psophocarpus tetragonolobus (l.) dc

25
UNIVERSITI PUTRA MALAYSIA PHYSIOLOGICAL RESPONSES OF WINGED BEAN [PSOPHOCARPUS TETRAGONOLOBUS (L.) DC.] TO SUPPORT SYSTEMS AND RATOONING MD. MOTIOR RAHMAN FP 1998 6

Upload: dodung

Post on 26-Jan-2017

224 views

Category:

Documents


4 download

TRANSCRIPT

    

UNIVERSITI PUTRA MALAYSIA

PHYSIOLOGICAL RESPONSES OF WINGED BEAN [PSOPHOCARPUS TETRAGONOLOBUS (L.) DC.]

TO SUPPORT SYSTEMS AND RATOONING

MD. MOTIOR RAHMAN

FP 1998 6

PHYSIOLOGICAL RESPONSES OF WINGED BEAN

[PSOPHOCARPUS TETRAGONOLOBUS (L.) DC.] TO SUPPORT SYSTEMS AND RATOONING

MD. MOTIOR RAHMAN

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

1998

PHYSIOLOGICAL RESPONSES OF WINGED BEAN [PSOPHOCARPUS TETRAGONOLOBUS (L.) DC.] TO

SUPPORT SYSTEMS AND RATOONING

By

MD. MOT lOR RAHMAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Agriculture

Universiti Putra Malaysia June 1998

DEDICATED TO

THE DEPARTED SOULS OF MY

GRANDFATHER AND GRANDMOTHER

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and sincere appreciation

to Dr. Wan Mohamad Wan Othman, Associate Professor, Department of

Agronomy and Horticulture, Faculty of Agriculture, Universiti Putra Malaysia,

the Chairman of my supervisory committee, for his constant valuable guidance

and support throughout the research and preparation of 'this thesis. His

continuous advice and encouragement have helped me to develop my entire

graduate career.

I am also grateful to Dr. Wong Kai Choo, Professor, Department of

Agronomy and Horticulture, Faculty of Agriculture, Universiti Putra Malaysia

for his thoughtful suggestions in the preparation of thesis proposal, for his

meticulous reading of the drafts, and for his advice and criticisms to further

improve the final draft.

I am especially thankful to Dr. Zulkifli Haji Shamsuddin, Associate

Professor, Department of Soil Science and Deputy Dean (Research), Faculty

of Agriculture, Universiti Putra Malaysia, for giving me the financial support

for conducting field research and laboratory analyses. I have had the privileges

of attending and presenting part of my thesis at the Second International Crop

Science Congress, 17 - 24 November 1996, New Delhi, India and the National

Soil Science Conference of Malaysia, 14 - 16 April, 1997, Ipoh, Perak,

Malaysia due to his kind assistance. I am furthermore grateful for his careful

and critical suggestions in the improvement of the thesis.

iii

I would like to thank Dr. P. M. Chalk, Associate Professor and Reader,

University of Melbourne, Australia (currently Head, Soil and Water

Management and Crop Nutrition Section, IAEA, Vienna, Austria) and Dr. M.

Quayum, Associate Professor, Department of English, Faculty of Modem

Languages, Universiti Putra Malaysia for carefully editing the manuscript.

Thanks are also due to Dr. Ridzwan Abdul Halim, Associate Professor and

Head, Department of Agronomy and Horticulture, Faculty of Agriculture,

Universiti Putra Malaysia for helping me with statistical analysis.

I appreciate the help and cooperation of the following people who have

made this study possible: Mr. Amir Hamzah Bin Ahmad Ghazali, Mr: Mahbub

Shah Bin Gohar Shah, Mr. Azhar Bin Othman, Mr. Mazlan Bin Bangi, Mr.

Abdul Aziz Bin Ismail, Mr. Khoiri Bin Kandar, Mrs. Mahani Binte Yahaya

and Mr. Kamaruddin Bin Yusof for helping me in the use of portable

photosynthesis meter, leaf area meter, Auto analyzer, Atomic Absorption

Spectrophotometer, Spectrometer and Gas Chromatograph. Gratitudes are

expressed to the field staff, Mr. Shahril Bin Abdul Rahman, for the technical

assistance while conducting my field experiments.

