB0308)2vb19

aProteinstructuresarefromthesameorganismfromwhichtheproteinsampleissourced.

2.Proteinsurfacemodificationreactions

SchemeS1.Surfacemodificationreactions.SuccinylationandacetylationreactionslowerthepIofaproteinbymodificationofexposedaminegroups.Aminationreactionscapcarboxylgroupswithafreeamine,thusincreasingthepI.

Page 4: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

3. Timecoursebiomimeticmineralisationstudies

Haemoglobin

HaemoglobinSuccinylated

HaemoglobinAcetylated

Myoglobin

MyoglobinSuccinylated

MyoglobinAcetylated

Figure S1. Sequential photographs of Haemoglobin (Hb), succinylated haemoglobin (HbSucc),acetylatedhaemoglobin(HbAc),myoglobin(Mb),succinylatedmyoglobin(MbSucc),andacetylatedmyoglobin(MbAc)samples(2mgprotein)immediatelyaftermixingofthemIM(160mM)andzincsolutions (40mM) (T=0) until immediately prior to centrifugation andwashing (T=16 hours). Theunmodifiedhaemoglobinandmyoglobinsamplesremainclearuponadditionofthezincsolution,bothyieldingminimalproductafter16hours.ThesuccinylatedandacetylatedformsofbothproteinscauseimmediateprecipitationofZIF.

Page 5: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

BSA

Pepsin

BSAAminated

PepsinAminated

FigureS2.Sequentialphotographsofunmodifiedandaminatedbovineserumalbumin(BSA)andpepsin(2mgprotein)immediatelyaftermixingofthemIM(160mM)andzincsolutions(40mM)(T=0)untilimmediatelypriortocentrifugationandwashing(T=16hours).TheunmodifiedBSAandpepsinsamplesgaveimmediatebiomineralizationuponadditionofthezincsolution.TheaminatedBSAandpepsinsamplesshowadramaticreductioninprecipitationyieldingonlyminimalproductafter16hours.

Page 6: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

4. PowderX-raydiffraction(PXRD)data

FigureS3.PowderX-raydiffractionpatternsofbiomimeticallymineralisedZIFsamplesofunmodifiedproteinsmadeunderstandardconditions(4:1mIM:Zn2+).Datacollectedondriedsamplesafterwasheswithwaterandethanol.Unmodifiedhaemoglobin,myoglobin,lysozyme,andtrypsindidnotyieldsufficientproductforPXRDanalysis.ThesimulatedpatternrelatestoZIF-8.

Page 7: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

FigureS4.PowderX-raydiffractionpatternsofbiomimeticallymineralisedZIFsamplesofHbSuccandMbSucc(top)andHbAcandMbAc(bottom)madeunderstandardconditions(4:1mIM:Zn2+).Datacollectedondriedsamplesafterwasheswithwaterandethanol.AminatedBSAandpepsin,didnotyieldsufficientproductforPXRDanalysis.ThesimulatedpatternrelatestoZIF-8.

Page 8: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

5. Scanningelectronmicroscopy

FigureS5.HbSucc@ZIF-8(left)andMbSucc@ZIF-8(right)after16hoursfromthebeginningofthebiomimeticmineralizationreaction;therhombicdodecahedralmorphologycanbeobserved.

1µm 1µm

Page 9: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

6. UV-visiblespectra

FigureS6.UV-visiblespectraofthesupernatantremovedaftercentrifugationofthebiocompositesampleswheretheproteinwasmyoglobin(Mb),succinylatedmyoglobin(MbSucc),andacetylatedmyoglobin(MbAc)(left)andhaemoglobin(Hb),succinylatedhaemoglobin(HbSucc),andacetylatedhaemoglobin(HbAc)(right).UnmodifiedhaemoglobinandmyoglobinformedminimalproductandthereforeshowalargeSoretabsorbanceintheremovedsolution,indicatingthattheproteinhasnotbeenimmobilised.Inboththesuccinylatedandacetylatedvariants,theabsorbancehasdecreasedthusindicatingthattheproteinhasbeenremovedfromsolutionandincorporatedintoZIF-8asitformed.