Among the Bangladeshi community in Malaysia, I would like to

especially thank Mr. Shaheed Sohrawardi for taking field photographs, and

Md. Lutfor Rahman and Md. Hafizul Haque for their assistance in the field

study.

iv

The research project was made possible by the financial support of

Crop Diversification Programme (CDP), funded by the Canadian International

Development Agency ( eIDA), in collaboration with Bangladesh Agricultural

Research Institute.

I wish to gratefully acknowledge Dr. A.F.M. Maniruzzaman, Former

Director (Research), Bangladesh Agricultural Research Institute for his

constant encouragement and guidance to develop my research career on field

crop research during the period of my service at the Bangladesh Agricultural

Research Institute. Sincere thanks and heartfelt gratitude are also due to Dr. M.

A. Mazed, Director General, Bangladesh Agricultural Research Institute for

providing me the much needed moral support and encouragement during the

period of my stay at the Bangladesh Agricultural Research Institute and in

Malaysia.

I am deeply indebted to my mother, brother and sister, my father-in­

law and mother-in-law and my uncle Mr. M. A. Maleque for their continuous

inspiration and prayers for the success of my study.

I am forever indebted to my beloved wife, Farzana Rahman and to my

daughter Nabila for their sacrifices and patience during the course of my

graduate study. I would not have been able to complete my study successfully

without their understanding, unfailing support and inspiration.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xu

LIST OF PLATES . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVI

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

ABSTRAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI

CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I

IT

ill

WTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Statement of Problem . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

REVIEW OF LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

Biomass Accumulation and Partitioning . . . . . . . . . . . . . . . .. .. . . . . . . . Leaf Area Index (LAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Net Assimilation Rate (NAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relative Growth Rate (RGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . Source Sink Relationship . . . . . . .. . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . Harvest Index (HI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitrogen Accumulation and Partitioning . . . . . . . . . . . . . . . . . . .. .. . . . N· p" Itrogen lxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . Support System . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ratooning . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MA TERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

7 1 0 1 1 1 2 l3 1 5 1 6 1 9 20 24 30 32

35

Experimental Site, Cultural Practices and Crop Management . . 35 Support System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Measurement of Net Photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Measuremen( of Chlorophyll Content of Leaves . . . . . . . . . . . . . . . . . 38 Measurement of Solar Radiation Interception . . . . . . . . . . . . . . . . . . . . 39

vi

IV

Page Recording of Leaf Senescence ........ ..... .. . ... ... .. ............. . 40 Determination of Total Dry Matter, Leaf Area Index (LAI), Relative Growth Rate (RGR) and Net Assimilation Rate (NAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 40 Determination of N Concentration..... ... .. . . . . . . . . . . . . . . . . . . . . . . . 4 1 Estimation of Nitrogen Fixation..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Xylem Exudate Collection and Determination of Nitrogenous Solutes ..... ........ ...... . ............. ... ................... . ... ....... 43 Seed Yield, Yield Attributes and Harvest Index.. ...... .. . . . . . . . . 45 Statistical Analysis................................................... 45

EXPERIME NTALS ................................................. . 46

Experiment 1 Effects of Support Systems on Growth, Nitrogen Fixation and Seed Yield of Winged Bean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Results . . . .. ... . . .. ................ .... .. . .... ..... ........... . ... ....... 49

Above Ground Dry Matter Accumulation... . . . . . . . . . . . . . . . 49 Partitioning of Dry Matter ........ . .. . ..... ... ...... . .... . . . < • 53 Leaf Area Index. . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. 55 Relative Growth Rate (RGR) .................................. 57 Net Assimilation Rate (NAR) .. . ....... ...... . . . .. . ........ ... 59 Chlorophyll Content of Leaves .... ......... .. .. ..... . ... .. .... 59 Net Photosynthesis . .... ...... ....... . . ... ... . . .. . ...... ....... .. 61 Stomatal Conductance and Intercellular CO2 62 Concentration .................................................. . Absorption of Photosynthetically Active Radiation (PAR) 64 Leaf Senescence ......... . . . . ... . . . . . .. ... ... .... ... . .. . . .. . . . ... 64 Nodule Dry Weight and Nitrogenase Activity .. . .. . . . . . . .... 66 Pod Bearing Node and Inter-node Length.................... 70 Flowering and Seed Filling Period. . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Seed Yield and Yield Attributes ... ...... ...... . ... . .. ...... .. 72 Correlation Between Seed Yield, Yield Attributes and Some Relevant Characters ..................................... 74 Economic Analysis of\Vinged Bean Grown on Different Support Systelns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Principal Component Analysis of Characteristics that Determine the Total Dry Matter . . .. . .......... . . ... ... .. ..... . 78

vii

Page Principal Component Analysis of Characteristics that 8 1 Determine the Nitrogenase Activity .. ....................... . Principal Component Analysis of Characteristics that Contribute to Seed Yield . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Discussion . . . . . . . . . . . . . . . . . . . . . , . . . . " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Growth and Dry Matter Partitioning of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . 85 Nodulation and Nitrogenase Activity of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . 92 Seed Yield Attributes and Their Correlation of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . .. 94

Experiment 2 Effects of Ratooning on Seed Yield of Winged Bean Grown With and without Support . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Results .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . .. 99

Total Dry Matter Accumulation in Aerial Parts of Ratooned Winged Bean Grown on Support Systems . . .... 99 Total Nitrogen Accumulation of Ratooned Winged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . . 105 Seed Yield of Ratooned Winged Bean Grown on Support Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 1 10

Discussion . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3

Experiment 3 Effects of Support Systems and Ratooning on Growth, Nitrogen Partitioning and Seed Yield of Winged Bean .. . . . . . . . 1 1 6

Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 7

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . ... 1 1 8

Biomass Production of Ratooned Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 8

viii

v

Page Dry Matter Partitioning of Ratooned Winged Bean 1 2 1 Grown on Different Support Systems ....................... .

Leaf Area Index of Ratooned Winged Bean Grown on Different Support Systems.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 23 Relative Growth Rate (RGR) of Ratooned Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . 125 Net Assimilation Rate ( NA R) of Ratooned Winged Bean Grown on Different Support Systems . . .. .. . . . . . . . . . . . . . . . . . . 127 Net Photosynthesis of Ratooned Winged Bean Grown on Different Support Systems.. ........... . . . . . . . . . . . . . . . . . . . . . . . 130 Solar Radiation Interception of Ratooned Winged Bean Grown on Different Support Systems . . . . .. .. . . . . . . . .. .. . . . .. 132 Nodule Dry Weight and Nitrogenase Activity of Ratooned Winged Bean Grown on Different Support Systems.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1 34 Nitrogen Accumulation in Aerial Parts of Ratooned Winged Bean Grown on Different Support Systems . . .

.

. . . 1 38 Nitrogen Accumulation in plant parts of Ratooned Winged Bean Grown on Different Support Systems . . . . . . 141 Nitrogen Partitioning of Ratooned Winged Bean Grown on Different Support Systems........ . . . .. . . . . . . . . . . . 145 Nitrogen ( N) Concentration of Ratooned Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . 147 N Solutes Concentration in Xylem Exudates of Ratooned Winged Bean Grown on Different Support Systems . . . . . . 1 49 Flowering and Seed filling Period of Ratooned Winged Bean Grown on Different Support Systems............. ... 1 56 Seed Yield and Yield Attributes of Ratooned Winged Bean Grown on Different Support Systems .. . . .. . . . .. . . .. 1 58

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 64

Seed Yield of Ratooned Winged Bean Grown on Support Systems . ... . . . . . . . . . . . . .. . . .. . . . . . ... . . . . ... . . . . . . . ... .. 1 64 Nitrogen A ccumulation and Nitrogenase Activity of Ratooned Winged Bean Grown on Support Systems.. . . . 1 65 Growth and Dry Matter Partitioning