FigureS7.UV-visiblespectraofthewashingsofsuccinylatedhaemoglobinZIF-8samples.Thesupernatant(red)wasobtainedaftercentrifugationoftheproductandshowsnoevidenceofproteinremaininginsolution.SDSwashes1(blue)and2(pink)showtheappearanceofthehaemoglobinabsorbancepeak,indicatingthatsomeproteinwassurfaceboundhadbeenwashedoff.AftertheSDSwashestoremovesurfaceboundproteinshowednofurtherprotein,theZIF-8samplewasdissolvedincitricacidbuffer(pH6)containingEDTA(20mM)andtheabsorbancewasmeasuredtoshowpresenceofencapsulatedprotein.

Page 10: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

7. Additionalcomputationalmethods

7.1. Calculationoftheaveragehydropathicindex

Thehydropathicindexisameasureofanaminoacidsequenceshydropathicity.Negativevaluesimplyan overall hydrophilic protein,whereas positive values imply an overall hydrophobic protein. ThehydropathicindexforaproteinsequencewascalculatedusingtheKyteandDoolittlescaleofresiduehydropathicity,10whichquantifiesthehydropathicityofeachresidue,andtheBiopythonmodule.11,12Asinglevalueisreported,whichisthesumofthehydropathicindicesofallresiduesdividedbythelengthofthesequence.7.2. PreparationofPDBfilesandcalculationofproteinchargestate

CrystalstructureswereobtainedfromtheProteinDataBank13foreachprotein(PDBaccessioncodesgiveninTableS1).Whereavailableaproteinstructureassociatedwiththesameorganismastheexperimentalsourcewasobtained.EachPDBfilecomeswithoneormorepeptidechain,whereeachchainrepresentsaseparatesequenceofaminoacidsinthecrystalstructure.ForBSA,onlythefirstpolypeptidechaininthePDBfilewasusedbecausethisproteinisexpectedtoexistasamonomerinsolution.InallothercasesallchainsinthePDBfilewereused.Heteroatoms(non-naturalaminoacidresiduesorligands),boundionsorwatermoleculesintheproteinstructureswereremoved.

PROPKA3.014,15wasusedtoestimatethepKaofeachionisableresidueineachproteinstructureusingahighlyefficient,empiricalmethod.PROPKAuseseffectivepotentialstocalculatethetotalenvironmentalperturbationtothefreeenergyofprotonationduetomovingtheionisableresiduefromwaterintothe3Denvironmentoftheprotein.TheresultantfreeenergywasusedtodeterminetheshiftintheknownpKaofeachresidueduetotheproteinenvironment.WehaveconfirmedthatsimilarresultsareobtainedforthecalculatedpKa’susingthemoresophisticatedDELPHIPKA16toassignatomchargesandprotonationstates(resultsnotshown).DELPHIPKAusesavariabledielectriccoefficientwithintheproteinandthefreeenergydifferencebetweentheprotonatedanddeprotonatedstateofeachionisableresiduewithinthe3Dstructure(usingaPoisson–Boltzmann-basedapproachtocalculatethefreeenergydifference)toobtainthepKaforeachresidue.ThecalculatedpKaofeachionisableresidue,givenbyPROPKA,wasthenusedtocalculatethe3DmodelpIofeachproteinusingtheHenderson–Hasselbachequation.