'of Ratooned

Winged Bean Grown on Different Support Systems...... 1 67

GENERAL DISCUSSIO N AND CO NCLUSIO N ............ .. 1 73

ix

Page

BIDLIOGRAPHY . . . . ... . ... . . . .. . . . . . . . .. . . . . .. . . . . ..... . . . . . . . . . . . . .. . . ... . . . . . .. . .. 178

APPENDICES . . . . .... . .... .... . . ... . . ....... . . . . . . . . . . ...... . .......... . ........ . .... . 193

VITA . . . . . . . . ..... . . ......... . . ... . . . . . . . . . . . . . . . . . . . . . . . .. . ........... . . . . . . . . . . .. . . .... 220

A NOTE ON PUBLICATIONS. . . . . . . . . . . . . . ... . . .. . .. . . .. ... . .. . .. . . . .... . . . .. . ... 222

x

LIST OF TABLES

Table

1 Stem and Leaf Dry Matter and Leaf to Stem Ratio at Different Growth Stages of Winged Bean Grown on

Page

Different Support Systems . . .. .. .. . . . . . .. . . ..... . . . . . . .. . . .. . . 5 1

2 Seed Yield, Yield Attributes and Harvest Index (ill) of Winged Bean Grown on Different Support Systems ... . ... . 74

3 Relationship among Different Traits in Winged Bean ... . . . 75

4 Cost Benefit Analysis of Winged Bean Grown on Different Support Systems ... . . .. . . ... . . . . . .. . . ... . . . . ...... '" 77

5 Eigen Values and Proportions of Total Variation Among Nine Variables for Total Dry Matter ( TDM) of Winged Bean as Explained by The First Four Principal Components .. . . . . . . . . . . . . . . . .... . . . .. . . . . . . . . . . . .. .. . . .. . . . . .. . . . 79

6 Characteristics of Total Dry Matter of Winged Bean Used in The Principal Component Analysis and The Eigen Vectors of Each Character on The First Four Principal Components ... . . . .... . . . . . .. .. . .. . .. .. . .. . . . .. . . .. . . . .. . . .. . ... . . 80

7 Eigen Values and Proportions of Total Variation Among Five Variables for Nitrogenase Activity of Winged Bean as Explained by The First Two Principal Components . . ... 8 1

8 Characteristics of Nitrogenase Activity of Winged Bean Used in The Principal Component Analysis and The Eigen Vectors of Each Character on The First Two Principal Components . . ... . . .. . .. ... . .. . .. . . . . . . . . . . . . . ... . .... ... .. ... . . . . 82

9 Eigen Values and Proportions of Total Variation Among Nine Variables for Seed Yield of Winged Bean as Explained by The First Two Principal Components.. . . . . . . 83

10 Characteristics of Seed Yield of Winged Bean Used in The Principal Component Analysis and The Eigen Vectors of Each Character on The First Two Principal Components . . .... . . . . . . . . . . . . . ... ... . . ... . . .. . . . . . . . . ... . .. . . . . . . 84

1 1 Seed Yield Attributes of Ratooned Winged Bean Grown on Different Support Systems.... . .. . .. . . . . . . . . . . . . . . . . . . . . . . .. 1 62

xi

LIST OF FIGURES

1 Total Dry Matter Accumulation of Winged Bean Grown

Page

on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Dry Matter Accumulation in Leaves, Stems, Petioles and Pods III Winged Bean Grown on Different Support Systems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Dry Matter Distribution of Winged Bean Grown on Different Support Systems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Leaf Area Indices of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . '" . . . . . . . . . . . . .. . . . . . . 56

5 Relative Growth Rate of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Net Assimilation Rate of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Chlorophyll Content of Winged Bean Leaves Grown on Different Support Systems . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 60

8 Net Photosynthesis of Winged Bean Plants Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9 Stomatal Conductance of Winged Bean Leaves Grown on Different ' Support Systems . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 63

1 0 Intercellular CO2 Concentration of leaves of Winged Bean Grown on Different Support Systems . .. . . . . . . . . . . . . . . . . . . . . . . 63

1 1 Abso rpt io n of PAR by W inged Bean Grown on D ifferent Support Systems . . . . . . . . . . . . . ... . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

12 Leaf Senescence of Winged Bean Grown on Different Support Systems . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1 3 Nodule Mass Accumulation of Winged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

14 Nitrogenase Activity of Nodulated Root Systems of Winged Bean Grown on Different Support Systems . . . . . . . 68

xii

1 5 Interrelationship Between Nitrogenase Activity with Nodule Dry Weight, Seed Yield, Net Photosynthesis and

Page

Solar Radiation Interception .. .... . . .. . . . . . ... . . . . .. .... . .. . . ... 69

16 Pod-Bearing Node and Inter-node Length of Winged Bean Vines Grown on Different Support Systems ... .. .. ... 7 1

1 7 Flowering and Seed Filling Period of Winged Bean Grown on Different Support Systems . ... . .. ... . ........ . . .. . 73

1 8 Relationship Between Total Dry Matter and Seed Yield per Plant . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

19 Relationship Between Leaf Area Indices and Total Dry Matter. . . . ......... .. . ..... . ............... .... ....... . .. .. .... . .... 76

20 Total Dry Mat ter Accumulation of Ratooned Winged Bean Grown on Support Systems . .. ... .. . . .. . .... .. . ....... ... 100

2 1 Leaf Dry Matter Accumulation of Ratooned Winged Bean Grown on Support Systems .. ... . .............. .... ..... ..... .. . 102

22 Pod Dry Matter Accumulation of Ratooned Winged Bean Grown on Support Systems .... .. .... ........... ... . .... ... .. . .. 103

23 Total N Accumulation of Ratooned Winged Bean Grown on Support Systems ........ .... .. .. .. .. ..... ..... ... . .. ..... ... .. 1 06

24 Leaf N Accumulation of Ratooned Winged Bean Grown on Support Systems .............. .... ........ ..... . . . . . . . . . . . . . . . . 1 08

25 Pod N Accumulation of Ratooned Winged Bean Grown on Support Systems . . . . . . . . . . . .. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

26 Seed Yield of Ratooned Winged Bean Grown on Suppor t Systems........................................................ . .. . III

27 Total Dry Matter Accumulation of Ratooned Winged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

28 Dry Matter Distribution of Ratooned Winged Bean Plants Grown on Support Systems ... . ... ..... .... ................... .. 122

29 Leaf Area Indices of Ratooned Winged Bean Grown on Support Systems ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiii

30 Relative Growth Rate of Ratooned Win ged Bean Grown

Pa ge

on Support Systems . . . . . ... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

31 Net Assimilation Rate of Ratooned Win ged Bean Grown on Different Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

32 Net Photosynthesis of Win ged Be an Grown on Suppor t Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1

33 Net Photosynthesis of Ratooned and Non-Ratooned Win ged Bean Grown on Support Systems .. . . . . . . . . . . . . . . . . . . . 131

34 Solar Radiation Interception of Win ged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

35 Solar Radiation Interception of Ratooned and Non-Ratooned Win ged Bean Grown on Support Systems . . . . . .. 133

36 Nodule Dry Mat ter of Ratooned Win ged Bean Grown on Suppor t Systems . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135

37 Nitro genase Activity ofRatooned Win ged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

38 Total N Accumulation of Ratooned Win ged Bean Grown on Support Systems . . . . . '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 140

39 Leaf N Accumulation of Ratooned Win ged Bean Grown on Suppor t Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

40 Pod N Accumulation of Ratooned Win ged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

41 Relative Distribution of Nitro gen amon g Ratooned Win ged Bean Plant Or gans Grown on Support Systems '" 148

42 Allantoin Concentration in Xylem Exudates of Ratooned Win ged Bean Grown on Support Systems . . . . . . . . . . . ... . . . . . . 1 50

43 Nitrate-N Concentration in Xylem Exudates of Ratooned Win ged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . 1 5 1