Beforeanalysingeachcrystalstructure,thePDB2PQRsoftware17,18wasusedtoaddmissingheavyatoms,tomakesuretherewerenooverlappingatomsinthestructure,toprotonatethestructurebasedonthepKa’scalculatedbyPROPKAandthegivenpH(wherearesidueisprotonatedifitspKaisgreaterthanthegivenpH)andtoassignchargesandradiifromtheAMBER19forcefieldtoeachatom.WenotethattheAMBERforcefieldincludedwithPDB2PQRdoesnotcontainchargeparametersforresiduesincertainprotonationstatesderivedbyPROPKA(forexample,aneutralN-terminusstateisnotsupportedbytheforcefieldprovidedbyPDB2PQR)andthereforesomeresidueswillalwaysexistintheirpH7state.

Page 11: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

8. Additionalcomputationalresults

8.1. Proteinmetrics

InFigureS8weshowthecalculatedaveragehydropathicindexofthesequenceofeachprotein.TheresultsindicatethattheproteinsthatseedZIF-8growthhavehydropathicitiesthatoverlapcompletelywithproteinsthatdonotseedZIF-8growth.ThisfindingfurthersupportsthedominantnatureofelectrostaticinteractionsindeterminingZIF-8formation,whichallowsfortheuseofsuchsimplifiedscreeningmethods.

FigureS8.Categoricalscatterplotoftheaveragehydropathicityofthepeptidesequencesforallproteins.ClosedcirclesareproteinsthatformZIF-8andopencirclesareproteinsthatdonotformZIF-8.

Page 12: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

8.2. ComparisonofpIfromsequencemodels,3Dmodelsandexperiments

FigureS9showscategoricalscatterplotsofthecalculatedpIsfromthe3Dstructure(obtainedfromPROPKA3.0)andpeptidesequence(obtainedfromBiopython)ofeachprotein,whichshowsthatbothcalculationmethodspredictZIF-8growthreasonablyaccurately.ParityplotsofthepIsobtainedfrombothcalculationmethodsaswellasacomparisonbetweenthepIscalculatedfromthe3DproteinstructureandthereportedpIs(Table1)arealsoshown.Importantly,reasonableagreementbetweenthetwocalculationmethodswasobtained,indicatingthatthemuchsimplersequence-basedmodelcanbeusedwithoutadverselyaffectingpredictionaccuracy.WenotethatsomeexperimentalpIsarereportedasarangeofvalues,andsoerrorbarsareincludedinFigureS9d,forwhichtheuncertaintyencompassesthereportedrangeandthepIisthemeanofthereportedrange.

FigureS9.CategoricalscatterplotsofthecalculatedpI(a)fromthe3Dmodeland(b)sequencemodelofallproteins.ParityplotscomparingthecalculatedpIfromthe3Dmodeland(c)thesequencemodeland(d)thereportedpIvalues(they=xlineisshown).ErrorbarsrepresentrangesofpIvaluesreportedfromexperiments.ClosedcirclesareproteinsthatformZIF-8andopencirclesareproteinsthatdonotformZIF-8.

Page 13: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

8.3. Experimentalzincionenhancement

FigureS10showsacategoricalscatterplotoftheenhancementofzincionscalculatedfromtheexperimentalzetapotentialsinTable1usingEquation4.Experimentalzetapotentialsgivereasonableapproximationsofthesurfaceelectrostaticpotentialofeachproteininsolutionand,therefore,aproteinsabilitytoenhancezincionconcentrationsnearthesurfaceand,hence,seedZIF-8growth.BasedonFigureS10,asurfacezincionenhancementof>10,whichisazincionconcentrationof0.4M,leadstoZIF-8formationunderexperimentalconditions.

FigureS10.CategoricalscatterplotsofthezincionenhancementscalculatedfromtheexperimentalzetapotentialsatpH11forallproteins.ClosedcirclesareproteinsthatformZIF-8andopencirclesareproteinsthatdonotformZIF-8.