44 Amino-N Concentration in Xylem Exudates of Ratooned Win ged Bean Grown on Support Systems . . . . . . . . . . . . . . . . . . . . 1 53

xiv

45 Relative Abundance of Vari ous S oluble N Fracti ons in Rat ooned Winged Bean Xylem Exudates as Affected by

Page

Supp ort S ystems . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 54

46 Relati onship Between N odule Dry Weight and Allant oin C oncentrati on in Xylem Exudates of Rat ooned Winged Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 55

47 Fl owering and Seed Filling Peri od of Rat ooned Winged Bean Gr own on Supp0l1 S ystems . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

48 Seed Yield of Rat ooned Winged Bean Gr own on Supp ort Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 59

49 Relati onship Between T otal N Accumulati on and Seed Yield of Rat ooned W inged Bean Gr own on Supp ort Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

50 Relati onship Between T otal Dr y Matter and T otal N Accumulati on of Rat ooned Winged Bean Gr own on Supp ort S ystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1

xv

LIST OF PLATES

�� P � 3 . 1 Diagram Showing the Construction of Support System . . . . . . . 37

4 .1 A Close up View of Winged Bean Plants at Mid Pod Formation Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A .2 A Close up View of Winged Bean Root Nodules . . . . . . . . . . . ... . 67

xvi

LIST OF APPENDICES

Appendix

1 Analyses of Variances of Total Dry Matter Accumulation

Page

in Whole Plant and its Component Parts . . . . . . . . . . . . . . . . . . . . . . . 194

2 Analyses of Variances of Leaf Area Index, Relative Growth Rate and Net Assimilation Rate and Chlorophyll Content of Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

3 Analyses of Variances of Net Photosynthesis, Stomatal Conductance, Intercellular C02 Concentration, Photos ynthetically Active Radiation (PAR) and Leaf Senescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4 Analyses of Variances of Nodule Mass Accumulation, Nitrogenase Activity, Seed Yield and Yield At tributes . �... 20 I

5 Economic Analysis of Winged Bean Grown on Different Suppor t Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6 Analyses of Variances of Total Dry Matter Accumulation in Aerial Plant Par ts of Ratooned Winged Bean . . . . . . . . . . . . . . . 204

7 Analyses of Variances of Total N Accumulation in Whole Plant and its Component Par ts ofRatooned Winged Bean . . 206

8 Analyse s of Variances of Total Dry Matter Accumulation in Whole Plant, Leaf Area Index, Relative Growth Rate, Net Assimilation Rate, Net Photosynthesis, and Solar Radiation Interception of Ratooned Winged Bean . . . . . . . . . . . 208

9 Analyses of Variances of Nodule Dry Matte r, Nitrogenase Activity and Total N Accumulation in Whole �lant and its Component Par ts of Ratooned Winged Bean . . . . . . . . . . . . . . . . . 212

10 Nitrogen Concentration (mg g-l) of Ratooned Winged Bean Plant Parts as Influenced by Plant Age under Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 16

1 1 Analyses of Variances of N Solutes Concentrations in Xylem Exudates ofRatooned Winged Bean . .. . . . . . . . . . . . . . . . 2 17

12 Analyses of Variances of Seed Yield and Yield At tributes of Ratooned Winged Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 19

xvii

Abstract of thes is submitted to the Senate ofUniversiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

PHYSIOLOGICAL RESPONSES OF WINGED BEAN [PSOPHOCARPUS TETRAGONOLOBUS (L.) DC.l TO SUPPORT SYSTEMS AND

RATOONING

By

MD. MOTIOR RAHMAN

June 1998

Chairman: Associate Professor Dr. Wan Mohamad Wan Othman

Faculty: Agriculture

Winged bean is an indeterminate, climbing, perennial legume that needs

support to achieve high yields. The ma jor constraint to large scale production of

winged bean is the need for trellising which incurred an additional cost of

production. After harvesting of young or mature pods plants can be cut and the

pollarded root stock produces a ratoon crop. Ratooning, a new technique for

seed production of winged bean, can reduce the initial expenditure on suppo rt

structures. Therefore, these studies on the effects of support systems and

ratooning on growth and seed production of winged bean were conducted under

humid tropical field conditions to document some experimental evidence.

Results from the first experiment revealed that when compared to unsupported

control, support height of 1 and 2 m caused a significant increase in leaf area

xviii

index (LAI), net photosynthesis, relative growth rate (RGR), nodule activity,

solar radiation interception (SRI), pattern of dry matter accumulation and

partitioning and consequently the seed yield of winged bean. Plants grown on a

support height of2 m had enhanced leaf growth, pod number and total dry matter

yield when compared to those on support height of I m and unsupported plants.

In the subsequent experiment, the root stock of the main crop was cut off

at 126, 1 40, 1 54 and 168 days after germination (DAG) and the ratooned crops

maintained for the next two crop cycles ( 126 days/crop cycle). The results

suggested that ratooning of winged bean at 126 or 1 40 DAG would lower the

investment expenditure on support structures and produced the highest

cumulative seed yield per unit area per unit time.

In the third experiment, winged bean plants were grown on support

heights ofO, I and 2 m and ratooned at 1 33 , 1 54 and 1 75 DAG. There were three

crop growth cycles continued in a unit area over time. Support systems and

ratooning had a significant influence in increasing nitrogen fixation, nitrogen

accumulation in leaves and N partitioning to pods, LAI, net assimilation rate

(NAR), net photosynthesis, SRI and consequently the plants growth patterns and

seed yield. Plants grown on 2 m support height and ratooned at 133 DAG

recorded the highest cumulative seed yield (6.26 t ha-1), largely associated with

increased number of pods per plant and leaf dry matter, leaf N and net

photosynthetic efficiency. The lowest cumulative seed yield ( 1 .28 t ha-1) was

xix

obtained from unsupported control plants and ratooned at 175 DAG. The data

also indicated that winged bean plants grown on support height of 2 m with

appropriate ratooning practice is teclmologically feasible and economically

viable.

Principal component analysis gave a clear direction of each desired

variable. Nodule mass (NM), leaf dry matter (LDM) and number of pods per

plant (PP) are the most important components of nitrogenase activity (NA), total

dry matter and seed yield, respectively.

Based on the above findings it is evident that the indeterminate climbing

winged bean grown on a 2 m support height accumulated substantial amounts of

dry matter and N compared with those on support height 1 m and unsupported

plants. It is concluded that in addition to dry matter accumulation, partitioning of

leaf dry matter and leaf N play an important role in vegetative growth and seed

yield of winged bean. Seed production of winged bean can be increased by more

than 5-fold (6.26 t ha-1) by adopting a 2 m support height and appropriate

ratooning practices. The optimum time of ratooning at 133 days after

germination under support system of 2 m height maximized seed yield per unit

area per year, thereby spreading'out the cost of trellising over three crop cycles.

xx

Abstrak tesis yang kemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi Keperluan untukIjazah Doktor Falsafah