Page 14: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

8.4. Zincionenhancementfrom3Dmodel

Thecalculatedaveragesurfacepotentialsfromthe3Dmodelofeachproteinshowreasonableagreementwiththeexperimentalzetapotentials(FigureS11).Themaindiscrepanciesaretheoverestimationoftheaveragesurfacepotentialcomparedwithexperimentalzetapotentialsforveryhighlychargedproteins,suchasBSA,catalaseandpepsin.Thisresultisnotunexpected,giventheuseofthelinearisedPoisson–Boltzmannequation,whichbreaksdowninregimesofhighzeta

potential(|𝜁| > %B'()*

≈ 12mV).Theunderestimationoftheaveragesurfacepotentialcompared

withexperimentalzetapotentialsforlipaseandHRPislikelyaresultofexperimentalimpurities.Bothproteinsareexpectedtobeglycosylated,20,21whichisknowntoaffectzetapotentialmeasurements,22whereasthecalculationsusednon-glycosylatedstructures.Additionally,HRPcouldbeamixtureofdifferentiso-enzymeswithvastlydifferentelectrostaticproperties.23WenotethatbothproteinshavereportedpIsthatspanabroadrangeofvalues(Table1),indicatingabroadrangeofelectrostaticpropertiesfordifferentsamples.

Ourcalculationmethodologyusedstatic3DstructuresofeachproteinobtainedfromX-raycrystallography,whichareunlikelytoberepresentativeoftheproteinstructureinsolutionatapHof11.AthighpHs,thepresenceofhigh-chargeregionswouldleadtorepulsionandadegreeofunfolding,whichsuchasimplemodelcouldnottakeintoaccount.Wealsonotethatithasbeenshownpreviouslythattheinteriorofaproteinhasahighlyvariabledielectriccoefficientandassumingaconstantdielectriccoefficient,aswehave,cangiverisetoerrorsnearthesurfaceofproteins.24Furthermore,bytakingtheaveragesurfacepotentialtobeequaltotheexperimentalzetapotentialforaheterogenousproteinsurfaceweassumedthattheelectricdoublelayersurroundingtheproteinisthincomparedwiththesizeoftheproteinandthatthelinearisedPoisson–Boltzmannequationapplies,whichmaynotalwaysbethecaseforthesystemsstudied(discussedabove).25Thesemi-quantitativeagreementwithexperimentinmostcasesisveryencouraging,consideringtheapproximationsinthecalculations.

FigureS11.Parityplotscomparingthecalculatedsurfacepotentialfromour3Dmodelandexperimentalzetapotentialsat(a)pH7and(b)pH11forallproteins(they=xlineisshown).ClosedcirclesareproteinsthatformZIF-8andopencirclesareproteinsthatdonotformZIF-8.

Page 15: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

FigureS12showsacategoricalscatterplotofthecalculatedaveragesurfacepotentialsatpH9andpH11forallproteins.Theseresultssupporttheexperimentalfindingsandshowareasonableabilitytopredictaprotein’spropensitytoseedZIF-8formation.ResultsatpH9andpH11areshownastheinitialsolution(beforezincionsareadded)isatapproximatelypH11,butuponzincionaddition,thepHquicklydecreases toaround9, likelybecauseof ZIFnucleation.26 Finally, FigureS13 shows thevariationinthesurfacepotentialaroundallproteinsatpH11calculatedfromour3Dmodel.

FigureS12.Categoricalscatterplotsofthecalculatedsurfacepotentialfromthe3Dmodel(a)atpH9and(b)pH11forallproteins.ClosedcirclesareproteinsthatformZIF-8andopencirclesareproteinsthatdonotformZIF-8.TheshadedregionhighlightstheapproximateboundaryofthezetapotentialintheexperimentsforproteinsthatdoanddonotseedZIF-8growth.

FigureS13.Surfacepotentialsurroundingallproteinscalculatedfromour3DmodelatpH11.LipaseandHRPareoutliersbasedonouranalysis.