RESPON FISIOLOGI KACANG BOTOR [PSOPHOCARPUS TETRA GONOLOBUS (L.) DC.] TERHADAP SISTEM SOKONGAN DAN

CANTASAN

Oleh

MD. MOTIOR RAHMAN

Jun 1998

Pengerusi: Profesor Madya Dr. Wan Mohamad Wan Othman

Faculti: Pertanian

Kacang botor adalah tanaman saka "indeterminate", menjalar dan

memerlukan sokongan untuk pengeluaran hasil yang tinggi. Masalah utama yang

dihadapi untuk pengeluaran kacang botor secara besaran ialah keperluan

penyediaan sokongan yang menyebabkan pertambahan kos pengeluaran. Selepas

penuaian pod muda at�u tua, pokok boleh dipotong dan tunggul pokok akan

menghasilkan satu tanaman cantasan (ratoon crop). Cantasan adalah satu teknik

baru didalam proses pengeluaran biji kacang botor dan ia dapat mengurangkan

kos pembinaan sistem sokongan tersebut. Oleh yang demikian, kajian ini telah

dijalankan diladang berkeadaan lembab tropika untuk memungut bukti tentang

kesan sistem sokongan dan cantasan terhadap pertumbuhan dan pengeluaran biji

kacang botor. Keputusan daripada eksperimen pertama menunjukkan bahawa

berbanding dengan kawalan, sokongan setinggi 1 dan 2 m meningkatkan dengan

bererti indek keluasan daun (IKD), kadar fotosintisis bersih, kadar pertumbuhan

xxi

bandingan (KPB), aktiviti nodul, intersepsi radiasi solar (IRS), corak

pengumpulan berat kering, pembahagian bahan kering dan akhimya hasil biji

kacang botor. Tanaman diberi sokongan setinggi 2 m mempunyai peningkatan

dalam pertumbuhan daun, bilangan pod dan jumlah berat kering yang lebih tinggi

berbanding dengan pokok diberi sokongan 1 m dan tanpa sokongan.

Dalam experimen yang seterusnya, bahagian pangkal pokok asal telah

dipotong pada 1 26, 140, 1 54 dan 1 68 hari selepas percambahan (HSP) dan

tanaman cantasan diselenggarakan untuk 2 musim berikutnya ( 126 hari per

pusingan tanaman). Keputusan yang diperolehi mencadangkan bahawa proses

cantasan kacang botor pada 1 26 atau 140 HSP dapat mengurangkan kos untuk

struktur sokongan dan menghasilkan hasil biji gabungan tertinggi per unit

kawasan per unit masa.

Bagi expenmen yang ketiga, kacang botor telah ditanam melibatkan

sokongan pada ketinggian 0, 1 dan 2 meter dan dicantas pada hari ke- 1 33, 1 54

dan 1 75 selepas percambahan. Terdapat tiga pusingan tumbesaran tanaman dalam

satu unit kawasan dalam satu jangkamasa. Sistem sokongan dan cantasan

memberi kesan yang bererti dalam meningkatkan pengikatkan nitrogen,

pengumpulan N dalam daun dan pembahagian nitrogen kepada pod, indeks

keluasan daun, kadar assimilasi bersih (KAB), kadar fotosintisis, intersepsi

radiasi solar dan akhimya corak tumbesaran pokok dan hasil biji. Pokok diberi

sokongan 2 m tinggi dengan cantasan pada minggu ke-1 9 selepas percambahan

xxii

merekodkan hasil biji gabungan yang tertinggi (6.26 t ha-l), yang berkaitan

dengan penambahan bilangan pod per pokok, berat kering daun, kandungan N

daun dan keberkesanan proses fotosintisis. Hasil biji kumulatif yang terrendah

(1 .28 t ha-l) diperolehi daripada tanaman tanpa sokongan yang'dicantas pada 1 75

HSP. Keputusan penyelidikan ini menunjukkan juga tanaman kacang botor yang

diberi sokongan 2 m tinggi dengan am alan cantasan yang sesuai adalah teknologi

yang mudah dan memberi keuntungan yang lumayan.

Analysis komponen utama memberi hal a yang jelas terhadap angkubah

yang diingini. Berat nodul (BN), berat kering daun (BKD), bilangan pod per

pokok (BPP) adalah komponen yang penting bagi aktiviti nitrogenase (AN),

jumlah bahan kering dan hasil biji, tiap-tiap satu.

Berdasarkan hasil kajian diatas, adalah jelas bahawa kacang botor yang

ditanam dengan sokongan pada ketinggian 2 m boleh menambahkan lebih banyak

bahan kering dan N berbanding dengan pokok diberi sokongan ketinggian 1 m

dan tanpa sokongan. Dapat disimpulkan bahawa selain penambahan hasil berat

kering, pembahagian bahan kering daun dan kandungan N daun, memain peranan

penting dalam tumbesaran vegetatif dan hasil bij i kacang botor. Pengeluaran biji

kacang botor dapat ditingkatkan lebih 5-kali ganda (6.26 t ha-l) dengan

menggunakan sokongan setinggi 2 m dan cantasan yang sesuai. Masa cantasan

yang optima pada 133 HSP dengan sokongan 2 m tinggi mengeluarkan hasil

xxiii