Page 16: Protein surface functionalisation as a general strategy ... · Details of the proteins, their sources, product codes and the Protein Data Bank (PDB) codes for the proteins investigated

9. References

1. A.R.Sielecki,A.A.Fedorov,A.Boodhoo,N.S.AndreevaandM.N.G.James,J.Mol.Biol.,1990,214,143-170.

2. A.Bujacz,ActaCrystallogr.D,2012,68,1278-1289.3. J.Uppenberg,M.T.Hansen,S.PatkarandT.A.Jones,Structure,1994,2,293-308.4. N.Purwar,J.M.McGarry,J.Kostera,A.A.PachecoandM.Schmidt,Biochem.,2011,50,

4491-4503.5. G.H.Carlsson,P.Nicholls,D.Svistunenko,G.I.BerglundandJ.Hajdu,Biochem.,2005,44,

635-642.6. D.M.Copeland,A.S.Soares,A.H.WestandG.B.Richter-Addo,J.Inorg.Biochem.,2006,

100,1413-1425.7. S.-Y.Park,T.Yokoyama,N.Shibayama,Y.ShiroandJ.R.H.Tame,J.Mol.Biol.,2006,360,

690-701.8. T.R.Transue,J.M.Krahn,S.A.Gabel,E.F.DeRoseandR.E.London,Biochem.,2004,43,

2829-2839.9. J.Wang,M.Dauter,R.Alkire,A.JoachimiakandZ.Dauter,ActaCrystallogr.D,2007,63,

1254-1268.10. J.KyteandR.F.Doolittle,J.Mol.Biol.,1982,157,105-132.11. T.HamelryckandB.Manderick,Bioinformatics,2003,19,2308-2310.12. P.J.A.Cock,T.Antao,J.T.Chang,B.A.Chapman,C.J.Cox,A.Dalke,I.Friedberg,T.

Hamelryck,F.Kauff,B.WilczynskiandM.J.L.deHoon,Bioinformatics,2009,25,1422-1423.13. H.M.Berman,J.Westbrook,Z.Feng,G.Gilliland,T.N.Bhat,H.Weissig,I.N.Shindyalovand

P.E.Bourne,NucleicAcidsRes.,2000,28,235-242.14. C.R.Søndergaard,M.H.M.Olsson,M.RostkowskiandJ.H.Jensen,J.Chem.Theory

Comput.,2011,7,2284-2295.15. M.H.M.Olsson,C.R.Søndergaard,M.RostkowskiandJ.H.Jensen,J.Chem.Theory

Comput.,2011,7,525-537.16. L.Wang,L.LiandE.Alexov,Proteins:Struct.,Funct.,Bioinf.,2015,83,2186-2197.17. T.J.Dolinsky,J.E.Nielsen,J.A.McCammonandN.A.Baker,NucleicAcidsRes.,2004,32,

W665-W667.18. T.J.Dolinsky,P.Czodrowski,H.Li,J.E.Nielsen,J.H.Jensen,G.KlebeandN.A.Baker,Nucleic

AcidsRes.,2007,35,W522-W525.19. J.Wang,P.CieplakandP.A.Kollman,J.Comput.Chem.,2000,21,1049-1074.20. O.Spadiut,L.Rossetti,C.DietzschandC.Herwig,ProteinExpr.Purif.,2012,86,89-97.21. I.Høegh,S.Patkar,T.HalkierandM.T.Hansen,Can.J.Bot.,1995,73,869-875.22. M.Kreuß,T.StrixnerandU.Kulozik,FoodHydrocolloids,2009,23,1818-1826.23. M.C.Hoyle,PlantPhysiol.,1977,60,787.24. L.Li,C.Li,Z.ZhangandE.Alexov,J.Chem.TheoryComput.,2013,9,2126-2136.25. F.Fogolari,P.Zuccato,G.EspositoandP.Viglino,Biophys.J.,1999,76,1-16.26. M.Jian,B.Liu,R.Liu,J.Qu,H.WangandX.Zhang,RSCAdv.,2015,5,48433-48441.